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Abstract: In this study, we introduce a new generalization of a Bernstein-type rational function
possessing better estimates than the classical Bernstein-type rational function. We investigate its
error of approximation globally and locally in terms of the first and second modulus of continuity
and a class of Lipschitz-type functions. We present graphical comparisons of its approximation with
illustrative examples.
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1. Introduction

Bernstein polynomials [1] are defined to prove the well-known convergence theorem
of Weierstreiss for each real-valued function f defined on [0, 1] by

Bu(f;x) —]if(k/n)(;:)xk(l—x)”k,n—1,2,... 1)
=0

In 1975, Balédzs [2] defined an operator for each real-valued function f defined on
[0, c0) and appropriately chosen real sequences (a,,) and (b,) such that a, = % by

Ralf; %) = ml)kzof(;‘) (}) @n =12 @

When b, = n, this operator possesses the following relation with a Bernstein polynomial:

Ru(f;x) = By <f;1i'fﬂ),

which is known as a Bernstein-type rational function. Balazs estimated its rate of con-
vergence for each continuous function f defined on [0,00) and proved an asymptotic
approximation theorem under the condition that f(x) = O(e™), x — oo for some real
number 7. In [3], Balazs and Szabados improved the estimates given in [2] under more
restrictive conditions by choosing a, = néland b, = n® for0 < < 2n=12... by
assumming that f is uniformly continuous on [0, o). Additionally, in [4], Baldzs presented
approximation results for Baldzs—-Szabados operators on all real axes. Totik investigated
in [5] saturation properties of Balazs—Szabados operators, and Abel and Veccia [6] ob-
tained Voronovskaja type asiymtotic results for Baldzs—Szabados operators. In [7], Holhos
have presented new approximation results for Baldzs-Szabados operators by means of
super-exponential functions.
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In [8], Ispir and Atakut gave a generalization of Bernstein-type rational functions
as follows:

where a,, and b, are suitably chosen positive numbers, and ¢;, is a sequence of functions
satisfying certain conditions. Recently, Agratini [9] has studied a class of Bernstein-type
rational functions by choosing a strictly decreasing positive real sequence (A,) such that
limy, 00 Ay = 0 as follows:

La(fx) = mk_zof(nﬂ (})wfn =12, )

where f is continuous on [0, c0) satisfying a certain growing condition. Agratini has
investigated both a local and global estimation of rate of convergence and has presented a
weighted approximation result by using weighted modulus of continuity. Researchers can
also find approximation results of some other Bernstein-type rational functions in those
references [10-20].

Denoted by Cg([0, o)) is the Banach space of all real-valued continuous and bounded
functions on [0, ) endowed with the sup-norm ||f||,, = SUP ¢ [0,00) [f(x)].

For a compact subinterval [a,b] C [0,00), the same norm is valid and reduced to
] = SUPxe(ab) |f(x)]-

In this paper, we construct a new generalization of Bernstein-type rational function,
which is reducible to (2) and (3), and it is a rational function associated with the Bernstein
polynomial given in (1). In an effort to define a well-defined Bernstein-type rational
function, we choose non-negative real sequences (&), (Bn) and () such that v, = na,
satisfying the property

Jim a0 =0, Jim o =1and lim 7, = . @

We consider a newly defined Bernstein-type rational function as follows:

RS (f;x) = Zf( )()Wx>0neN ©)

where f is a real-valued continuous function on [0, ), (a4), (8x) and () are real se-
quences such that v, = na, satisfies the property (4). It is clear that R is a well-defined,
linear and positive operator. When 8, = 1, a;, = a, and 7, = b,, under the condition that
f(x) = O(e™), x — oo for some real number 7, it is reduced to the Bernstein-type rational
functions given by (2). When «,, := A, is a strictly decreasing positive real sequence, and f
is continuous on [0, o) satisfying a certain growing condition, it is induced to Agratini’s
modification given by (3). Additionally, since it has the following connection with the
Bernstein polynomial given by (1):

R () = (5,

when 1, = n for B, = 1, it can be called a generalized Bernstein-type rational function.

2. Approximation Results

Firstly, we present the following auxiliary result, which will be used throughout
the paper:

Lemma 1. We have the following values of the generalized Bernstein-type rational function
at monomials:
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RS(e;x) = 1, ©6)
RS(eyjx) = —— )
,Bn‘Han
1—1)x?
RG(ez;x) = (1-3)x - ®)

+ p
(Bn + anx)®  Yn(Bn + anx)
where e;(t) = tifori =0,1,2, (an), (Bn) and (7yn) are real sequences such that vy, = na,.

