

Article On a New Generalization of Bernstein-Type Rational Functions and Its Approximation

Esma Yıldız Özkan ^{1,*} and Gözde Aksoy ²

- ¹ Department of Mathematics, Faculty of Science, Gazi University, Ankara 06500, Turkey
 - ² Department of Mathematics, Graduate School of Natural and Applied Sciences, Gazi University,
- Ankara 06500, Turkey; gozde.aksoy@gazi.edu.tr
- Correspondence: esmayildiz@gazi.edu.tr

Abstract: In this study, we introduce a new generalization of a Bernstein-type rational function possessing better estimates than the classical Bernstein-type rational function. We investigate its error of approximation globally and locally in terms of the first and second modulus of continuity and a class of Lipschitz-type functions. We present graphical comparisons of its approximation with illustrative examples.

Keywords: linear positive operator; rate of convergence; Bernstein-type rational function

MSC: 41A25; 41A36

1. Introduction

Bernstein polynomials [1] are defined to prove the well-known convergence theorem of Weierstreiss for each real-valued function f defined on [0, 1] by

$$B_n(f;x) = \sum_{k=0}^n f(k/n) \binom{n}{k} x^k (1-x)^{n-k}, n = 1, 2, \dots$$
(1)

In 1975, Balázs [2] defined an operator for each real-valued function *f* defined on $[0, \infty)$ and appropriately chosen real sequences (a_n) and (b_n) such that $a_n = \frac{b_n}{n}$ by

$$R_n(f;x) = \frac{1}{(1+a_n x)^n} \sum_{k=0}^n f\left(\frac{k}{b_n}\right) \binom{n}{k} (a_n x)^k, n = 1, 2, \dots$$
(2)

When $b_n = n$, this operator possesses the following relation with a Bernstein polynomial:

$$R_n(f;x) = B_n\left(f;\frac{a_nx}{1+a_nx}\right),$$

which is known as a Bernstein-type rational function. Balàzs estimated its rate of convergence for each continuous function f defined on $[0, \infty)$ and proved an asymptotic approximation theorem under the condition that $f(x) = O(e^{\tau x}), x \to \infty$ for some real number τ . In [3], Balàzs and Szabados improved the estimates given in [2] under more restrictive conditions by choosing $a_n = n^{\zeta-1}$ and $b_n = n^{\zeta}$ for $0 < \zeta \leq \frac{2}{3}, n = 1, 2, ...$ by assumming that f is uniformly continuous on $[0, \infty)$. Additionally, in [4], Balázs presented approximation results for Balázs–Szabados operators on all real axes. Totik investigated in [5] saturation properties of Balázs–Szabados operators, and Abel and Veccia [6] obtained Voronovskaja type asymptotic results for Balázs–Szabados operators by means of super-exponential functions.

Citation: Özkan, E.Y.; Aksoy, G. On a New Generalization of Bernstein-Type Rational Functions and Its Approximation. *Mathematics* 2022, *10*, 973. https://doi.org/ 10.3390/math10060973

Academic Editor: Ana-Maria Acu

Received: 23 February 2022 Accepted: 16 March 2022 Published: 18 March 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). In [8], Ispir and Atakut gave a generalization of Bernstein-type rational functions as follows:

$$G_n(f;x) = \frac{1}{\phi(a_n x)} \sum_{k=0}^{\infty} \frac{\phi^{(k)}(0)}{k!} (a_n x)^k f\left(\frac{k}{b_n}\right),$$

where a_n and b_n are suitably chosen positive numbers, and ϕ_n is a sequence of functions satisfying certain conditions. Recently, Agratini [9] has studied a class of Bernstein-type rational functions by choosing a strictly decreasing positive real sequence (λ_n) such that $\lim_{n\to\infty} \lambda_n = 0$ as follows:

$$L_n(f;x) = \frac{1}{(1+\lambda_n x)^n} \sum_{k=0}^n f\left(\frac{k}{n\lambda_n}\right) \binom{n}{k} (\lambda_n x)^k, n = 1, 2, \dots,$$
(3)

where *f* is continuous on $[0, \infty)$ satisfying a certain growing condition. Agratini has investigated both a local and global estimation of rate of convergence and has presented a weighted approximation result by using weighted modulus of continuity. Researchers can also find approximation results of some other Bernstein-type rational functions in those references [10–20].

Denoted by $C_B([0,\infty))$ is the Banach space of all real-valued continuous and bounded functions on $[0,\infty)$ endowed with the sup-norm $||f||_{\infty} = \sup_{x \in [0,\infty)} |f(x)|$.

For a compact subinterval $[a, b] \subset [0, \infty)$, the same norm is valid and reduced to $||f||_{[a,b]} = \sup_{x \in [a,b]} |f(x)|$.

