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Abstract: In this paper, we present a new class of distributions called the modified power family by
adding an extra shape parameter. Some of its structural properties are derived. Three special cases of
the new family are considered and estimated using the method of maximum likelihood. The validity
of the method of maximum likelihood is illustrated via Monte Carlo simulations. The importance
and flexibility of the new family are empirically illustrated, partly due to efficient modeling of several
real data. We compare the proposed family with some distributions and special models generated
from other classes using classical statistical measures.
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1. Introduction

Several papers introduced, in the last three decades, new classes of continuous distri-
butions with desirable properties and motivations from a baseline cumulative distribution
function (cdf) G(x). Ref. [1] proposed the Marshall–Olkin-G family, with applications to
the exponential and Weibull distributions, using an extra shape parameter to make more
flexible the generated distributions. Based on the Marshall–Olkin-G family, several models
were investigated: Marshall–Olkin–Weibull [2], Marshall–Olkin–Lomax [3], Marshal–Olkin–
Fréchet [4], Marshall– Olkin Burr XII [5] and modified-power-function [6] distributions,
among others.

Another method to generate a new cdf [7] is the beta-G family by composing the cdf
of the beta distribution with G(x), i.e., F(x) = IG(x)(a, b), where Ix(a, b) is the incomplete
beta function ratio. Several articles were published on sub-models of the beta-G family
such as the beta-exponential [8], beta-generalized-exponential [9] and beta-Dagum [10],
among several others.

This composition procedure was extended to a function of G(x) (W[G(x)]), instead of
G(x), in [11–14], to generate the gamma-G, Kumaraswamy-G, gamma-G and log-gamma-G
(I and II). For more details about composition of cdfs, see, for example, [15–17].

Recently, Refs. [18,19] followed the same proposal by [1], and starting with a monotone
increasing function of G(x), defined the alpha-power-G classes with cdfs including one
and two extra parameters, respectively, given by

FAP(x) =
αG(x) − 1

α− 1
, for α > 0, α 6= 1,

FMAP(x) =
αG2(x)βG(x) − 1

αβ− 1
, for α, β ≥ 1, αβ 6= 1.
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In this paper, we present a new family with one extra parameter based on the parent
cdf G(x). Our aim is to show its utility to achieve adequate flexibility to real data in
many fields. The new family is motivated by the ability to fit real data. The cdf and
probability density function (pdf) of the new family have simple expressions. The density
shapes can be decreasing or unimodal (right-skewed or symmetrical). The hazard rate
function (hrf) exhibits monotone, non-monotone (bathtub and upside-down bathtub) or
decreasing–increasing–decreasing shapes.

The rest of the paper is structured as follows. Section 2 defines a new one-parameter
family, provides some of its properties and discusses the estimation method. Three sub-
models are addressed in Section 3. Section 4 examines the efficiency of the estimators
via Monte Carlo simulations, and performs real applications of these sub-models. Finally,
Section 5 concludes the paper.

2. Materials and Methods
2.1. The New Family

Definition 1. For every continuous cdf G(x), the cdf of the modified power (MPo) family is defined
by the monotonic increasing cdf F : R→ [0, 1] (for x ∈ R)

F(x) = aG(x)−1 G(x), if a ≥ e−1. (1)

It is clear that limx→−∞ F(x) = 0 and limx→∞ F(x) = 1. For a = 1, F(x) = G(x).
The pdf corresponding to (1) is

f (x) = aG(x)−1 g(x) [1 + G(x) ln a], (2)

where g(x) = dG(x)/dx is the baseline density corresponding to G(x).

Proposition 1. Equation (2) is a weighted function of the baseline density g(x), where

w(x) = aG(x) [1 + G(x) ln a]

is the weight. Note that w(x) is increasing for a > 1, and decreasing for a < 1. Equation (2) leads to

f (x) =
1
a

w(x) g(x). (3)

For the parent random variable (rv) T ∼ G by integrating both sides of (3) gives E[w(T)] = a.

These weights play an important role in distribution theory [20]. The weighted
distributions are very important, because they consider the method of ascertainment by
adjusting the probabilities of actual occurrence of events. Ref. [21] introduced the concept
of a weighted distribution as a method of adjustment applicable to many situations. We
may arrive at the wrong conclusions, while failing to make such an adjustment.