Proof. By considering
n = (1 k n—k
(Bn +anx)" = Z k (anx)*(Bn)" ™", )
We calculate that

n k n—k
RS(er;x) = RE(tx) =) 7" (") () (B)"

k=0 k) (Bn+anx)"
B nogx  "m—1 wpx \F B n-1-k
— Yn(Bn + anx) kgo ( k > (:Bn +‘an> (ﬁn +D‘nx>
_ Ny X .
Yn(Bn + anx)
B x
 Butanx
Glon G2y o K (wax) ()" F
Rn (62,35) = Rn (t ,x) = kzo r)/% <k> (,Bn +“nx)n

n(n—1)a2x? "2 (n - 2) (anx)k(Bn) 27K
Vi(Bu+anx)® 0\ K (Bu+ax)"

ne,x n=l (n — 1) (anx)k(B) 17K
Vi (Bn + anx) k=0 k (Bn + Dénx)nil
n(n—1)a2x? Ny X
V2(Bu + anx)®  YA(Bn +anx)
R

+

(:Bn +06nx)2 'Yn(,Bn +0‘nx)‘

+

O

Remark 1. We have the following first- and second-order central moments by considering Lemma 1:

(1—Bu)x B 0y, X2

G )
R$ (e1 — x;x) = B+ tnX Pt anx’ o
2 1 2
Gllo _ N2y Bnx (D‘"+(ﬁn_1) _ﬁ)x
Ry((er —x)5x) = Yn(Bn + ocnx)z - (Bn + lxnx)z
20, (B — 1) agx?t (11)

(Bn + anx)? (Bn + tyx)*
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Theorem 1. Let RS, n € N, be the generalized Bernstein-type rational function defined by (5). If
(an), (Bn) and (vy,) are non-negative real sequences satisfying (4) for each n € N, then RS (f; x)
converges to f(x) uniformly with respect to x on [0,r] C [0,00), r > 0, for each f € C([0,7]).

Proof. The proof can be fulfilled easily from the well-known Bohman-Korovkin theo-
rem [21]. From (6) of Lemma 1, it is clear that

lim HRS(Eo;-) —60(-)”

n—oo

0] = (12)

Since < é for each x € [0, 7], by Remark 1, we can write

1
Bntanx

2

RY (e1;x) — el(x)‘ ’Rf(m - x;x)’ = ' (1—Bn)x QpX

Bn + anx B Bn +anx

|1 — Bulr n a,r?
B B

By considering relation (4), in (13), since lim; e y}l = (0, we obtain

< = (13)

lim HRg(el;.) —e1() H (14)

n—00 0r]

By considering (8) of Lemma 1, we can calculate that
—1),2
x (1 n ) * 2

RY (23 %) *62(’6)’ T Bt o) Byt

x
< +

Yu(Bn + anx) (Bn + anx)
Zﬁntxnx3 ayx

(Bu+anx)®  (Bu + anx)?

1 2|2

r ‘1_5_5n " 2a,rd Al
+ n

2
YnB B Br g I

Under conditions of relation (4), from (15), since lim;, o y%, =0, we get

< (15)

lim || RS (e2;.) — ea ()|

n—00 0r]

(16)
From relations (12), (14) and (16), the criterion of the Bohman—Korovkin theorem is

satisfied. Therefore, the proof of the theorem is completed. [J

3. Local and Global Approximation

In this part, we present local and global results of approximation with the help of the
first and second modulus of continuity and a Lipschitz class of functions.
For any p > 0, modulus of continuity of f € Cp([0,00)) is defined as

w(f;u) = sup sup [f(x+h) = f(x)], (17)

0<h<p x€[0,00)
which possesses the following property:
w(fixp) < (k+Dw(fin), (18)

for x, u > 0, and lim,,_,o+ w(f; ) = 0, when f is uniformly continuous [22].
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Theorem 2. Let (ay), (Bn) and (7yn) be real sequences such that vy, = nay, satisfying the prop-
erty (4). Forany f € Cg([0,00)), we have

RG(fix) = ()| < 20(fi V/BE),

where
Bux (an—l—(,Bn—l)z—%)xz
Hon = 7T 2
Yu(Bn + anx) (Bn + anx)
20, (B —1)x3 a2 xt
(Bn + “nx)z (Bn + “nx)z‘ (49
Proof. Let f € Cg([0,0)). By (18), we have
0= £ < (14 =D wism. 20

By applying the operator RS to (20), by taking linearity and positivity of the operator
RS into account and by applying Cauchy-Schwarz inequality, we obtain