In this paper, we construct a new generalization of Bernstein-type rational function, which is reducible to (2) and (3), and it is a rational function associated with the Bernstein polynomial given in (1). In an effort to define a well-defined Bernstein-type rational function, we choose non-negative real sequences (α_n) , (β_n) and (γ_n) such that $\gamma_n = n\alpha_n$ satisfying the property

$$\lim_{n \to \infty} \alpha_n = 0, \ \lim_{n \to \infty} \beta_n = 1 \text{ and } \lim_{n \to \infty} \gamma_n = \infty.$$
(4)

We consider a newly defined Bernstein-type rational function as follows:

$$R_n^G(f;x) = \sum_{k=0}^n f\left(\frac{k}{\gamma_n}\right) \binom{n}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-k}}{(\beta_n + \alpha_n x)^n}, x \ge 0, n \in \mathbb{N},$$
(5)

where *f* is a real-valued continuous function on $[0, \infty)$, (α_n) , (β_n) and (γ_n) are real sequences such that $\gamma_n = n\alpha_n$ satisfies the property (4). It is clear that R_n^G is a well-defined, linear and positive operator. When $\beta_n = 1$, $\alpha_n = a_n$ and $\gamma_n = b_n$, under the condition that $f(x) = O(e^{\tau x})$, $x \to \infty$ for some real number τ , it is reduced to the Bernstein-type rational functions given by (2). When $\alpha_n := \lambda_n$ is a strictly decreasing positive real sequence, and *f* is continuous on $[0, \infty)$ satisfying a certain growing condition, it is induced to Agratini's modification given by (3). Additionally, since it has the following connection with the Bernstein polynomial given by (1):

$$R_n^G(f;x) = B_n\left(f;\frac{\alpha_n x}{\beta_n + \alpha_n x}\right).$$

when $\gamma_n = n$ for $\beta_n = 1$, it can be called a generalized Bernstein-type rational function.

2. Approximation Results

Firstly, we present the following auxiliary result, which will be used throughout the paper:

Lemma 1. We have the following values of the generalized Bernstein-type rational function at monomials:

$$R_n^G(e_0; x) = 1, (6)$$

$$R_n^G(e_1;x) = \frac{x}{\beta_n + \alpha_n x},$$
(7)

$$R_n^G(e_2;x) = \frac{\left(1-\frac{1}{n}\right)x^2}{\left(\beta_n+\alpha_n x\right)^2} + \frac{x}{\gamma_n(\beta_n+\alpha_n x)},$$
(8)

where $e_i(t) = t^i$ for $i = 0, 1, 2, (\alpha_n), (\beta_n)$ and (γ_n) are real sequences such that $\gamma_n = n\alpha_n$.

Proof. By considering

$$(\beta_n + \alpha_n x)^n = \sum_{k=0}^n \binom{n}{k} (\alpha_n x)^k (\beta_n)^{n-k},$$
(9)

We calculate that

$$\begin{split} R_n^G(e_0;x) &= R_n^G(1;x) = \sum_{k=0}^n \binom{n}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-k}}{(\beta_n + \alpha_n x)^n} = 1, \\ R_n^G(e_1;x) &= R_n^G(t;x) = \sum_{k=0}^n \frac{k}{\gamma_n} \binom{n}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-k}}{(\beta_n + \alpha_n x)^n} \\ &= \frac{n\alpha_n x}{\gamma_n (\beta_n + \alpha_n x)} \sum_{k=0}^{n-1} \binom{n-1}{k} \left(\frac{\alpha_n x}{\beta_n + \alpha_n x}\right)^k \left(\frac{\beta_n}{\beta_n + \alpha_n x}\right)^{n-1-k} \\ &= \frac{n\alpha_n x}{\gamma_n (\beta_n + \alpha_n x)}.1 \\ &= \frac{x}{\beta_n + \alpha_n x}, \\ R_n^G(e_2;x) &= R_n^G(t^2;x) = \sum_{k=0}^n \frac{k^2}{\gamma_n^2} \binom{n}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-k}}{(\beta_n + \alpha_n x)^n} \\ &= \frac{n(n-1)\alpha_n^2 x^2}{\gamma_n^2 (\beta_n + \alpha_n x)^2} \sum_{k=0}^{n-1} \binom{n-2}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-2-k}}{(\beta_n + \alpha_n x)^{n-2}} \\ &+ \frac{n\alpha_n x}{\gamma_n^2 (\beta_n + \alpha_n x)^2} \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{(\alpha_n x)^k (\beta_n)^{n-1-k}}{(\beta_n + \alpha_n x)^{n-1}} \\ &= \frac{n(n-1)\alpha_n^2 x^2}{\gamma_n^2 (\beta_n + \alpha_n x)^2} + \frac{n\alpha_n x}{\gamma_n^2 (\beta_n + \alpha_n x)}. \end{split}$$