Many authors have employed weighted distributions for different purposes,
see [22,23]. They occur frequently in reliability, meta analysis and analysis of intervention
data, biomedicine and several other areas, for the improvement of proper statistical models.

We denote the hrfs corresponding to F and G by hF(x) and hG(x), respectively. From
Equation (3), the following results compare some measures of the weighted rv X ∼ F with
those of the unweighted T ∼ G [24]:

(i) If w(x) is monotone increasing hF(x) ≤ hG(x) and then F(x) ≤ G(x) for all x.
(ii) If w(x) is monotone decreasing, hG(x) ≤ hF(x) and then G(x) ≤ F(x) for all x.
(iii) E(X) > E(T) if Cov(T, w(T)) > 0.
(iv) E(X) < E(T) if Cov(T, w(T)) < 0.
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Properties (i) and (ii) are illustrated in Figure 1 for the exponential baseline distribu-
tion. For two monotone increasing weights w(x; 2, 5) and w(x; 3, 5) and two monotone
decreasing weights w(x; 0.5, 5) and w(x; 0.6, 5).

Several others interesting connections between measures of X and T in the context of
reliability and life testing were addressed by [22].

Figure 1. Plots of the (a) weight, (b) cdf and (c) hrf for the MPoE model.

The cdf of the “exponentiated-G” (exp-G) class is simply given by Πb(x) = G(x)b,
where G(x) is the baseline cdf and b > 0 is a power parameter. So, the pdf of the exp-G
class is πb(x) = bG(x)b−1 g(x), where g(x) is the parent pdf. Twenty eight different exp-G
models were reported in Table 1 of [16] with a complete and accurate bibliography until
this date.

Proposition 2. The density of X is an infinite linear combination of exponentiated densities with
weights pi = (ln a)i/(i!a) (for i = 0, 1, . . .)

Proof. Using the power series for aG(x), Equation (1) reduces to

F(x) =
1
a

∞

∑
i=0

(ln a )i

i!
G(x)i+1,

and the density of X can be written as

f (x) =
1
a

∞

∑
i=0

(ln a )i

i!
πi+1(x), (4)

where πi+1(x) = (i + 1) g(x) G(x)i is the exp-G density with power i + 1.
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Hence, based on the linear representation (4), some properties of the new family follow
from those exp-G properties reported in several papers; see Table 1 of [16]. Henceforth,
Yi+1 denotes a rv with density πi+1(x).

2.2. Moments

If X has density (2), the rth ordinary moment of X (for r = 1, 2, . . .) can be found from
(4) and the moments of the exp-G distribution as

µ′r = E(Xr) =
1
a

∞

∑
i=0

(ln a )i

i!
E
(
Yr

i+1
)
=

1
a

∫ 1

0
ay
[

G−1(y)
]r
[1 + y ln a] dy.

The rth incomplete moment of X comes from (4)

IX(t; r) = E(Xr | X ≤ t) =
1
a

∞

∑
i=0

(ln a )i

i!

∫ t

−∞
xr πi+1(x) dx =

1
a

∞

∑
i=0

(ln a )i

i!
Ii(t; r),

where Ii(t; r) is the rth incomplete moment of Yi+1.
The first incomplete moment IX(t; 1) is useful for determining the mean deviations

from any location of X, and the Bonferroni and Lorenz curves.

2.3. Generating Function

The generating function (gf) of X can be found from (4)

MX(t) =
1
a

∞

∑
i=0

(ln a )i

i!
Mi(t; r),

where Mi(t) is the gf of Yi+1 Alternatively, the gf of X can be written as

MX(t) =
1
a

∫ 1

0
ay exp

[
t G−1(y)

]
[1 + y ln a] dy.

By expanding ay in power series gives

MX(t) =
1
a

∞

∑
i=0

(ln a)i

i!

∫ 1

0
yi exp

[
t G−1(y)

]
[1 + y ln a] dy.

