The Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Model
Abstract
:1. Introduction
2. Preliminaries
- denotes a real Hilbert space with norm and inner product
- C denotes a nonempty closed convex subset of
- denotes the set of all fixed points of
- ⇀ and → denote the weak convergence and strong convergence, respectively;
- denotes the forward–backward operator of and with respect to
- (i)
- (ii)
- (iii)
3. Main Results
- is a contraction with constant
- is a family of nonexpansive operators;
- satisfies condition (Z);
Algorithm 1: An accelerated viscosity fixed point method (AVFPM). |
Initialization: Take arbitrarily and positive sequences , and satisfy the following conditions: Iterative steps: Calculate as follows: Step 1. Choose a bounded sequence of non-negative real numbers For set
Step 2. Compute
Update and return to Step 1. |
- is a contraction with constant
- is convex differentiable with Lipschitz continuous gradient constant
- is a proper convex and lower semi-continuous function;
Algorithm 2: An accelerated viscosity forward–backward method (AVFBM). |
Initialization: Take arbitrarily and positive sequences and satisfy the following conditions: Iterative steps: Calculate as follows: Step 1. Choose a bounded sequence of non-negative real numbers For defined by the same as Algorithm 1. Step 2. Compute
Update and return to Step 1. |
4. Application and Simulated Results
4.1. Image Restoration
4.2. Data Classification
- Step 1: Select regularization parameter and hidden node number M.
- Step 2: Randomly and
- Step 3: Calculate the hidden layer output matrix .
- Step 4: Obtain the output weight by using AVFBM (Algorithm 2).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maurya, A.; Tiwari, R. A Novel Method of Image Restoration by using Different Types of Filtering Techniques. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 124–129. [Google Scholar]
- Suseela, G.; Basha, S.A.; Babu, K.P. Image Restoration Using Lucy Richardson Algorithm For X-Ray Images. IJISET Int. J. Innov. Sci. Eng. Technol. 2016, 3, 280–285. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Methodol. 1996, 58, 267–288. [Google Scholar]
- Vogel, C. Computational Methods for Inverse Problems; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Sluder, G.; Wolf, D.E. Digital Microscopy, 3rd ed.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Suantai, S.; Kankam, K.; Cholamjiak, P. A Novel Forward-Backward Algorithm for Solving Convex Minimization Problem in Hilbert Spaces. Mathematics 2020, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Burachik, R.S.; Iusem, A.N. Set-Valued Mappings and Enlargements of Monotone Operators; Springer Science Business Media: New York, NY, USA, 2007. [Google Scholar]
- Moreau, J.J. Proximité et dualité dans un espace hilbertien. B. Soc. Math. Fr. 1965, 93, 273–299. [Google Scholar]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar]
- Nesterov, Y.E. A method for solving the convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl. 1983, 27, 372–376. [Google Scholar]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar]
- Liang, J.; Schonlieb, C.B. Improving fista: Faster, smarter and greedier. arXiv 2018, arXiv:1811.01430. [Google Scholar]
- Moudafi, A. Viscosity approximation method for fixed-points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar]
- Takahashi, W. Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces. Nonlinear Anal. 2009, 70, 719–734. [Google Scholar]
- He, S.; Guo, J. Iterative algorithm for common fixed points of infinite family of nonexpansive mappings in Banach spaces. J. Appl. Math. 2012, 2012, 787419. [Google Scholar]
- Shimoji, K.; Takahashi, W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwan. J. Math. 2001, 5, 387–404. [Google Scholar]
- Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. Finding common fixed points of a countable family of nonexpansive mappings in a Banach space. Sci. Math. Jpn. 2007, 66, 325–335. [Google Scholar]
- Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341, 276–286. [Google Scholar]
- Takahashi, W.; Yao, J.-C. Strong convergence theorems by hybrid methods for countable families of nonlinear operators in Banach spaces. J. Fixed Point Theory Appl. 2012, 11, 333–353. [Google Scholar]
- Nakajo, K.; Shimoji, K.; Takahashi, W. Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal. 2007, 8, 11–34. [Google Scholar]
- Aoyama, K.; Kohsaka, F.; Takahashi, W. Strong convergence theorems by shrinking and hybrid projection methods for relatively nonexpansive mappings in Banach spaces. In Proceedings of the 5th International Conference on Nonlinear Analysis and Convex Analysis, Hakodate, Japan, 26–31 August 2009; pp. 7–26. [Google Scholar]
- Bussaban, L.; Suantai, S.; Kaewkhao, A. A parallel inertial S-iteration forward-backward algorithm for regression and classification problems. Carpathian J. Math. 2020, 36, 35–44. [Google Scholar]
- Takahashi, W. Introduction to Nonlinear and Convex Analysis; Yokohama Publishers: Yokohama, Japan, 2009. [Google Scholar]
- Chidume, C.E.; Ezeora, J.N. Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-contractive mappings. Fixed Point Theory Appl. 2014, 2014, 111. [Google Scholar] [CrossRef] [Green Version]
- Saejung, S.; Yotkaew, P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 2012, 75, 724–750. [Google Scholar]
- Chen, D.Q.; Zhang, H.; Cheng, L.Z. A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imaging Vis. 2012, 43, 167–179. [Google Scholar]
- Thung, K.; Raveendran, P. A survey of image quality measures. In Proceedings of the 2009 International Conference for Technical Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 14–15 December 2009; pp. 1–4. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine. Neurocomputing 2006, 70, 489–501. [Google Scholar]
- Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 389–395. [Google Scholar]
- Martínez-Martínez, J.M.; Escandell-Montero, P.; Soria-Olivas, E.; Martín-Guerrero, J.D.; Magdalena-Benedito, R.; Gómez-Sanchis, J. Regularized extreme learning machine for regression problems. Neurocomputing 2011, 74, 3716–3721. [Google Scholar]
Datasets | # Attributes | # Classes | # Observations | |
---|---|---|---|---|
# Train (≈70%) | # Test (≈30%) | |||
Zoo | 16 | 7 | 70 | 31 |
Iris | 4 | 3 | 105 | 45 |
Wine | 13 | 3 | 128 | 50 |
Parkinsons | 23 | 2 | 135 | 60 |
Heart Disease UCI | 14 | 2 | 213 | 90 |
Abalone | 8 | 3 | 2924 | 1253 |
Datasets | ELM | RegELM | RegELM-AVFBM | ||||||
---|---|---|---|---|---|---|---|---|---|
Training (%) | Testing (%) | # Nodes | Training (%) | Testing (%) | # Nodes | Training (%) | Testing (%) | # Nodes | |
Zoo | 97.1429 | 93.5484 | 13 | 97.1429 | 93.5484 | 13 | 100 | 96.7742 | 93 |
Iris | 99.0476 | 100 | 60 | 98.0952 | 100 | 42 | 98.0952 | 100 | 54 |
Wine | 98.4375 | 100 | 36 | 98.4375 | 100 | 36 | 100 | 100 | 40 |
Parkinsons | 94.8148 | 75 | 31 | 94.8148 | 75 | 31 | 96.2963 | 81.6667 | 78 |
Heart Disease UCI | 86.385 | 84.4444 | 25 | 86.385 | 84.4444 | 25 | 88.7324 | 85.5556 | 33 |
Abalone | 69.0492 | 67.4381 | 89 | 69.0492 | 67.4381 | 89 | 68.4337 | 67.518 | 111 |
Datasets | RegELM-FISTA | RegELM-AVFBM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Training (%) | Testing (%) | Time(s) | # Iters | # Nodes | Training (%) | Testing (%) | Time(s) | # Iters | # Nodes | ||
Zoo | 0.1 | 90 | 90.3226 | 0.0005994 | 11 | 33 | 98.5714 | 93.5484 | 0.0008407 | 9 | 82 |
0.01 | 98.5714 | 93.5484 | 0.0021261 | 40 | 72 | 100 | 96.7742 | 0.0079208 | 81 | 93 | |
0.001 | 100 | 93.54839 | 0.0085405 | 455 | 42 | 98.57143 | 93.54839 | 0.005203 | 157 | 13 | |
0.0001 | 97.142857 | 93.548387 | 0.0152656 | 1330 | 13 | 97.14286 | 93.54839 | 0.0142225 | 384 | 13 | |
