Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apoptosis and Both Virus-to-Cell and Cell-to-Cell Infections
Abstract
:1. Introduction
2. Uniform Persistence
3. Global Attractivity of the Chronic Infection Equilibrium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowak, M.A.; May, R.M. Virus Dynamics: Mathematics Principles of Immunology and Virology; Oxford University Press: London, UK, 2000. [Google Scholar]
- Nowak, M.A.; Bangham, C.R.M. Population dynamics of immune responses to persistent viruses. Science 1996, 272, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herz, A.V.; Bonhoeffer, S.; Anderson, R.M.; May, R.M.; Nowak, M.A. Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 1996, 93, 7247–7251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perelson, A.S.; Neumann, A.U.; Markowitz, M.; Leonard, J.M.; Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, J.E.; Sulzer, B.; Neumann, A.U.; Perelson, A.S. Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 1998, 152, 143–163. [Google Scholar] [CrossRef]
- Perelson, A.S.; Kirschner, D.E.; De Boer, R. Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 1993, 114, 81–125. [Google Scholar] [CrossRef] [Green Version]
- De Boer, R.J.; Perelson, A.S. Target cell limited and immune control models of HIV infection: A comparison. J. Theor. Biol. 1998, 190, 201–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perelson, A.S.; Nelson, P.W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999, 41, 3–44. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 2006, 200, 44–57. [Google Scholar] [CrossRef]
- Li, D.; Ma, W. Asymptotic properties of a HIV-1 infection model with time delay. J. Math. Anal. Appl. 2007, 335, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Neumann, A.U. Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 2007, 329, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Takeuchi, Y.; Ma, W. Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 2010, 70, 2693–2708. [Google Scholar] [CrossRef]
- Huang, G.; Ma, W.; Takeuchi, Y. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 2011, 24, 1199–1203. [Google Scholar] [CrossRef] [Green Version]
- Xu, R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. 2011, 375, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, K.; Yang, Y. Dynamical behaviors of an HBV infection model with logistic hepatocyte growth. Math. Comput. Model. 2011, 54, 704–711. [Google Scholar] [CrossRef]
- Pawelek, K.A.; Liu, S.; Pahlevani, F.; Rong, L. A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient. data. Math. Biosci. 2012, 235, 98–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhang, L.; Zheng, T.; Li, H.; Teng, Z. Global stability for a delayed HIV reactivation model with latent infection and Beddington-DeAngelis incidence. Appl. Math. Lett. 2021, 117, 107047. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, L.; Ruan, S. Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math. Biosci. 2015, 270, 183–191. [Google Scholar] [CrossRef]
- Chen, S.S.; Cheng, C.Y.; Takeuchi, Y. Stability analysis in delayed within-host viral dynamics with both viral and cellular infections. J. Math. Anal. Appl. 2016, 442, 642–672. [Google Scholar] [CrossRef]
- Alshorman, A.; Wang, X.; Meyer, M.J.; Rong, L. Analysis of HIV models with two time delays. J. Biol. Dyn. 2017, 11, 40–64. [Google Scholar] [CrossRef] [Green Version]
- She, Z.; Jiang, X. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete Cont. Dyn. Syst. B 2021, 26, 3835–3861. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, W.; Song, K. Modeling inhibitory effect on the growth of uninfected T cells caused by infected T cells: Stability and Hopf bifurcation. Comput. Math. Method Med. 2018, 2018, 3176893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Wang, J.; Song, Y.; Jiang, Z. Dynamical analysis of a delayed HIV virus dynamic model with cell-to-cell transmission and apoptosis of bystander cells. Complexity 2020, 2020, 2313102. [Google Scholar] [CrossRef]