2.4. Quantiles

There is no explicit form for the quantile function (qf) of X, but it can be approximated
using a one-dimensional root-finding algorithm from (1) such as Newton’s method in
F(z)− u = z az−1 − u = 0, where G(x) = z. We can write the iterative process as

zi+1 = zi −
zi − u a1−zi

(1 + zi log a)

and starting with a suitable guess and keep repeating the process (for i ≥ 1) until terminate
at z? for a specified accuracy level. So, we obtain x = G−1(z?). Further, the solution of z in
F(z) = z az−1 = u is given by (Using the Mathematica software)

z = W0(a u ln a)/ ln a, for a 6= 1,

where W0 is the principal branch of the Lambert W function, which has a known power series

z = W0(u) =
∞

∑
i=1

(−1)i+1 ii−2

(i− 1)!
ui.
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So, the qf of X follows from the baseline qf as

x = Q(u) = G−1
(

W0(a u ln a)/ ln a
)

, for a 6= 1.

2.5. Mode

The mode m of the MPo family can be found by maximizing the log-pdf from (2). At
x = m, the derivative of ln f (x) with respect to x vanishes. We can obtain m by solving
the equation

g′(m)

g(m)
+ g(m) ln a +

g(m) ln a
1 + G(m) ln a

= 0, (5)

which has no explicit solution for m. So, the mode of the MPo family does not have a closed
form. Given F(·) and f (·), direct maximization of ln g(x) using a numerical optimization
algorithm or one-dimensional root-finding algorithm of (5) can be used to approximate
the mode.

2.6. Hazard Rate

The hrf of X is

hF(x) =
aG(x) [1 + G(x) ln a] [1− G(x)]

a− aG(x) G(x)
hG(x).

Proposition 3. It is straightforward to show that:

lim
x→−∞

hF(x) =
1
a

lim
x→−∞

hG(x), lim
x→∞

hF(x) = lim
x→∞

hG(x).

2.7. Estimation

Let x1, . . . , xn be n independent realizations from the MPo model, η> = (a, θ>), where
θ is the parameter vector of the parent distribution. The log-likelihood function for η is

`(η) = −n ln a + ln a
n

∑
i=1

G(xi; θ) +
n

∑
i=1

ln g(xi; θ) +
n

∑
i=1

ln [1 + G(xi; θ) ln a].

By differentiating `(η) with respect to the parameters, we obtain the score components:

Ua = −
n
a
+

1
a

n

∑
i=1

G(xi; θ) +
1
a

n

∑
i=1

G(xi; θ)

1 + G(xi; θ) ln a

and

Uθ = ln a
n

∑
i=1

∂G(xi; θ)

∂θ
+

n

∑
i=1

1
g(xi; θ)

∂g(xi; θ)

∂θ
+

n

∑
i=1

ln a
1 + G(xi; θ) ln a

∂G(xi; θ)

∂θ
.

Since we can not solve these equations analytically to find the maximum likelihood
estimates (MLEs) of (a, θ), these estimates (â, θ̂) can be determined by numerical algorithms,
such as the BFGS algorithm. This algorithm with analytical derivatives can be used for
maximizing `(η) using the R software library AdequacyModel [25], which provides a general
optimization method for maximizing or minimizing an arbitrary objective function.
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3. Sub-Models
3.1. Modified Power Exponential (MPoE)

For the exponential parent with rate λ > 0, the cdf of the MPoE model (for x > 0 and
a ≥ e−1) is

F(x) = a− exp(−λx) [1− exp(−λx)].

Plots of the pdf, cdf and hrf of the MPoE are displayed in Figure 2.

Figure 2. Plots of the (a) pdf, (b) cdf and (c) hrf for the MPoE model.

3.2. Modified Power Weibull (MPoW)

For the Weibull with shape k > 0 and scale λ > 0, the cdf of the MPoW model (for
x > 0 and a ≥ e−1) is

F(x) = a− exp
[
−(x/λ)k

] {
1− exp

[
−(x/λ)k

]}
.

Plots of the pdf, cdf and hrf of the MPoW are reported in Figure 3.

