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Abstract: In this study, we introduce a new generalization of a Bernstein-type rational function
possessing better estimates than the classical Bernstein-type rational function. We investigate its
error of approximation globally and locally in terms of the first and second modulus of continuity
and a class of Lipschitz-type functions. We present graphical comparisons of its approximation with
illustrative examples.
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1. Introduction

Bernstein polynomials [1] are defined to prove the well-known convergence theorem
of Weierstreiss for each real-valued function f defined on [0, 1] by

Bn( f ; x) =
n

∑
k=0

f (k/n)
(

n
k

)
xk(1− x)n−k, n = 1, 2, . . . (1)

In 1975, Balázs [2] defined an operator for each real-valued function f defined on
[0, ∞) and appropriately chosen real sequences (an) and (bn) such that an = bn

n by

Rn( f ; x) =
1

(1 + anx)n

n

∑
k=0

f
(

k
bn

)(
n
k

)
(anx)k, n = 1, 2, . . . (2)

When bn = n, this operator possesses the following relation with a Bernstein polynomial:

Rn( f ; x) = Bn

(
f ;

anx
1 + anx

)
,

which is known as a Bernstein-type rational function. Balàzs estimated its rate of con-
vergence for each continuous function f defined on [0, ∞) and proved an asymptotic
approximation theorem under the condition that f (x) = O(eτx), x → ∞ for some real
number τ. In [3], Balàzs and Szabados improved the estimates given in [2] under more
restrictive conditions by choosing an = nζ−1 and bn = nζ for 0 < ζ ≤ 2

3 , n = 1, 2, . . . by
assumming that f is uniformly continuous on [0, ∞). Additionally, in [4], Balázs presented
approximation results for Balázs–Szabados operators on all real axes. Totik investigated
in [5] saturation properties of Balázs–Szabados operators, and Abel and Veccia [6] ob-
tained Voronovskaja type asiymtotic results for Balázs–Szabados operators. In [7], Holhoş
have presented new approximation results for Balázs–Szabados operators by means of
super-exponential functions.
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In [8], İspir and Atakut gave a generalization of Bernstein-type rational functions
as follows:

Gn( f ; x) =
1

φ(anx)

∞

∑
k=0

φ(k)(0)
k!

(anx)k f
(

k
bn

)
,

where an and bn are suitably chosen positive numbers, and φn is a sequence of functions
satisfying certain conditions. Recently, Agratini [9] has studied a class of Bernstein-type
rational functions by choosing a strictly decreasing positive real sequence (λn) such that
limn→∞ λn = 0 as follows:

Ln( f ; x) =
1

(1 + λnx)n

n

∑
k=0

f
(

k
nλn

)(
n
k

)
(λnx)k, n = 1, 2, . . . , (3)

where f is continuous on [0, ∞) satisfying a certain growing condition. Agratini has
investigated both a local and global estimation of rate of convergence and has presented a
weighted approximation result by using weighted modulus of continuity. Researchers can
also find approximation results of some other Bernstein-type rational functions in those
references [10–20].

Denoted by CB([0, ∞)) is the Banach space of all real-valued continuous and bounded
functions on [0, ∞) endowed with the sup-norm ‖ f ‖∞ = supx∈[0,∞)| f (x)|.

For a compact subinterval [a, b] ⊂ [0, ∞), the same norm is valid and reduced to
‖ f ‖[a,b] = supx∈[a,b]| f (x)|.

In this paper, we construct a new generalization of Bernstein-type rational function,
which is reducible to (2) and (3), and it is a rational function associated with the Bernstein
polynomial given in (1). In an effort to define a well-defined Bernstein-type rational
function, we choose non-negative real sequences (αn), (βn) and (γn) such that γn = nαn
satisfying the property

lim
n→∞

αn = 0, lim
n→∞

βn = 1 and lim
n→∞

γn = ∞. (4)

We consider a newly defined Bernstein-type rational function as follows:

RG
n ( f ; x) =

n

∑
k=0

f
(

k
γn

)(
n
k

)
(αnx)k(βn)n−k

(βn + αnx)n , x ≥ 0, n ∈ N, (5)

where f is a real-valued continuous function on [0, ∞), (αn), (βn) and (γn) are real se-
quences such that γn = nαn satisfies the property (4). It is clear that RG

n is a well-defined,
linear and positive operator. When βn = 1, αn = an and γn = bn, under the condition that
f (x) = O(eτx), x → ∞ for some real number τ, it is reduced to the Bernstein-type rational
functions given by (2). When αn := λn is a strictly decreasing positive real sequence, and f
is continuous on [0, ∞) satisfying a certain growing condition, it is induced to Agratini’s
modification given by (3). Additionally, since it has the following connection with the
Bernstein polynomial given by (1):

RG
n ( f ; x) = Bn

(
f ;

αnx
βn + αnx

)
,

when γn = n for βn = 1, it can be called a generalized Bernstein-type rational function.

2. Approximation Results

Firstly, we present the following auxiliary result, which will be used throughout
the paper:

Lemma 1. We have the following values of the generalized Bernstein-type rational function
at monomials:
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RG
n (e0; x) = 1, (6)

RG
n (e1; x) =

x

βn+αnx
, (7)

RG
n (e2; x) =

(
1− 1

n

)
x2

(βn + αnx)2 +
x

γn(βn + αnx)
, (8)

where ei(t) = ti for i = 0, 1, 2, (αn), (βn) and (γn) are real sequences such that γn = nαn.

Proof. By considering

(βn + αnx)n =
n

∑
k=0

(
n
k

)
(αnx)k(βn)

n−k, (9)

We calculate that

RG
n (e0; x) = RG

n (1; x) =
n

∑
k=0

(
n
k

)
(αnx)k(βn)n−k

(βn + αnx)n = 1,

RG
n (e1; x) = RG

n (t; x) =
n

∑
k=0

k
γn

(
n
k

)
(αnx)k(βn)n−k

(βn + αnx)n

=
nαnx

γn(βn + αnx)

n−1

∑
k=0

(
n− 1

k

)(
αnx

βn + αnx

)k( βn

βn + αnx

)n−1−k

=
nαnx

γn(βn + αnx)
.1

=
x

βn + αnx
,

RG
n (e2; x) = RG

n (t
2; x) =

n

∑
k=0

k2

γ2
n

(
n
k

)
(αnx)k(βn)n−k

(βn + αnx)n

=
n(n− 1)α2

nx2

γ2
n(βn + αnx)2

n−2

∑
k=0

(
n− 2

k

)
(αnx)k(βn)n−2−k

(βn + αnx)n−2

+
nαnx

γ2
n(βn + αnx)

n−1

∑
k=0

(
n− 1

k

)
(αnx)k(βn)n−1−k

(βn + αnx)n−1

=
n(n− 1)α2

nx2

γ2
n(βn + αnx)2 +

nαnx
γ2

n(βn + αnx)

=

(
1− 1

n

)
x2

(βn + αnx)2 +
x

γn(βn + αnx)
.

Remark 1. We have the following first- and second-order central moments by considering Lemma 1:

RG
n (e1 − x; x) =

(1− βn)x
βn + αnx

− αnx2

βn + αnx
, (10)

RG
n ((e1 − x)2; x) =

βnx

γn(βn + αnx)2 +

(
αn + (βn − 1)2 − 1

n

)
x2

(βn + αnx)2

+
2αn(βn − 1)x3

(βn + αnx)2 +
α2

nx4

(βn + αnx)2 . (11)
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Theorem 1. Let RG
n , n ∈ N, be the generalized Bernstein-type rational function defined by (5). If

(αn), (βn) and (γn) are non-negative real sequences satisfying (4) for each n ∈ N, then RG
n ( f ; x)

converges to f (x) uniformly with respect to x on [0, r] ⊂ [0, ∞), r > 0, for each f ∈ C([0, r]).

Proof. The proof can be fulfilled easily from the well-known Bohman–Korovkin theo-
rem [21]. From (6) of Lemma 1, it is clear that

lim
n→∞

∥∥∥RG
n (e0; .)− e0(.)