Remark 1. We have the following first- and second-order central moments by considering Lemma 1:

$$R_n^G(e_1 - x; x) = \frac{(1 - \beta_n)x}{\beta_n + \alpha_n x} - \frac{\alpha_n x^2}{\beta_n + \alpha_n x},$$
(10)

$$R_{n}^{G}((e_{1}-x)^{2};x) = \frac{\beta_{n}x}{\gamma_{n}(\beta_{n}+\alpha_{n}x)^{2}} + \frac{\left(\alpha_{n}+(\beta_{n}-1)^{2}-\frac{1}{n}\right)x^{2}}{(\beta_{n}+\alpha_{n}x)^{2}} + \frac{2\alpha_{n}(\beta_{n}-1)x^{3}}{(\beta_{n}+\alpha_{n}x)^{2}} + \frac{\alpha_{n}^{2}x^{4}}{(\beta_{n}+\alpha_{n}x)^{2}}.$$
(11)

Theorem 1. Let R_n^G , $n \in \mathbb{N}$, be the generalized Bernstein-type rational function defined by (5). If $(\alpha_n), (\beta_n)$ and (γ_n) are non-negative real sequences satisfying (4) for each $n \in \mathbb{N}$, then $R_n^G(f; x)$ converges to f(x) uniformly with respect to x on $[0, r] \subset [0, \infty)$, r > 0, for each $f \in C([0, r])$.

Proof. The proof can be fulfilled easily from the well-known Bohman–Korovkin theorem [21]. From (6) of Lemma 1, it is clear that

$$\lim_{n \to \infty} \left\| R_n^G(e_0; .) - e_0(.) \right\|_{[0,r]} = 0.$$
(12)

Since $\frac{1}{\beta_n + \alpha_n x} \leq \frac{1}{\beta_n}$ for each $x \in [0, r]$, by Remark 1, we can write

$$\begin{aligned} \left| R_n^G(e_1; x) - e_1(x) \right| &= \left| R_n^G(e_1 - x; x) \right| &= \left| \frac{(1 - \beta_n)x}{\beta_n + \alpha_n x} - \frac{\alpha_n x^2}{\beta_n + \alpha_n x} \right| \\ &\leq \frac{|1 - \beta_n|r}{\beta_n} + \frac{\alpha_n r^2}{\beta_n} := \mu_n^1. \end{aligned}$$
(13)

By considering relation (4), in (13), since $\lim_{n\to\infty} \mu_n^1 = 0$, we obtain

$$\lim_{n \to \infty} \left\| R_n^G(e_1; .) - e_1(.) \right\|_{[0,r]} = 0.$$
(14)

By considering (8) of Lemma 1, we can calculate that

$$R_{n}^{G}(e_{2};x) - e_{2}(x) = \left| \frac{x}{\gamma_{n}(\beta_{n} + \alpha_{n}x)} + \frac{\left(1 - \frac{1}{n}\right)x^{2}}{(\beta_{n} + \alpha_{n}x)^{2}} - x^{2} \right|$$

$$\leq \frac{x}{\gamma_{n}(\beta_{n} + \alpha_{n}x)} + \frac{\left|1 - \frac{1}{n} - \beta_{n}^{2}\right|x^{2}}{(\beta_{n} + \alpha_{n}x)^{2}} + \frac{2\beta_{n}\alpha_{n}x^{3}}{(\beta_{n} + \alpha_{n}x)^{2}} + \frac{\alpha_{n}^{2}x^{4}}{(\beta_{n} + \alpha_{n}x)^{2}}$$

$$\leq \frac{r}{\gamma_{n}\beta_{n}} + \frac{\left|1 - \frac{1}{n} - \beta_{n}^{2}\right|r^{2}}{\beta_{n}^{2}} + \frac{2\alpha_{n}r^{3}}{\beta_{n}} + \frac{\alpha_{n}^{2}r^{4}}{\beta_{n}^{2}} := \mu_{n}^{2}.$$
(15)

Under conditions of relation (4), from (15), since $\lim_{n\to\infty} \mu_n^2 = 0$, we get

$$\lim_{n \to \infty} \left\| R_n^G(e_2; .) - e_2(.) \right\|_{[0,r]} = 0.$$
(16)

From relations (12), (14) and (16), the criterion of the Bohman–Korovkin theorem is satisfied. Therefore, the proof of the theorem is completed. \Box

3. Local and Global Approximation

In this part, we present local and global results of approximation with the help of the first and second modulus of continuity and a Lipschitz class of functions.

For any $\mu > 0$, modulus of continuity of $f \in C_B([0, \infty))$ is defined as

$$\omega(f;\mu) = \sup_{0 < h < \mu} \sup_{x \in [0,\infty)} |f(x+h) - f(x)|,$$
(17)

which possesses the following property:

$$\omega(f;\kappa\mu) \le (\kappa+1)\omega(f;\mu),\tag{18}$$

for κ , $\mu > 0$, and $\lim_{\mu \to 0^+} \omega(f; \mu) = 0$, when f is uniformly continuous [22].