3.3. Modified Power Fréchet (MPoF)

For the Fréchet with shape k > 0 and scale λ > 0, the cdf of the MPoF model (for
x > 0 and a ≥ e−1) is

F(x) = aexp[(−(x/λ)−k)]−1 exp
[
−(x/λ)−k

]
.

Plots of the pdf, cdf and hrf of the MPoF are displayed in Figure 4.
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Figure 3. Plots of the (a) pdf, (b) cdf and (c) hrf for the MPoW model.

Figure 4. Plots of the (a) pdf, (b) cdf and (c) hrf for the MPoF model.
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4. Applications
4.1. Simulation Results

A simulation was conducted to examine the accuracy of the MLEs for the MPoE and
MPoW distributions. Their averages, absolute biases (ABs) and mean square errors (MSEs)
are calculated from 1000 samples of sizes n = 50, 100, 150 and 250 with different values of
parameters. Tables 1 and 2 provide the results. The MLEs and ABs in Tables 1 and 2 indicate
that the ML method provides parameter estimates, which converge to the true parameter
values and the MSEs decrease when n increases. These results reflect the appropriateness
of the ML method to provide good estimates of the parameters of the MPo distribution.

Table 1. Simulation results for the MPoE distribution.

Parameters â λ̂

λ a n Average AB MSE Average AB MSE

0.5 0.7 50 0.882822 0.182822 0.240279 0.550483 0.050483 0.032359
100 0.773099 0.073099 0.085056 0.512771 0.012772 0.017368
150 0.748480 0.048480 0.055557 0.506860 0.006860 0.013133
250 0.722869 0.022869 0.034346 0.498502 0.001498 0.009568

1.5 50 1.965970 0.465970 2.054128 0.520573 0.020573 0.013476
100 1.671669 0.171669 0.446837 0.505050 0.005050 0.006096
150 1.623362 0.123362 0.278527 0.505484 0.005484 0.003993
250 1.570789 0.070789 0.154100 0.501920 0.001920 0.002371

2 50 2.712318 0.712318 5.774216 0.517803 0.017803 0.011185
100 2.263772 0.263772 0.971162 0.507723 0.007723 0.005344
150 2.194257 0.194257 0.608456 0.505588 0.005588 0.003508
250 2.111141 0.111141 0.294932 0.503429 0.003429 0.002035

3 50 4.075306 1.075306 13.50904 0.509365 0.009365 0.008007
100 3.496485 0.496485 3.626017 0.504492 0.004492 0.003910
150 3.295536 0.295536 1.733014 0.500741 0.000741 0.003283
250 3.181315 0.181315 0.782124 0.501969 0.001969 0.001510

2 0.7 50 0.943534 0.243534 0.384633 2.278365 0.278365 0.570959
100 0.805673 0.105673 0.101692 2.125072 0.125072 0.310716
150 0.761194 0.061194 0.061672 2.058762 0.058762 0.227969
250 0.736927 0.036927 0.035083 2.028866 0.028866 0.152910

1.5 50 1.900829 0.400829 1.863967 2.053579 0.053579 0.209653
100 1.648641 0.148641 0.426688 2.024280 0.024280 0.097089
150 1.613782 0.113782 0.258661 2.015773 0.015773 0.064948
250 1.558614 0.058614 0.134646 2.006489 0.006489 0.036532

2 50 2.684016 0.684016 3.802964 2.064413 0.064413 0.164225
100 2.278580 0.278580 1.083252 2.029290 0.029290 0.086217
150 2.190362 0.190362 0.573666 2.024598 0.024598 0.056450
250 2.107925 0.107925 0.293745 2.015824 0.015824 0.032229

3 50 4.377960 1.377960 31.40547 2.049894 0.049894 0.124898
100 3.512797 0.512797 3.638915 2.018665 0.018665 0.060938
150 3.303617 0.303617 1.592218 2.016532 0.016532 0.040930
250 3.151232 0.151232 0.793243 2.007276 0.007276 0.024177

3 0.7 50 0.873411 0.173411 0.249293 3.257954 0.257954 1.066165
100 0.786636 0.086636 0.098061 3.135110 0.135110 0.665893
150 0.748945 0.048945 0.056103 3.060700 0.060700 0.512111
250 0.721372 0.021372 0.034545 2.996890 0.003102 0.367859