∥∥∥
[0,r]

= 0. (12)

Since 1
βn+αnx ≤

1
βn

for each x ∈ [0, r], by Remark 1, we can write

∣∣∣RG
n (e1; x)− e1(x)

∣∣∣ =
∣∣∣RG

n (e1 − x; x)
∣∣∣ = ∣∣∣∣ (1− βn)x

βn + αnx
− αnx2

βn + αnx

∣∣∣∣
≤ |1− βn|r

βn
+

αnr2

βn
:= µ1

n. (13)

By considering relation (4), in (13), since limn→∞ µ1
n = 0, we obtain

lim
n→∞

∥∥∥RG
n (e1; .)− e1(.)

∥∥∥
[0,r]

= 0. (14)

By considering (8) of Lemma 1, we can calculate that

∣∣∣RG
n (e2; x)− e2(x)

∣∣∣ =

∣∣∣∣∣∣ x
γn(βn + αnx)

+

(
1− 1

n

)
x2

(βn + αnx)2 − x2

∣∣∣∣∣∣
≤ x

γn(βn + αnx)
+

∣∣∣1− 1
n − β2

n

∣∣∣x2

(βn + αnx)2

+
2βnαnx3

(βn + αnx)2 +
α2

nx4

(βn + αnx)2

≤ r
γnβn

+

∣∣∣1− 1
n − β2

n

∣∣∣r2

β2
n

+
2αnr3

βn
+

α2
nr4

β2
n

:= µ2
n. (15)

Under conditions of relation (4), from (15), since limn→∞ µ2
n = 0, we get

lim
n→∞

∥∥∥RG
n (e2; .)− e2(.)

∥∥∥
[0,r]

= 0. (16)

From relations (12), (14) and (16), the criterion of the Bohman–Korovkin theorem is
satisfied. Therefore, the proof of the theorem is completed.

3. Local and Global Approximation

In this part, we present local and global results of approximation with the help of the
first and second modulus of continuity and a Lipschitz class of functions.

For any µ > 0, modulus of continuity of f ∈ CB([0, ∞)) is defined as

ω( f ; µ) = sup
0<h<µ

sup
x∈[0,∞)

| f (x + h)− f (x)|, (17)

which possesses the following property:

ω( f ; κµ) ≤ (κ + 1)ω( f ; µ), (18)

for κ, µ > 0, and limµ→0+ ω( f ; µ) = 0, when f is uniformly continuous [22].
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Theorem 2. Let (αn), (βn) and (γn) be real sequences such that γn = nαn, satisfying the prop-
erty (4). For any f ∈ CB([0, ∞)), we have∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ 2ω

(
f ;
√

µx
n

)
,

where

µx
n : =

βnx

γn(βn + αnx)2 +

(
αn + (βn − 1)2 − 1

n

)
x2

(βn + αnx)2

+
2αn(βn − 1)x3

(βn + αnx)2 +
α2

nx4

(βn + αnx)2 . (19)

Proof. Let f ∈ CB([0, ∞)). By (18), we have

| f (t)− f (x)| ≤
(

1 +
|t− x|

µ

)
ω( f ; µ). (20)

By applying the operator RG
n to (20), by taking linearity and positivity of the operator

RG
n into account and by applying Cauchy–Schwarz inequality, we obtain∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ RG

n (| f (t)− f (x)|; x)

≤ ω( f ; µ)

(
1 +

1
µ

RG
n (|e1 − x|; x)

)
≤ ω( f ; µ)

(
1 +

1
µ

√
RG

n

(
(e1 − x)2; x

))
. (21)

From (11) of Remark 1, by choosing

µx
n : = RG

n

(
(e1 − x)2; x

)
=

βnx

γn(βn + αnx)2 +

(
αn + (βn − 1)2 − 1

)
x2

(βn + αnx)2

+
2αn(βn − 1)x3

(βn + αnx)2 +
α2

nx4

(βn + αnx)2 ,

and by replacing µ :=
√

µx
n, we complete the proof of the theorem.