Theorem 2. Let (α_n) , (β_n) and (γ_n) be real sequences such that $\gamma_n = n\alpha_n$, satisfying the property (4). For any $f \in C_B([0, \infty))$, we have

$$\left|R_n^G(f;x)-f(x)\right|\leq 2\omega\left(f;\sqrt{\mu_n^x}\right),$$

where

$$\mu_{n}^{x} := \frac{\beta_{n}x}{\gamma_{n}(\beta_{n} + \alpha_{n}x)^{2}} + \frac{\left(\alpha_{n} + (\beta_{n} - 1)^{2} - \frac{1}{n}\right)x^{2}}{(\beta_{n} + \alpha_{n}x)^{2}} + \frac{2\alpha_{n}(\beta_{n} - 1)x^{3}}{(\beta_{n} + \alpha_{n}x)^{2}} + \frac{\alpha_{n}^{2}x^{4}}{(\beta_{n} + \alpha_{n}x)^{2}}.$$
(19)

Proof. Let $f \in C_B([0,\infty))$. By (18), we have

$$|f(t) - f(x)| \le \left(1 + \frac{|t - x|}{\mu}\right)\omega(f;\mu).$$
⁽²⁰⁾

By applying the operator R_n^G to (20), by taking linearity and positivity of the operator R_n^G into account and by applying Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \left| R_n^G(f;x) - f(x) \right| &\leq R_n^G(|f(t) - f(x)|;x) \\ &\leq \omega(f;\mu) \left(1 + \frac{1}{\mu} R_n^G(|e_1 - x|;x) \right) \\ &\leq \omega(f;\mu) \left(1 + \frac{1}{\mu} \sqrt{R_n^G\left((e_1 - x)^2;x\right)} \right). \end{aligned}$$
(21)

From (11) of Remark 1, by choosing

$$\mu_n^x := R_n^G \Big((e_1 - x)^2; x \Big) = \frac{\beta_n x}{\gamma_n (\beta_n + \alpha_n x)^2} + \frac{\Big(\alpha_n + (\beta_n - 1)^2 - 1\Big) x^2}{(\beta_n + \alpha_n x)^2} \\ + \frac{2\alpha_n (\beta_n - 1) x^3}{(\beta_n + \alpha_n x)^2} + \frac{\alpha_n^2 x^4}{(\beta_n + \alpha_n x)^2},$$

and by replacing $\mu := \sqrt{\mu_n^x}$, we complete the proof of the theorem. \Box

Remark 2. In Theorem 2, μ_n^x is dependent on x and choosing of (α_n) , (β_n) and (γ_n) . (α_n) , (β_n) and (γ_n) must be non-negative real sequences satisfying $\mu_n^x \ge 0$. Otherwise, Theorem 2 becomes invalid. For example, if $\beta_n \ge 1$ and $\alpha_n + (\beta_n - 1)^2 \ge \frac{1}{n}$ then $\mu_n^x \ge 0$. This is not the only possible condition as $\mu_n^x \ge 0$.

Moreover, for $f \in C([0, r])$ *, Theorem 2 is reduced to the following inequality:*

$$\left\|R_n^G(f;.)-f\right\|_{[0,r]}\leq 2\omega(f;\sqrt{\mu_n}),$$

where

$$\mu_n := \frac{r}{\gamma_n \beta_n} + \frac{\left(\alpha_n + (\beta_n - 1)^2 - \frac{1}{n}\right)r^2}{\beta_n^2} + \frac{2\alpha_n(\beta_n - 1)r^3}{\beta_n^2} + \frac{\alpha_n^2 r^4}{\beta_n^2}.$$
(22)

For $f \in C_B([0,\infty))$, Petree's *K*-functional is defined by

$$K_{2}(f;\mu) = \inf_{g \in C_{B}^{(2)}([0,\infty))} \{ \|f - g\|_{\infty} + \mu \|g''\|_{\infty} \},$$
(23)

where

$$C_B^{(2)}([0,\infty)) := \{g \in C_B([0,\infty)) : g', g'' \in C_B([0,\infty))\}$$

We have the following connection (see p. 192 in [23]) between Petree's *K*-functional and the second modulus of continuity $\omega_2(f;.)$

$$K_2(f;\mu) \le C\omega_2(f;\sqrt{\mu}),\tag{24}$$

where

$$\omega_2(f;\sqrt{\mu}) = \sup_{0 < h < \sqrt{\mu}} \sup_{x \in [0,\infty)} |f(x+2h) - 2f(x+h) + f(x)|.$$
(25)

Theorem 3. Let $(\alpha_n), (\beta_n)$ and (γ_n) be real sequences such that $\gamma_n = n\alpha_n$ satisfying property (4). For each $f \in C_B([0,\infty))$, then there exists a C > 0 such that

$$R_n^G(f;x) - f(x) \Big| \le C \Big\{ \omega_2 \Big(f; \sqrt{\mu_n^x} \Big) + \sqrt{\mu_n^x} \Big\}, x \ge 0,$$

where μ_n^x is given as in (19).