0.00001 | 97.142857 | 93.548387 | 0.0353528 | 2609 | 13 | 97.14286 | 93.54839 | 0.0193836 | 694 | 13 | |
0.000001 | 97.142857 | 93.548387 | 0.0561337 | 4193 | 13 | 97.142857 | 93.548387 | 0.0317928 | 1354 | 13 | |
Iris | 0.1 | 79.0476 | 91.1111 | 0.0006506 | 11 | 39 | 80 | 91.1111 | 0.0003463 | 7 | 20 |
0.01 | 80 | 91.1111 | 0.0008544 | 27 | 9 | 96.19048 | 100 | 0.0033075 | 110 | 56 | |
0.001 | 92.38095 | 97.77778 | 0.0141314 | 658 | 22 | 98.09524 | 100 | 0.0217391 | 804 | 54 | |
0.0001 | 96.190476 | 100 | 0.051715 | 4232 | 38 | 98.095238 | 100 | 0.1359273 | 4891 | 53 | |
0.00001 | 98.0952381 | 100 | 0.6242778 | 41,584 | 56 | 98.0952381 | 100 | 0.9981745 | 47,695 | 42 | |
0.000001 | - | - | - | ∞ | - | - | - | - | ∞ | - | |
Wine | 0.1 | 97.6563 | 96 | 0.0005292 | 11 | 31 | 99.2188 | 98 | 0.0008743 | 8 | 65 |
0.01 | 99.2188 | 98 | 0.0015979 | 30 | 64 | 100 | 100 | 0.0047111 | 98 | 40 | |
0.001 | 99.21875 | 100 | 0.0106758 | 364 | 45 | 98.4375 | 100 | 0.006298 | 271 | 36 | |
0.0001 | 98.4375 | 100 | 0.0536025 | 4374 | 36 | 98.4375 | 100 | 0.0234622 | 1146 | 36 | |
0.00001 | 98.4375 | 100 | 0.2150904 | 18,406 | 36 | 98.4375 | 100 | 0.0710794 | 3135 | 36 | |
0.000001 | 98.4375 | 100 | 0.4733094 | 39,108 | 36 | 98.4375 | 100 | 0.1426151 | 7342 | 36 | |
Parkinsons | 0.1 | 80.7407 | 75 | 0.0005362 | 11 | 5 | 80.7407 | 73.3333 | 0.0007843 | 4 | 5 |
0.01 | 80.7407 | 75 | 0.000316 | 11 | 5 | 96.2963 | 81.66667 | 0.0034927 | 111 | 78 | |
0.001 | 96.2963 | 78.33333 | 0.0143303 | 649 | 83 | 95.55556 | 76.66667 | 0.0092722 | 252 | 31 | |
0.0001 | 98.518519 | 85 | 0.1072512 | 4702 | 95 | 100 | 76.666667 | 0.0401135 | 1533 | 60 | |
0.00001 | 99.2592593 | 78.3333333 | 0.3693551 | 31,488 | 60 | 95.555556 | 75 | 0.0395779 | 2266 | 31 | |
0.000001 | 95.5555556 | 75 | 0.3067227 | 32,185 | 31 | 94.814815 | 75 | 0.0887627 | 5421 | 31 | |
Heart Disease UCI | 0.1 | 82.6291 | 84.4444 | 0.000561 | 11 | 52 | 86.8545 | 85.5556 | 0.0006593 | 8 | 72 |
0.01 | 84.9765 | 84.4444 | 0.0008177 | 31 | 57 | 85.9155 | 84.4444 | 0.0027626 | 73 | 25 | |
0.001 | 87.79343 | 86.66667 | 0.0115745 | 600 | 61 | 88.73239 | 85.55556 | 0.0051466 | 240 | 33 | |
0.0001 | 90.140845 | 85.555556 | 0.1300254 | 5231 | 58 | 86.38498 | 84.44444 | 0.0131317 | 644 | 25 | |
0.00001 | 86.384977 | 84.444444 | 0.0629385 | 6507 | 25 | 86.384977 | 84.444444 | 0.042063 | 1707 | 25 | |
0.000001 | 86.3849765 | 84.4444444 | 0.1245222 | 12,505 | 25 | 86.384977 | 84.444444 | 0.054982 | 3366 | 25 | |
Abalone | 0.1 | 57.2845 | 56.3448 | 0.0008332 | 11 | 9 | 57.0109 | 56.664 | 0.0007203 | 7 | 16 |
0.01 | 59.13133 | 57.86113 | 0.0116477 | 47 | 147 | 66.72367 | 66.0016 | 0.0199067 | 111 | 96 | |
0.001 | 64.74008 | 64.08619 | 0.07772 | 445 | 111 | 68.63885 | 67.11891 | 0.2978755 | 817 | 175 | |
0.0001 | 66.792066 | 66.400638 | 0.8201147 | 5560 | 96 | 68.433653 | 67.517957 | 0.9515634 | 4480 | 111 | |
0.00001 | 68.5362517 | 67.1987231 | 11.9269803 | 51,900 | 149 | 68.7414501 | 67.6775738 | 3.4826104 | 21,877 | 89 | |
0.000001 | - | - | - | ∞ | - | 68.9466484 | 67.6775738 | 13.0566531 | 81,392 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanjing, A.; Bussaban, L.; Suantai, S. The Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Model. Mathematics 2022, 10, 1036. https://doi.org/10.3390/math10071036
Hanjing A, Bussaban L, Suantai S. The Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Model. Mathematics. 2022; 10(7):1036. https://doi.org/10.3390/math10071036
Chicago/Turabian StyleHanjing, Adisak, Limpapat Bussaban, and Suthep Suantai. 2022. "The Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Model" Mathematics 10, no. 7: 1036. https://doi.org/10.3390/math10071036
APA StyleHanjing, A., Bussaban, L., & Suantai, S. (2022). The Modified Viscosity Approximation Method with Inertial Technique and Forward–Backward Algorithm for Convex Optimization Model. Mathematics, 10(7), 1036. https://doi.org/10.3390/math10071036