Remark 2. In Theorem 2, µx
n is dependent on x and choosing of (αn), (βn) and (γn). (αn), (βn)

and (γn) must be non-negative real sequences satisfying µx
n ≥ 0. Otherwise, Theorem 2 becomes

invalid. For example, if βn ≥ 1 and αn + (βn − 1)2 ≥ 1
n then µx

n ≥ 0. This is not the only possible
condition as µx

n ≥ 0.
Moreover, for f ∈ C([0, r]), Theorem 2 is reduced to the following inequality:∥∥∥RG

n ( f ; .)− f
∥∥∥
[0,r]
≤ 2ω( f ;

√
µn),

where

µn : =
r

γnβn
+

(
αn + (βn − 1)2 − 1

n

)
r2

β2
n

+
2αn(βn − 1)r3

β2
n

+
α2

nr4

β2
n

. (22)

For f ∈ CB([0, ∞)), Petree’s K-functional is defined by
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K2( f ; µ) = inf
g∈C(2)

B ([0,∞))

{
‖ f − g‖∞ + µ

∥∥g′′
∥∥

∞

}
, (23)

where
C(2)

B ([0, ∞)) :=
{

g ∈ CB([0, ∞)) : g′, g′′ ∈ CB([0, ∞))
}

.

We have the following connection (see p. 192 in [23]) between Petree’s K-functional
and the second modulus of continuity ω2( f ; .)

K2( f ; µ) ≤ Cω2( f ;
√

µ), (24)

where
ω2( f ;

√
µ) = sup

0<h<
√

µ

sup
x∈[0,∞)

| f (x + 2h)− 2 f (x + h) + f (x)|. (25)

Theorem 3. Let (αn), (βn) and (γn) be real sequences such that γn = nαn satisfying property (4).
For each f ∈ CB([0, ∞)), then there exists a C > 0 such that∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ C

{
ω2

(
f ;
√

µx
n

)
+
√

µx
n

}
, x ≥ 0,

where µx
n is given as in (19).

Proof. We initially define an auxilary operator by

EG
n ( f ; x) := RG

n ( f ; x) + f (x)− f (ηx
n), (26)

where

ηx
n := RG

n (e1 − x; x) =
(1− βn)x− αnx2

βn + αnx
. (27)

By (26), we obtain

EG
n (e1 − x; x) = RG

n (e1 − x; x)− x− ηx
n = 0. (28)

For any g ∈ C(2)
B ([0, ∞)), from Taylor’s formula, we can write

g(t)− g(x) = g′(x)(t− x) +
∫ t

x
(t− u)g′′(u)du. (29)

By applying the operator RG
n to (29), by (28), we obtain∣∣∣RG

n (g; x)− g(x)
∣∣∣ ≤ ∣∣g′(x)

∣∣∣∣∣RG
n (t− x; x)

∣∣∣+ ∣∣∣∣RG
n

(∫ t

x
(t− u)g′′(u)du; x

)∣∣∣∣
≤

∥∥g′
∥∥

∞

∣∣∣RG
n (t− x; x)

∣∣∣+ ∥∥g′′
∥∥

∞RG
n

(
(t− x)2; x

)
. (30)

Since g′ ∈ CB([0, ∞)), there exists a k0 > 0 such that ‖g′‖∞ = k0. Therefore, by
applying Cauchy–Schwarz inequality, we obtain∣∣∣RG

n (g; x)− g(x)
∣∣∣ ≤ k0

√
RG

n

(
(t− x)2; x

)
+
∥∥g′′

∥∥
∞RG

n

(
(t− x)2; x

)
. (31)

Additionally, for f ∈ CB([0, ∞)), we have

∣∣∣RG
n ( f ; x)

∣∣∣ ≤ n

∑
k=0

∣∣∣∣ f( k
γn

)∣∣∣∣(n
k

)
(αnx)kβn−k

n
(βn + αnx)n

≤ ‖ f ‖∞RG
n (e0; x) = ‖ f ‖∞. (32)
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By considering (30) and (32), we can write∣∣∣RG
n ( f ; x)− f (x)

∣∣∣ ≤ ∣∣∣RG
n (( f − g); x)− ( f − g)(x)

∣∣∣+ ∣∣∣RG
n (g; x)− g(x)

∣∣∣
≤ RG

n (| f − g|; x) + |( f − g)(x)|+
∣∣∣RG

n (g; x)− g(x)
∣∣∣

≤ 2‖ f − g‖∞ +
∥∥g′′

∥∥
∞RG

n

(
(e1 − x)2; x

)
+k0

√
RG

n

(
(e1 − x)2; x

)
. (33)