Proof. We initially define an auxilary operator by

$$E_n^G(f;x) := R_n^G(f;x) + f(x) - f(\eta_n^x),$$
(26)

where

$$\eta_n^x := R_n^G(e_1 - x; x) = \frac{(1 - \beta_n)x - \alpha_n x^2}{\beta_n + \alpha_n x}.$$
(27)

By (26), we obtain

$$E_n^G(e_1 - x; x) = R_n^G(e_1 - x; x) - x - \eta_n^x = 0.$$
 (28)

For any $g \in C_B^{(2)}([0,\infty))$, from Taylor's formula, we can write

$$g(t) - g(x) = g'(x)(t - x) + \int_{x}^{t} (t - u)g''(u)du.$$
(29)

By applying the operator R_n^G to (29), by (28), we obtain

$$\begin{aligned} \left| R_{n}^{G}(g;x) - g(x) \right| &\leq \left| g'(x) \right| \left| R_{n}^{G}(t-x;x) \right| + \left| R_{n}^{G} \left(\int_{x}^{t} (t-u) g''(u) du; x \right) \right| \\ &\leq \left\| g' \right\|_{\infty} \left| R_{n}^{G}(t-x;x) \right| + \left\| g'' \right\|_{\infty} R_{n}^{G} \left((t-x)^{2}; x \right). \end{aligned}$$
(30)

Since $g' \in C_B([0,\infty))$, there exists a $k_0 > 0$ such that $||g'||_{\infty} = k_0$. Therefore, by applying Cauchy–Schwarz inequality, we obtain

$$\left| R_{n}^{G}(g;x) - g(x) \right| \leq k_{0} \sqrt{R_{n}^{G}\left((t-x)^{2};x \right)} + \left\| g'' \right\|_{\infty} R_{n}^{G}\left((t-x)^{2};x \right).$$
(31)

Additionally, for $f \in C_B([0,\infty))$, we have

$$\begin{aligned} \left| R_{n}^{G}(f;x) \right| &\leq \sum_{k=0}^{n} \left| f\left(\frac{k}{\gamma_{n}}\right) \right| \binom{n}{k} \frac{(\alpha_{n}x)^{k} \beta_{n}^{n-k}}{(\beta_{n}+\alpha_{n}x)^{n}} \\ &\leq \| f\|_{\infty} R_{n}^{G}(e_{0};x) = \| f\|_{\infty}. \end{aligned}$$
(32)

By considering (30) and (32), we can write

$$\begin{aligned} R_{n}^{G}(f;x) - f(x) &| \leq \left| R_{n}^{G}((f-g);x) - (f-g)(x) \right| + \left| R_{n}^{G}(g;x) - g(x) \right| \\ &\leq R_{n}^{G}(|f-g|;x) + |(f-g)(x)| + \left| R_{n}^{G}(g;x) - g(x) \right| \\ &\leq 2 \|f-g\|_{\infty} + \|g''\|_{\infty} R_{n}^{G} \Big((e_{1}-x)^{2};x \Big) \\ &+ k_{0} \sqrt{R_{n}^{G} \Big((e_{1}-x)^{2};x \Big)}. \end{aligned}$$
(33)

In (33), considering Remark 1 and choosing μ_n^x as in (19), by taking the infimum right-hand side of the last inequality, for $g \in C_B^{(2)}([0,\infty))$, we obtain

$$\left| R_{n}^{G}(f;x) - f(x) \right| \leq 2K(f;\mu_{n}^{x}) + k_{0}\sqrt{\mu_{n}^{x}}.$$
 (34)

Lastly, by applying (24) to (34), we acquire

$$\left|R_n^G(f;x) - f(x)\right| \le c_0 \omega_2 \left(f; \sqrt{\mu_n^x}\right) + k_0 \sqrt{\mu_n^x},$$

where $c_0 > 0$. By choosing $C = \max\{k_0, c_0\}$, we obtain the desired result. \Box

Remark 3. For $f \in C([0, r])$, Theorem 3 is induced to the following result:

$$\left\| R_n^G(f;.) - f \right\|_{[0,r]} \le C\{ \omega_2(f;\sqrt{\mu_n}) + \sqrt{\mu_n}\}, C > 0$$

where μ_n is as in (22).

Let *E* be any subset of \mathbb{R} and $\theta \in (0, 1]$. Let $Lip_{M_f}(E, \theta)$ denote a class of Lipschitz functions in $C_B([0, \infty))$ satisfying

$$|f(t) - f(x)| \le M_f |t - x|^\theta, t \in \overline{E}, x \ge 0,$$
(35)

where M_f is a constant, and \overline{E} is the closure of E in $[0, \infty)$.