1.5 50 1.954494 0.454494 1.887515 3.110148 0.110148 0.530597
100 1.649660 0.149660 0.440642 3.038955 0.038955 0.227560
150 1.593534 0.093534 0.242919 3.024420 0.024420 0.138723
250 1.543260 0.043260 0.123777 3.010334 0.010334 0.079245

2 50 2.672203 0.672203 7.185814 3.099685 0.099685 0.401843
100 2.255006 0.255006 1.004361 3.043369 0.043369 0.173005
150 2.146790 0.146790 0.513999 3.023442 0.023442 0.113553
250 2.091436 0.091436 0.283326 3.012997 0.012997 0.067657

3 50 4.379168 1.379168 20.19350 3.089807 0.089807 0.304051
100 3.440796 0.440796 2.437569 3.039237 0.039237 0.126145
150 3.291080 0.291080 1.489429 3.022131 0.022131 0.085193
250 3.141794 0.141794 0.713955 3.007916 0.007916 0.052587
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Table 2. Simulation results for the MPoW distribution.

Parameters â k̂ λ̂

λ a k n Average AB MSE Average AB MSE Average AB MSE

2 0.5 0.7 50 0.6974 0.1974 0.1892 0.6043 0.0957 0.0177 1.2773 0.7227 0.0427
100 0.4217 0.0783 0.1395 0.7591 0.0591 0.0151 1.5491 0.4509 0.0311
150 0.5641 0.0641 0.1258 0.7409 0.0409 0.0144 1.5449 0.4551 0.0217
250 0.5326 0.0326 0.0122 0.7082 0.0082 0.0104 2.1064 0.1064 0.0195

1.5 50 0.6857 0.1857 0.4249 1.7212 0.2212 0.5996 1.5249 0.4751 0.0549
100 0.6186 0.1186 0.2484 1.6268 0.1268 0.1522 2.2185 0.2185 0.0360
150 0.5529 0.0529 0.2051 1.5904 0.0904 0.1432 2.2113 0.2113 0.0329
250 0.4920 0.0080 0.0794 1.5378 0.0378 0.1389 2.0980 0.0980 0.0092

2 50 0.3525 0.1475 0.2615 1.5593 0.4407 0.9883 1.2957 0.7043 0.0675
100 0.5897 0.0897 0.1323 1.8908 0.1092 0.9417 2.6692 0.6692 0.0362
150 0.5226 0.0226 0.0988 1.8959 0.1041 0.1018 2.3325 0.3325 0.0312
250 0.4865 0.0135 0.0115 2.0077 0.0077 0.0176 1.9845 0.0155 0.0088

3 50 0.6329 0.1329 0.1444 2.1296 0.8704 1.0534 1.7722 0.2278 0.0260
100 0.4269 0.0731 0.0943 2.4227 0.5773 1.0384 1.8767 0.1233 0.0255
150 0.5107 0.0107 0.0458 3.1738 0.1738 0.5766 1.8911 0.1089 0.0176
250 0.5004 0.0004 0.0134 2.9105 0.0895 0.2378 2.0101 0.0101 0.0143

2 2 0.7 50 1.7145 0.2855 0.4656 0.8224 0.1224 0.9181 2.3900 0.3900 0.0180
100 1.8528 0.1472 0.4017 0.6054 0.0946 0.1661 2.2525 0.2525 0.0174
150 2.1760 0.1760 0.1472 0.7909 0.0909 0.0243 2.1926 0.1926 0.0144
250 2.0068 0.0068 0.0324 0.7531 0.0531 0.0036 2.0848 0.0848 0.0032

1.5 50 1.7044 0.2956 0.0463 1.0471 0.4529 0.0737 1.2915 0.7085 0.0437
100 1.8400 0.1600 0.0403 1.1489 0.3511 0.0682 1.5404 0.4596 0.0217
150 1.9327 0.0673 0.0388 1.6481 0.1481 0.0677 2.4543 0.4543 0.0217
250 1.9996 0.0004 0.0355 1.6223 0.1223 0.0577 1.8594 0.1406 0.0197