In (33), considering Remark 1 and choosing µx
n as in (19), by taking the infimum

right-hand side of the last inequality, for g ∈ C(2)
B ([0, ∞)), we obtain∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ 2K( f ; µx

n) + k0
√

µx
n. (34)

Lastly, by applying (24) to (34), we acquire∣∣∣RG
n ( f ; x)− f (x)

∣∣∣ ≤ c0ω2

(
f ;
√

µx
n

)
+ k0

√
µx

n,

where c0 > 0. By choosing C = max{k0, c0}, we obtain the desired result.

Remark 3. For f ∈ C([0, r]), Theorem 3 is induced to the following result:∥∥∥RG
n ( f ; .)− f

∥∥∥
[0,r]
≤ C{ω2( f ;

√
µn) +

√
µn}, C > 0,

where µn is as in (22).

Let E be any subset of R and θ ∈ (0, 1]. Let LipM f (E, θ) denote a class of Lipschitz
functions in CB([0, ∞)) satisfying

| f (t)− f (x)| ≤ M f |t− x|θ , t ∈ E, x ≥ 0, (35)

where M f is a constant, and E is the closure of E in [0, ∞).

Theorem 4. Let (αn), (βn) and (γn) be real sequences such that γn = nαn, satisfying the prop-
erty (4). For any f ∈ LipM f (E, θ), we have

∣∣∣RG
n ( f ; x)− f (x)

∣∣∣ ≤ M f

{(√
µx

n

)θ
+ 2(d(x, E))θ

}
,

where µx
n is given as in (19), M f is a constant depending on f , and E is any subset of [0, ∞),

x ∈ [0, ∞) and θ ∈ (0, 1].

Proof. Let x ∈ [0, ∞) and x ∈ E such that d(x, x0) = |x− x0|. We can write

| f − f (x)| ≤ | f − f (x0)|+ | f (x0)− f (x)|. (36)

By applying RG
n to (36), and by considering the linearity and positivity of RG

n and (35),
we obtain∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ RG

n (| f − f (x0)|; x) + RG
n (| f (x)− f (x0)|; x)

≤ M f

{
RG

n

(
|e1 − x0|θe0; x

)
+ RG

n

(
|x− x0|θe0; x

)}
= M f

{
RG

n

(
|e1 − x0|θe0; x

)
+ |x− x0|θ RG

n (e0; x)
}

. (37)



Mathematics 2022, 10, 973 8 of 13

In (37), by using Hölder’s inequality for p = 2
θ and q = 2

2−θ such that 1
p + 1

q = 1, by
considering Lemma 1 and (11) of Remark 1, we obtain∣∣∣RG

n ( f ; x)− f (x)
∣∣∣ ≤ M f

{(
RG

n

(
|e1 − x|θp; x

))1/p(
RG

n
(
(e0)

q; x
))1/q

+ 2(d(x, E))θ
}

= M f

{(
RG

n

(
(e1 − x)2; x

))θ/2
(1)1/q + 2(d(x, E))θ

}
= M f

{(√
µx

n

)θ
+ 2(d(x, E))θ

}
,

which completes the proof of theorem.

Remark 4. When x ∈ [0, r] := E ⊂ [0, ∞), it is clear that d(x, E) = 0. From Theorem 4, we have
the following inequality: ∥∥∥RG

n ( f ; .)− f
∥∥∥
[0,r]
≤ M f (

√
µn)

θ ,

where µn is as in (22).

4. Graphical Comparison

In this part, we present some graphical results produced in Maple software.

Example 1. Let us choose f (x) = x
(

x + 1
2

)(
x + 1

3

)
, αn = 1√

n , γn =
√

n for x ≥ 0 and n ∈ N.

In Figures 1 and 2, by choosing βn = 1− 1
n , graphical comparison of approximation

of RG
n ( f ; x) to f for n = 50, 75 and 100 is presented on [0, ∞) and [0, 3]. It is clear that

approximation of RG
n ( f ; x) to f is better for increasing the value of n.