Theorem 4. Let (α_n) , (β_n) and (γ_n) be real sequences such that $\gamma_n = n\alpha_n$, satisfying the property (4). For any $f \in Lip_{M_f}(E, \theta)$, we have

$$\left| R_n^G(f;x) - f(x) \right| \le M_f \left\{ \left(\sqrt{\mu_n^x} \right)^{\theta} + 2(d(x,E))^{\theta} \right\},$$

where μ_n^x is given as in (19), M_f is a constant depending on f, and E is any subset of $[0, \infty)$, $x \in [0, \infty)$ and $\theta \in (0, 1]$.

Proof. Let $x \in [0, \infty)$ and $x \in \overline{E}$ such that $d(x, x_0) = |x - x_0|$. We can write

$$|f - f(x)| \le |f - f(x_0)| + |f(x_0) - f(x)|.$$
(36)

By applying R_n^G to (36), and by considering the linearity and positivity of R_n^G and (35), we obtain

$$R_{n}^{G}(f;x) - f(x) \Big| \leq R_{n}^{G}(|f - f(x_{0})|;x) + R_{n}^{G}(|f(x) - f(x_{0})|;x) \\ \leq M_{f} \Big\{ R_{n}^{G} \Big(|e_{1} - x_{0}|^{\theta} e_{0};x \Big) + R_{n}^{G} \Big(|x - x_{0}|^{\theta} e_{0};x \Big) \Big\} \\ = M_{f} \Big\{ R_{n}^{G} \Big(|e_{1} - x_{0}|^{\theta} e_{0};x \Big) + |x - x_{0}|^{\theta} R_{n}^{G}(e_{0};x) \Big\}.$$
(37)

In (37), by using Hölder's inequality for $p = \frac{2}{\theta}$ and $q = \frac{2}{2-\theta}$ such that $\frac{1}{p} + \frac{1}{q} = 1$, by considering Lemma 1 and (11) of Remark 1, we obtain

$$\begin{aligned} \left| R_{n}^{G}(f;x) - f(x) \right| &\leq M_{f} \left\{ \left(R_{n}^{G} \left(\left| e_{1} - x \right|^{\theta p}; x \right) \right)^{1/p} \left(R_{n}^{G} \left(\left(e_{0} \right)^{q}; x \right) \right)^{1/q} + 2(d(x,E))^{\theta} \right\} \\ &= M_{f} \left\{ \left(R_{n}^{G} \left(\left(e_{1} - x \right)^{2}; x \right) \right)^{\theta/2} (1)^{1/q} + 2(d(x,E))^{\theta} \right\} \\ &= M_{f} \left\{ \left(\sqrt{\mu_{n}^{x}} \right)^{\theta} + 2(d(x,E))^{\theta} \right\}, \end{aligned}$$

which completes the proof of theorem. \Box

Remark 4. When $x \in [0, r] := E \subset [0, \infty)$, it is clear that d(x, E) = 0. From Theorem 4, we have the following inequality:

$$\left\|R_n^G(f;.)-f\right\|_{[0,r]} \le M_f(\sqrt{\mu_n})^{\theta},$$

where μ_n is as in (22).

4. Graphical Comparison

In this part, we present some graphical results produced in Maple software.

Example 1. Let us choose $f(x) = x\left(x + \frac{1}{2}\right)\left(x + \frac{1}{3}\right)$, $\alpha_n = \frac{1}{\sqrt{n}}$, $\gamma_n = \sqrt{n}$ for $x \ge 0$ and $n \in \mathbb{N}$.

In Figures 1 and 2, by choosing $\beta_n = 1 - \frac{1}{n}$, graphical comparison of approximation of $R_n^G(f;x)$ to f for n = 50,75 and 100 is presented on $[0,\infty)$ and [0,3]. It is clear that approximation of $R_n^G(f;x)$ to f is better for increasing the value of n.

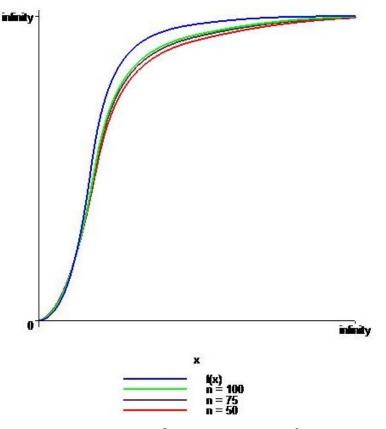


Figure 1. Approximation by R_n^G on $[0, \infty)$, for $\beta_n = 1 - \frac{1}{n}$, n = 50, 75 and 100.