2 50 2.9023 0.9023 0.2937 1.4529 0.5471 0.4083 1.3418 0.6582 0.0476
100 2.2017 0.2017 0.2610 2.0999 0.0999 0.3925 1.5995 0.4005 0.0432
150 2.0383 0.0383 0.2424 1.9474 0.0526 0.2582 1.8849 0.1151 0.0371
250 2.0109 0.0109 0.0635 1.9976 0.0024 0.004 1.9892 0.0108 0.0023

3 50 1.9690 0.0310 0.6949 2.4170 0.5830 0.5339 2.2962 0.2962 0.1006
100 2.0276 0.0276 0.1471 2.7471 0.2529 0.3515 2.2652 0.2652 0.0262
150 1.9997 0.0003 0.1285 2.7598 0.2402 0.0444 1.8496 0.1504 0.0127
250 2.0002 0.0002 0.0501 2.8914 0.1086 0.0188 1.9956 0.0044 0.0084

2 3 0.7 50 2.5618 0.4382 0.4656 0.8982 0.1982 0.9181 2.3644 0.3644 0.0180
100 2.7620 0.2380 0.4017 0.8619 0.1619 0.1661 1.7083 0.2917 0.0174
150 2.9340 0.0660 0.1472 0.5604 0.1396 0.0243 1.7568 0.2432 0.0144
250 2.9765 0.0235 0.0324 0.8248 0.1248 0.0036 2.1115 0.1115 0.0032

1.5 50 3.4140 0.4140 0.0463 1.0156 0.4844 0.0737 2.1701 0.1701 0.0437
100 3.2584 0.2584 0.0403 1.2049 0.2951 0.0682 1.8485 0.1515 0.0217
150 3.1511 0.1511 0.0388 1.4688 0.0312 0.0677 1.8622 0.1378 0.0217
250 3.0254 0.0254 0.0355 1.4998 0.0002 0.0577 2.1085 0.1085 0.0197

2 50 2.1690 0.8310 0.2937 2.9358 0.9358 0.4083 1.4333 0.5667 0.0476
100 2.8785 0.1215 0.2610 2.3803 0.3803 0.3925 1.4732 0.5268 0.0432
150 2.9671 0.0329 0.2424 2.3739 0.3739 0.2582 2.3819 0.3819 0.0371
250 2.9907 0.0093 0.0635 2.3256 0.3256 0.004 1.9900 0.0100 0.0226

3 50 2.4566 0.5434 0.6949 2.5022 0.4978 0.5339 2.3716 0.3716 0.1006
100 2.4677 0.5323 0.1471 2.5756 0.4244 0.3515 2.1580 0.1580 0.0262
150 2.6199 0.3801 0.1285 3.1543 0.1543 0.0444 2.1364 0.1364 0.0127
250 3.0610 0.0610 0.0501 3.0506 0.0506 0.0188 1.9498 0.0502 0.0084

4.2. Real Data
4.2.1. Breast Cancer Data

We fit the sub-models defined in Section 3 to the data sets available in the UC Irvine
Machine Learning Repository at the Diagnostic Wisconsin Breast Cancer Data [26]. The
data contain 30 features (V3, V4, ..., V32). The MPoE model is adopted for fitting to V19,
V20, V28 and V29. The MPoW model is used for fitting to V7, V11, V14, V18, V24 and V27.
The MPoF model is chosen for fitting to V3, V5, V13 and V21.
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Tables 3–5 report the MLEs and 95% confidence intervals (CIs) of the parameters. To
test whether the data sets are drawn from these sub-models, Cramér–von Mises (CvM)
and Kolmogorov–Smirnov (KS) statistics and their p-values are given in Tables 6–8. These
findings prove that the hypothesis that the data come from the MPo distribution (with
the corresponding estimates given in Tables 3–5) can not be rejected and then the three
sub-models are good choices for modeling these data.

To illustrate the adequacy of the fitted distributions, Figures 5–7 compare the fitted
MPoE, MPoW and MPoF models with the empirical distribution of the data, respectively,
by giving: (a) the histogram, empirical and estimated densities, (b) empirical and estimated
cdfs, (c) the P-P plot, and (d) the Q-Q plot. From Figures 5–7, there is a clear evidence of
the closeness of the estimated MPo pdfs and cdfs to the empirical pdfs and cdfs, and the
P-P and Q-Q plots are close to the first bisector. These perceptions support the goodness of
the MPo model for fitting these data.