- Huebner, W.; Mcnemey, G.P.; Chen, P.; Dale, B.M.; Gordon, R.E.; Chuang, F.Y.S.; Li, X.; Asmuth, D.M.; Huser, T.; Chen, B.K. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 2009, 323, 1743–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, X.; Zou, X. Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J. Appl. Math. 2014, 74, 898–917. [Google Scholar] [CrossRef]
- Culshaw, R.V.; Ruan, S.; Webb, G. A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 2003, 46, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Sattentau, Q. Avoiding the void: Cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 2008, 6, 815–826. [Google Scholar] [CrossRef]
- Lai, X.; Zou, X. Modeling cell-to-cell spread of HIV-1 with logistic target cell growth. J. Math. Anal. Appl. 2015, 426, 563–584. [Google Scholar] [CrossRef]
- Li, F.; Ma, W. Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response. Math. Meth. Appl. Sci. 2018, 41, 3000–3017. [Google Scholar] [CrossRef]
- Shu, H.; Chen, Y.; Wang, L. Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J. Dyn. Differ. Equ. 2018, 30, 1817–1836. [Google Scholar] [CrossRef]
- Pan, X.; Chen, Y.; Shu, H. Rich dynamics in a delayed HTLV-1 infection model: Stability switch, multiple stable cycles, and torus. J. Math. Anal. Appl. 2019, 479, 2214–2235. [Google Scholar] [CrossRef]
- Finkel, T.H.; Tudor-Williams, G.; Banda, N.K.; Cotton, M.F.; Curiel, T.; Monks, C.; Baba, T.W.; Ruprecht, R.M.; Kupfer, A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes. Nat. Med. 1995, 1, 129–134. [Google Scholar] [CrossRef]
- Selliah, N.; Finkel, T.H. Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ. 2001, 8, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Ma, W.; Guo, S. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Commun. Pure Appl. Anal 2016, 15, 795–806. [Google Scholar]
- Guo, S.; Ma, W. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete Cont. Dyn. Syst. B 2016, 21, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wen, L. Functional Differential Equations; Hunan Science and Technology Press: Changsha, China, 1987. [Google Scholar]
- Hale, J.K.; Verduyn Lunel, S.M. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Kuang, Y. Delay Differential Equations with Applications in Population Dynamics; Academic Press: Boston, MA, USA, 1993. [Google Scholar]
- Zheng, Z. Theorey of Functional Differential Equations; Anhui Education Press: Hefei, China, 1994. [Google Scholar]
- Diekmann, O.; Heesterbeek, J.A.; Metz, J.A. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Dreessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Barbǎlat, I. Systèmes d’équations différentielles d’oscillations non lineairés. Rev. Roumaine Math. Pures Appl. 1959, 4, 267–270. [Google Scholar]
- Guo, K.; Ma, W.; Qiang, R. Global dynamics analysis of a time-delayed dynamic model of Kawasaki disease pathogenesis. Discrete Cont. Dyn. Syst. B 2022, 27, 2367–2400. [Google Scholar] [CrossRef]
- Guo, K.; Ma, W. Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Math. Biosci. Eng. 2021, 18, 643–672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Guo, K.; Ma, W. Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apoptosis and Both Virus-to-Cell and Cell-to-Cell Infections. Mathematics 2022, 10, 975. https://doi.org/10.3390/math10060975
Li M, Guo K, Ma W. Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apoptosis and Both Virus-to-Cell and Cell-to-Cell Infections. Mathematics. 2022; 10(6):975. https://doi.org/10.3390/math10060975
Chicago/Turabian StyleLi, Meng, Ke Guo, and Wanbiao Ma. 2022. "Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apoptosis and Both Virus-to-Cell and Cell-to-Cell Infections" Mathematics 10, no. 6: 975. https://doi.org/10.3390/math10060975
APA StyleLi, M., Guo, K., & Ma, W. (2022). Uniform Persistence and Global Attractivity in a Delayed Virus Dynamic Model with Apoptosis and Both Virus-to-Cell and Cell-to-Cell Infections. Mathematics, 10(6), 975. https://doi.org/10.3390/math10060975