RG(fix) = f(x)| < RE(F(H) ~ f(x));x)
; l G el — X, X
< afin) (14 RS (e =5l )
1
w(fim) (1 + V\/Rr(z;((el - x)z;x)>. (21)

From (11) of Remark 1, by choosing

IN

x . _pG o2 Bnx (‘Xn+(ﬁn—l)2—1)x2
Pn oo = Rn ((el x) ’x) - ')’n(,Bn + Dénx)z " (ﬁn + Dénx)Z
2“11(,371 - 1)x3 zx%x‘*
(Bu+anx)®  (Bu+anx)?’

and by replacing y := |/, we complete the proof of the theorem. [

Remark 2. In Theorem 2, 3, is dependent on x and choosing of (ay), (Bn) and (vy). (an), (Bn)
and (yn) must be non-negative real sequences satisfying i > 0. Otherwise, Theorem 2 becomes
invalid. For example, if B, > 1 and ay + (B —1)* > L then s > 0. This is not the only possible
condition as yy; > 0.

Moreover, for f € C([0,r]), Theorem 2 is reduced to the following inequality:

RE(f) = fl| oy < 20055 Vi),
where

r (D‘n+(ﬁn_1)2_ %)rz

= +
fin P B2
2 —1)r3 a2
+ n(p Z%% ) + g% ) (22)

For f € Cp([0,0)), Petree’s K-functional is defined by
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Kalfim = inf {If —glo+ b @)
8€Cy ([0,00))

where
CP([0,00)) := {g € Cy([0,00)) : ¢', §" € Ca([0,00))}.

We have the following connection (see p. 192 in [23]) between Petree’s K-functional
and the second modulus of continuity wy(f;.)

Ko(f;p) < Cawn(f; /1), (24)
where
wa(f;y/m) = sup sup |f(x+2h)—2f(x+h)+ f(x)]. (25)
0<h<./p x€[0,00)

Theorem 3. Let (ay), (Bn) and (yy) be real sequences such that vy, = na, satisfying property (4).
For each f € Cg([0,0)), then there exists a C > 0 such that

RG(fx) = f(x)] < C{wa (Fiv/ik) + Vi prx 2 0,
where yy, is given as in (19).

Proof. We initially define an auxilary operator by

E7(fix) = RE (fix) + f(x) = f(), (26)
where ( ) )
1—Bn)x —apx
x._ pG o _ n n
M = R} (61 xrx) = ,Bn T (27)
By (26), we obtain
ES(e; — x;x) = RS (e1 — x;%) — x — 172 = 0. (28)
Forany g€ C 1(32) ([0,00)), from Taylor’s formula, we can write
t
§()—g(0) =g (@)t =)+ [ (t—u)g"(wdu )
By applying the operator RS to (29), by (28), we obtain
t
RE(gx) — (0] < g @I|REC )|+ RS ([0 g () )
X
< I8/l RS = xx) | + 117 | RS (¢ — %)% ). (30)

Since ¢’ € Cp([0,00)), there exists a kg > 0 such that ||¢'||, = ko. Therefore, by
applying Cauchy-Schwarz inequality, we obtain

R (g:x) —g(x)’ < kOW“L Hg”||ooR,§((t - x)z;x). (31)

Additionally, for f € Cg([0,0)), we have
G K| () (anx) By
ol < BrGI6) e
I 1leoR5 (605 %) = [1fllco- (32)

n

IN
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By considering (30) and (32), we can write

RG(fix) — f(x)| < |RE((f —)ix) = (f = )(x)| + RS (%) — g()|
< RG(If —glix) +1(f — )()] + RS (&%) — g()|
< 2)lf = gl + I8 1R (1 — 2)%%)

+ko \/Rg ((el — x)2,' x). (33)

In (33), considering Remark 1 and choosing y; as in (19), by taking the infimum

right-hand side of the last inequality, for g € C éz) ([0,00)), we obtain

R (fix) = f(x)| < 2K(f;13) + ko /b (34)

Lastly, by applying (24) to (34), we acquire

RS (fix) = £(x)] < cown(f3 /i) + Ko/,

where ¢y > 0. By choosing C = max{ky, cp}, we obtain the desired result. [

Remark 3. For f € C([0,r]), Theorem 3 is induced to the following result:

where yy, is as in (22).

RY(f3) = £, < Clealfv/im) + Vi), € >0,

Let E be any subset of R and 6 € (0,1]. Let Lipr(E, 6) denote a class of Lipschitz
functions in Cg([0, o)) satisfying

f(t) = f(x)| < M|t —x|°,t € E,x >0, (35)
where My is a constant, and E is the closure of E in [0, ).