Table 3. MLEs and 95% CIs of the MPoE parameters.

Feature
MLEs 95% CI

â λ̂ â λ̂

V19 3.9919 49.438 (2.2880,5.6959) ( 46.394,52.483)
V20 94.236 193.55 (82.612,105.86) (188.48,198.62)
V28 45.628 8.6588 (37.896,53.361) (7.5277,9.7900)
V29 2.8132 5.2714 (1.4788,4.1475) (4.2615,6.2813)

Table 4. MLEs and 95% CIs of the MPoW parameters.

Feature
MLEs 95% CI

â k̂ λ̂ â k̂ λ̂

V7 513.0912 3.3737 0.0745 (480.53,545.65) (2.6428,4.1046) (−0.0011,0.1502)
V11 702.6257 3.2001 0.1372 (666.79,738.46) (2.5228,3.8775) (0.0387,0.2356)
V14 408.6297 1.1562 0.5475 (380.58,436.66) (0.7323,1.5800) (0.2023,0.8927)
V18 522.4037 0.7512 0.0068 (491.36,553.44) (0.4240,1.0785) (−0.0379,0.0515)
V24 419.4847 2.0796 16.855 (387.74,451.23) (1.4689,2.6903) (15.288,18.423)
V27 291.9343 2.9491 0.0997 (267.52,316.35) (2.2446,3.6535) (0.0029,0.1965)

Table 5. MLEs and 95% CIs of the MPoF parameters.

Feature
MLEs 95% CI

â k̂ λ̂ â k̂ λ̂

V3 17.715 5.3628 9.8237 (10.229,25.201) (4.5433,6.1823) (8.5244,11.123)
V5 20.044 5.0960 62.197 (11.959,28.129) (4.2956,5.8970) (58.835,65.559)
V13 3.2160 2.4583 0.2096 (0.3508,6.0813) (1.8403,3.0762) (−0.0916,0.5107)
V21 9.8563 3.9452 0.0127 (2.4746,17.238) (3.2336,4.6568) (−0.0640,0.0894)

Table 6. Kolmogorov–Smirnov and Cramér–von Mises tests for the MPoE model.

Feature
CvM KS

Statistic p-Value Statistic p-Value

V19 0.2460 0.1936 0.0375 0.4020
V20 0.3240 0.1158 0.0414 0.2847
V28 0.2366 0.2065 0.0442 0.2155
V29 0.0701 0.7513 0.0311 0.6401
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Table 7. Kolmogorov–Smirnov and Cramér–von Mises tests for the MPoW model.

Feature
CvM KS

Statistic p-Value Statistic p-Value

V7 0.0838 0.6706 0.0306 0.6510
V11 0.2296 0.2168 0.0393 0.3418
V14 0.0906 0.6332 0.0352 0.4819
V18 0.2055 0.2571 0.0408 0.3000
V24 0.0694 0.7555 0.0295 0.7052
V27 0.0477 0.8904 0.0248 0.8738

Figure 5. Empirical densities, empirical cdfs, P-P plots and Q-Q plots of the fitted MPoE distribution
to the V19, V20, V28 and V29 sets.
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Figure 6. Empirical densities, empirical cdfs, P-P plots and Q-Q plots of the fitted MPoW distribution
to the V7, V11, V14, V18, V24 and V27 sets.
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Figure 7. Empirical densities, empirical cdfs, P-P plots and Q-Q plots of the fitted MPoF distribution
to the V3, V5, V13 and V21 sets.

Table 8. Kolmogorov–Smirnov and Cramér–von Mises tests for the MPoF model.