Figure 1. Approximation by RG
n on [0, ∞), for βn = 1− 1

n , n = 50, 75 and 100.
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Figure 2. Approximation by RG
n on [0, 3], for βn = 1− 1

n , n = 50, 75 and 100.

In Figures 3 and 4, by choosing βn = 1− 1
n , RG

n ( f ; x) is compared graphically with
the classical Bernstein-type rational function Rn( f ; x) given by (2) to f for n = 25 on [0, ∞)
and [0, 3]. It is obvious that approximation of RG

n ( f ; x) to f is better than approximation by
Rn( f ; x) to f on [0, ∞) and [0, 3].

In Figures 5 and 6, by denoting RG
n ( f ; x) := RG

n ( f ; x, βn) and choosing βn = 1− 2
n , 1

and 1 + 2
n , RG

n
(

f ; x, 1− 2
n
)
, RG

n ( f ; x, 1) and RG
n
(

f ; x, 1 + 2
n
)

are graphically compared. Here,
it is clear that RG

n ( f ; x, 1) is reduced to Rn( f ; x) for βn = 1. If we choose βn as a real sequence
such that limn→∞ βn = 1, and βn is not constant, then we see that approximation by
RG

n
(

f ; x, 1− 2
n
)

is better than RG
n ( f ; x, 1) = Rn( f ; x) and RG

n
(

f ; x, 1 + 2
n
)

on [0, ∞) and [0, 3].
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Figure 3. Comparison by RG
n and Rn on [0, ∞), for βn = 1− 1

n , n = 25.

Figure 4. Comparison of RG
n and Rn on [0, 3], for βn = 1− 1

n , n = 25.
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Figure 5. Approximation by RG
n on [0, ∞), for βn = 1− 2

n , 1 and 1 + 2
n , n = 25.

Figure 6. Approximation by RG
n on [0, 3], for βn = 1− 2

n , 1 and 1 + 2
n , n = 25.
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5. Conclusions

In this study, we have introduced a newly defined Bernstein-type rational function RG
n ,

which is a generalized Bernstein-type rational function in terms of including the classical
Bernstein-type rational function defined by (2) and Agratini’s modification, defined by (3).
We have estimated the error of its approximation for conveniently chosen non-negative
real sequences (αn) and (βn). Consequently, the newly defined generalized Bernstein-type
rational function possesses better results than the classical Bernstein-type rational function
defined by (2) for certain functions.

Author Contributions: Conceptualization, E.Y.Ö.; methodology, E.Y.Ö. and G.A.; software, E.Y.Ö.;
validation, E.Y.Ö. and G.A.; investigation, E.Y.Ö. and G.A.; resources, E.Y.Ö. and G.A.; data curation,
E.Y.Ö.; writing—original draft preparation, E.Y.Ö. and G.A.; writing—review and editing, E.Y.Ö.;
visualization, E.Y.Ö.; supervision, E.Y.Ö. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data for this article are included in the text.

Acknowledgments: The authors are grateful to all the referees who contributed to the best presenta-
tion of the paper with their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow

2013, 13, 1–2.
2. Balázs, K. Approximation by Bernstein type rational funstions. Acta Math. Acad. Sci. Hungar. 1975, 26, 123–134. [CrossRef]
3. Balázs, K.; Szabados, J. Approximation by Bernstein type rational functions II. Acta Math. Acad. Sci. Hungar. 1982, 40, 331–337.

[CrossRef]
4. Balázs, K. Approximation by Bernstein type rational functions on the real axis. Acta Math. Hungar. 1985, 46, 195–204. [CrossRef]
5. Totik, V. Saturation for Bernstein type rational functions. Acta Math. Hung. 1984, 43, 219–250. [CrossRef]
6. Abel, U.; Vecchia, B.D. Asymptotic approximation by the operators of K. Balázs and Szabados. Acta Sci. Math. 2000, 66, 137–145.
7. Holhos, A. On the approximation by Balázs-Szabados operators. Mathematics 2021, 9, 1588. [CrossRef]
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14. İspir, N.; Özkan, E.Y. Approximation properties of complex q-Balázs-Szabados operators in compact disks. J. Inequal. Appl. 2013,

2013, 361. [CrossRef]
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