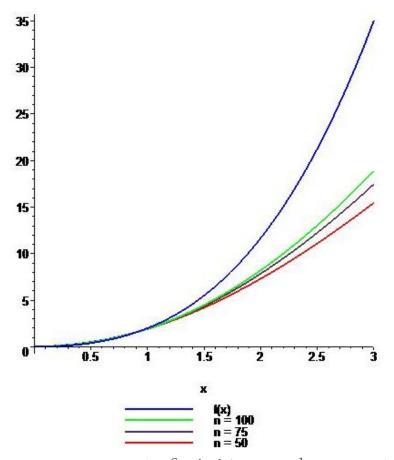


Figure 2. Approximation by R_n^G on [0, 3], for $\beta_n = 1 - \frac{1}{n}$, n = 50, 75 and 100.

In Figures 3 and 4, by choosing $\beta_n = 1 - \frac{1}{n}$, $R_n^G(f;x)$ is compared graphically with the classical Bernstein-type rational function $R_n(f;x)$ given by (2) to f for n = 25 on $[0, \infty)$ and [0,3]. It is obvious that approximation of $R_n^G(f;x)$ to f is better than approximation by $R_n(f;x)$ to f on $[0,\infty)$ and [0,3].

In Figures 5 and 6, by denoting $R_n^G(f;x) := R_n^G(f;x,\beta_n)$ and choosing $\beta_n = 1 - \frac{2}{n}$, 1 and $1 + \frac{2}{n}$, $R_n^G(f;x,1-\frac{2}{n})$, $R_n^G(f;x,1)$ and $R_n^G(f;x,1+\frac{2}{n})$ are graphically compared. Here, it is clear that $R_n^G(f;x,1)$ is reduced to $R_n(f;x)$ for $\beta_n = 1$. If we choose β_n as a real sequence such that $\lim_{n\to\infty} \beta_n = 1$, and β_n is not constant, then we see that approximation by $R_n^G(f;x,1-\frac{2}{n})$ is better than $R_n^G(f;x,1) = R_n(f;x)$ and $R_n^G(f;x,1+\frac{2}{n})$ on $[0,\infty)$ and [0,3].

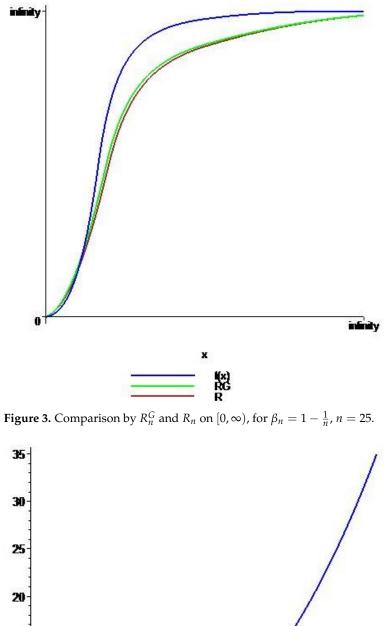


Figure 4. Comparison of R_n^G and R_n on [0, 3], for $\beta_n = 1 - \frac{1}{n}$, n = 25.

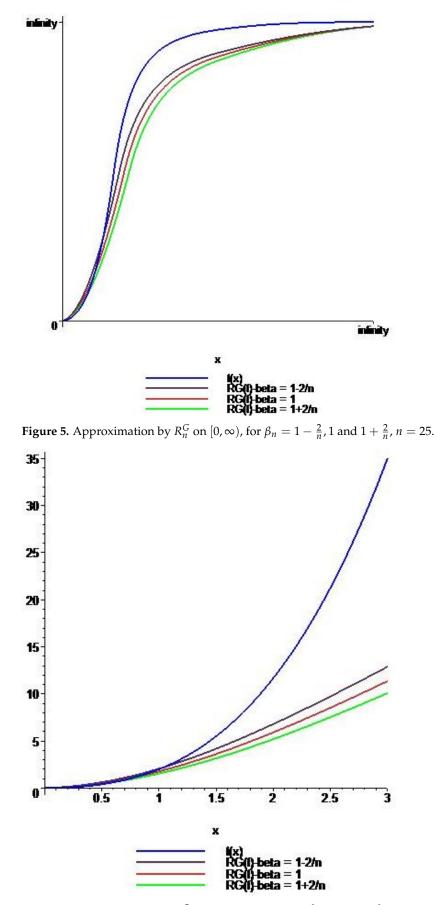


Figure 6. Approximation by R_n^G on [0,3], for $\beta_n = 1 - \frac{2}{n}$, 1 and $1 + \frac{2}{n}$, n = 25.

5. Conclusions

In this study, we have introduced a newly defined Bernstein-type rational function R_n^G , which is a generalized Bernstein-type rational function in terms of including the classical Bernstein-type rational function defined by (2) and Agratini's modification, defined by (3). We have estimated the error of its approximation for conveniently chosen non-negative real sequences (α_n) and (β_n). Consequently, the newly defined generalized Bernstein-type rational function defined by (2) for certain functions.