Feature
CvM KS

Statistic p-Value Statistic p-Value

V3 0.1088 0.5435 0.0292 0.7174
V5 0.1067 0.5534 0.0286 0.7403

V13 0.0583 0.8247 0.0274 0.7876
V21 0.0378 0.9442 0.0250 0.8701

4.2.2. Coal-Mining Data

The data set represents the time intervals in days between explosions in mines, involv-
ing more than 10 men killed in Great Britain, for the period 1875–1951, published by [27].
The data are:

1, 4, 4, 7, 11, 13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54,
54, 55, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123, 124,
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129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228,
233, 255, 271, 275, 275, 275, 286, 291, 312, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345, 348,
354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1312, 1357, 1613, 1630.

We fit the MPoE distribution to these data and compare with the exponential (Exp)
distribution with rate parameter λ, the Weibull distribution with shape parameter a and
scale parameter λ, the Marshall–Olkin exponential (MOE) distribution with parameters a
and λ as defined by [1], the exponentiated exponential (Exp-E) distribution with parameters
a and λ as given by [28], the gamma exponential I (GE-I) distribution as given by [11] and
the log-expo exponential (LET-E) distribution as defined by [29].

Table 9 provides the MLEs and 95% CIs of the model parameters. Table 10 reports the
adequacy of the models through a combination of several statistics (AIC, CAIC, BIC, HQIC,
minus maximized log-likelihood function (−`(θ̂)), Kolmogorov–Smirnov test statistic (KS)
and its p-values), which measure the relative quality of fit of these models to a data set.

Table 9. Estimation results for coal mining data set.

Distribution MLEs 95% CI

â λ̂ â λ̂

MPoE 0.4477 0.0023 (−0.0468,0.9423) (−0.0355,0.0401)
Exp - 0.0043 - (0.0035,0.0050)

Weibull 0.8848 218.68 (0.7588,1.0091) (168.93,266.27)
MOE 0.5905 0.0033 (0.2512,0.8007) (0.0021,0.0039)
Exp-E 0.8645 0.0040 (0.6604,1.0686) (0.0030,0.0049)
GE-I 0.8780 0.0038 (0.6875,1.0684) (0.0028,0.0049)

LET-E 1.1485 0.0027 (0.2253,2.0718) (0.0019,0.0035)

Table 10. Adequacy measures for coal mining data set.

Distribution AIC CAIC BIC HQIC −`(â, λ̂)
KS Test

Statistic p-Value

MPoE 1405.310 1405.423 1410.693 1407.493 700.6551 0.0641 0.7615
Exp 1408.627 1408.664 1411.318 1409.718 703.3133 0.0786 0.5107

Weibull 1407.545 1407.658 1412.927 1409.728 701.7724 0.0784 0.5135
MOE 1407.006 1407.119 1412.388 1409.188 701.5028 0.0700 0.6591
Exp-E 1409.135 1409.248 1414.517 1411.318 702.5673 0.0779 0.5222
GE-I 1408.898 1409.011 1414.280 1411.081 702.4489 0.0748 0.5748

LET-E 1406.484 1406.597 1411.867 1408.667 701.2419 0.0777 0.5257

Based on adequacy statistics introduced in Table 10, the MPoE model fits the data sets
with minimum AIC, CAIC, BIC, HQIC, log-likelihood and maximum p-value among the
other distributions. Thus, it can be a a good choice for modeling these data. This result is
illustrated graphically in Figure 8 by comparing the empirical distribution of the data with
the fitted MPoE distribution, respectively, by displaying (a) the histogram and fitted MPoE
distribution, (b) the fitted MPoE survival function and the empirical survival (c) the P-P
plot and (d) the Q-Q plot.

Figure 8. Empirical density, empirical cdf, P-P plot and Q-Q plot of the fitted MPoE distribution to
coal-mining data.
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5. Conclusions

We studied a new family of continuous distributions with a single extra parameter
and showed its usefulness in practice by means of several applications. The new model
is a mixture distribution, which can arise in a wide variety of fields. The new model is
discussed from the weighted distributions’ viewpoint. Connections between measures of
the new family and the parent distribution are addressed. The extra parameter boosted the
flexibility of the family to cope with several types of data sets. We compare the proposed
family with some distributions and special models generated from other classes using
classical statistical measures. The new family can generate models that are powerful to
represent and predict real-world data.
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pdf probability distribution function
Q-Q quantile vs. quantile
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