Theorem 4. Let (ay), (Bn) and (7yn) be real sequences such that vy, = nay, satisfying the prop-
erty (4). Forany f € Lipp, (E,6), we have

RE(m) — 00| < me{ (Vi) + 20005 )1,

where py, is given as in (19), My is a constant depending on f, and E is any subset of [0, 00),
x € [0,00) and 6 € (0,1].

Proof. Let x € [0,00) and x € E such that d(x, xg) = |x — xp|. We can write

[f = fOI < 1f = flxo)[ +[f (x0) = f(2)]- (36)

By applying RS to (36), and by considering the linearity and positivity of RS and (35),
we obtain

Rf(f;x)*f(x)‘ < RY(If = f(x0)l;2) + RE(If(x) = f(x0) ;%)
Mf{RS(|el — x0|eeo;x> —|—Rg(|x — xo|960;x>}

Mf{Rg(|el —x0|eeo;x> + |x—x0|9Rg(eo;x)}. (37)

IN A
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In (37), by using Holder’s inequality for p = % and g = 22?9 such that % + % =1, by
considering Lemma 1 and (11) of Remark 1, we obtain

M{ (R (1 = 173x) ) 7 (RS ((eo)tin)) " 200, )
My (RG (1 = 0)) 01+ 200080
_ Mf{(\/ﬁ)e +2(d(x,E))9},

which completes the proof of theorem. [

IN

R (fix) = f(x)]

Remark 4. When x € [0,7] := E C [0, 00), it is clear that d(x, E) = 0. From Theorem 4, we have
the following inequality:

RE(fi)—f . < Me(vim),

o

where yy is as in (22).

4. Graphical Comparison

In this part, we present some graphical results produced in Maple software.
Example 1. Let us choose f(x) = x(x + %) (x + %), oy = ﬁ, Yn = /nforx >0andn € N.

In Figures 1 and 2, by choosing 8, =1 — %, graphical comparison of approximation
of R§(f;x) to f for n = 50,75 and 100 is presented on [0, ) and [0, 3]. It is clear that
approximation of RS (f; x) to f is better for increasing the value of n.

milinaly - — —
L] 'iilf
X
w2 100
n=17h
n=501

Figure 1. Approximation by RS on [0, o), for f, = 1 — %, n = 50,75 and 100.
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35
30
261
20
151
10
5
0
X
X
9 400
n=7Th
n =50

Figure 2. Approximation by RS on [0,3], for B =1 — %, n = 50,75 and 100.

In Figures 3 and 4, by choosing 8, = 1 — %, RS (f; x) is compared graphically with
the classical Bernstein-type rational function R, (f; x) given by (2) to f for n = 25 on [0, o0)
and [0, 3]. It is obvious that approximation of RS (f; x) to f is better than approximation by
Ry (f;x) to f on [0,00) and [0, 3].

In Figures 5 and 6, by denoting RS (f;x) := R$(f;x, Bu) and choosing B, =1 — 2,1
and 14 2, RG (f;x,1— 2), R$(f;x,1) and RS (f;x,1 + 2) are graphically compared. Here,
itis clear that RS (f; x, 1) is reduced to Ry, (f; x) for B, = 1.1f we choose B, as a real sequence
such that lim, e B = 1, and B, is not constant, then we see that approximation by

RS (f;x,1— 2) isbetter than RS (f;x,1) = R, (f;x) and RS (f;x,1+ 2) on [0,00) and [0, 3].
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R
R
Figure 3. Comparison by RS and R, on [0,00), for B, =1 — 1,1 = 25.

35

15

10

R

Figure 4. Comparison of R§ and R, on [0,3], for B, =1 — 1, n = 25.
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-2
+2m

1
1
1
Figure 5. Approximation by RS on [0,0), for B, =1— 2,1and 1 + 2, n = 25.

357

151

-2in
+2in

1
1
1

Figure 6. Approximation by RS on [0,3], for B, =1— 2,1and 1+ 2,n = 25.
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5. Conclusions

In this study, we have introduced a newly defined Bernstein-type rational function RS,
which is a generalized Bernstein-type rational function in terms of including the classical
Bernstein-type rational function defined by (2) and Agratini’s modification, defined by (3).
We have estimated the error of its approximation for conveniently chosen non-negative
real sequences () and (B, ). Consequently, the newly defined generalized Bernstein-type
rational function possesses better results than the classical Bernstein-type rational function
defined by (2) for certain functions.
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