Author Contributions: Conceptualization, E.Y.Ö.; methodology, E.Y.Ö. and G.A.; software, E.Y.Ö.; validation, E.Y.Ö. and G.A.; investigation, E.Y.Ö. and G.A.; resources, E.Y.Ö. and G.A.; data curation, E.Y.Ö.; writing—original draft preparation, E.Y.Ö. and G.A.; writing—review and editing, E.Y.Ö.; visualization, E.Y.Ö.; supervision, E.Y.Ö. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data for this article are included in the text.

Acknowledgments: The authors are grateful to all the referees who contributed to the best presentation of the paper with their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. *Commun. Soc. Math. Kharkow* **2013**, *13*, 1–2.
- 2. Balázs, K. Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hungar. 1975, 26, 123–134. [CrossRef]
- Balázs, K.; Szabados, J. Approximation by Bernstein type rational functions II. Acta Math. Acad. Sci. Hungar. 1982, 40, 331–337. [CrossRef]
- 4. Balázs, K. Approximation by Bernstein type rational functions on the real axis. Acta Math. Hungar. 1985, 46, 195–204. [CrossRef]
- 5. Totik, V. Saturation for Bernstein type rational functions. *Acta Math. Hung.* **1984**, *43*, 219–250. [CrossRef]
- 6. Abel, U.; Vecchia, B.D. Asymptotic approximation by the operators of K. Balázs and Szabados. Acta Sci. Math. 2000, 66, 137–145.
- 7. Holhos, A. On the approximation by Balázs-Szabados operators. *Mathematics* 2021, 9, 1588. [CrossRef]
- İspir, N.; Atakut, Ç. Approximation by generalized Balázs type rational functions. *Int. J. Comput. Numer. Anal.* 2003, *4*, 297–316.
 Agratini, O. On a class of Bernstein-type rational functions. *Numer. Funct. Anal. Optim.* 2020, *41*, 483–494. [CrossRef]
- Agrann, O. On a class of beinstenetype rational functions. *Numer. Funct. Anat. Optim.* 2020, 41, 465–494. [CrossRef]
 Gupta, V.; İspir, N. On Bézier variant of generalized Kantorovich type Balázs operators. *Appl. Math. Lett.* 2005. 18, 1053–1061. [CrossRef]
- 11. Gupta, V.; Lupaş, A. On the rate of approximation for the Bézier variant of Kantorovich-Balázs operators. *Gen. Math.* **2004**, *1*, 3–18. [CrossRef]
- 12. Gupta, V.; Zeng, X.M. Rate of approximation fort he Bé zier variant of Balázs Kantorovich operators. *Math. Slovaca* **2007**, *57*, 349–358. [CrossRef]
- 13. Hamal, H.; Sabancıgil, P. Some approximation properties of new Kantorovich type q-analogue of Balázs-Szabados operators. *J. Inequal. Appl.* **2020**, 2020, 159. [CrossRef]
- 14. İspir, N.; Özkan, E.Y. Approximation properties of complex q-Balázs-Szabados operators in compact disks. *J. Inequal. Appl.* **2013**, 2013, 361. [CrossRef]
- 15. Özkan, E.Y.; İspir, N. Approximation by (p,q)-analogue of Balázs-Szabados operators. Filomat 2018, 32, 2257–2271. [CrossRef]
- Özkan, E.Y. Approximation properties of bivariate complex q-Balázs-Szabados operators of tensor product kind. *J. Inequal. Appl.* 2014, 2014, 20. [CrossRef]
- 17. Özkan, E.Y. Statistical approximation properties of q-Balázs-Szabados-Stancu operators. Filomat 2014, 28 , 1943–1952. [CrossRef]
- Özkan, E.Y. Approximation by complex bivariate Balá zs-Szabados operators. Bull. Malays. Math. Sci. Soc. 2016, 39, 1–16. [CrossRef]
- 19. Özkan, E.Y. Approximation properties of Kantorovich type q-Balázs-Szabados operators. *Demonstr. Math.* **2019**, *52*, 10–19. [CrossRef]
- 20. Özkan, E.Y. Quantitative estimates for the tensor product (p,q)-Balázs-Szabados operators and associated Boolean sum operators. *Filomat* **2020**, *34*, 779–793. [CrossRef]

- 21. Korovkin, P.P. On convergence of linear positive operators in the space of continuous functions. *Dokl. Akad. Nauk. SSSR* **1953**, *90*, 961–964.
- 22. Devore, R.A.; Lorentz, G.G. Constructive Approximation: Polynomials and Splines Approximation; Springer: Berlin/Heidelberg, Germany, 1993.
- 23. Butzer, P.L.; Berens, H. Semi-Groups of Operators and Approximation; Springer: New York, NY, USA, 1967.