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Abstract: Due to the existence and variation of various viruses, an epidemic in which different
strains spread at the same time will occur. here, an avian–human epidemic model with two strain
viruses are established and analyzed. Both theoretical and simulation results reveal that the mixed
infections intensify the epidemic and the dynamics become more complex and sensitive. There
are six equilibria. The trivial equilibrium point is a high-order singular point and will undergo
the transcritical bifurcations to bifurcate three equilibria. The existence and stability of equilibria
mainly depend on five thresholds. A bifurcation portrait for the existence and stability of equilibria
is presented. Simulations suggest that the key control measure is to develop the identification
technology to eliminate the poultry infected with a high pathogenic virus preferentially, then the
infected poultry with a low pathogenic virus in the recruitment and on farms. Controlling contact
between human and poultry can effectively restrain the epidemic and controlling contagions in
poultry can avoid great infection in humans.

Keywords: the mixed infections; equilibra; threshold; stability; simulation
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1. Introduction

In recent years, the number of new and recurrent high-threat pathogens has increased,
such as SARS-CoV, MERS-CoV, Ebola virus, Nipa virus, avian influenza virus and the
latest, SARS-CoV-2. Among them, avian influenza and other zoonotic influenza have
always been the great threat to human beings. Take human infection with H5N1 and H7N9
avian influenza as examples. In 1997, Hong Kong Special Administrative Region of China
reported cases of human infection with high pathogenic H5N1 avian influenza virus. Since
2003, this avian influenza virus has spread from Asia to Europe and Africa, and is deeply
rooted in poultry in some countries. Other subtypes of A(H5) avian influenza viruses also
cause poultry epidemics and human infection. Regarding H7N9, the A(H7N9) virus has
been detected in birds for many years and had not attracted people’s attention because of
its low pathogenicity for birds and no previous record of human infections. However, the
first human case was confirmed in March 2013 in China, before the epidemic of human
infections with the A(H7N9) avian influenza virus broke out [1–3]. Successively, the same
epidemic happened every autumn–winter, and so far there have been five outbreaks. The
wave of 2016–2017 was an epidemic of human infections with both low and high pathogenic
A(H7N9) avian influenza virus; that is, the virus had mutated and both the original virus
and the mutated virus infected humans and poultry simultaneously. In fact, the gene
sequencing analysis of the viruses isolated from two human A(H7N9) cases in January
2017 showed that the amino acid insertion mutations happened and the A(H7N9) virus
had mutated into a high pathogenic virus for poultry [4]. Consequently, the number of
cases and the fatality rate increased alarmingly. There were 1565 cases from 2013 to 2017 in
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total; however, the infection number was 766 in the wave of 2016–2017 [3]. It contributed
almost half of all cases in those years. Not only that, in December 2016, there were 106
cases of human infections in China, and there were 192 human cases, 79 of which died in
January 2017 [5]. This shows that the number of cases in a single month exceeds that of
every past year and there were obviously more deaths. Infections during these five waves
are presented in Figure 1.
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Figure 1. Infections in the waves of human infections with avian influenza A(H7N9) virus.

As well as the number of cases, the geographical distribution of cases in the wave
of 2016–2017 was also far more than any previous wave. There were 12, 12, 13, 14 and
27 provinces, cities and municipalities with infections, respectively. Details are listed in
Table A1 in Appendix A.1 and in Figure 2. We can see from Figure 2 that infections began
in the coastal cities of the southeast China and had a tendency to expand vertically and
to the inland regions. It also can be seen that the epidemic scope of the first four waves is
relatively limited and fixed, while in the fifth wave there were human cases in almost all of
the country, which suggests that the epidemic had expanded extensively and unusually.

Multiple strains are circulating in poultry, which makes it possible for human beings
to be infected by different strains at the same time. Moreover, the increased number
and the expanded geographical distribution in the fifth wave of human infections with
the A(H7N9) avian influenza emphasize that it is well worth studying the spread and
control of an epidemic of human infections with two strains of zoonotic influenza. Avian
influenza viruses are classified as low pathogenic avian influenza (LPAI) viruses and
high pathogenic avian influenza (HPAI) viruses according to their ability to cause disease
in poultry. In view of their great threat to public health, there has been much research
concerning the corresponding issues of genetic analysis, epidemiology and disease control.
Arunachalam [6] found out the selection pressure of each amino acid site with the purpose
of helping to develop effective vaccines and drugs for the A(H7N9) virus. Zhang et al. [7]
discussed the occurrence of human infections with the A(H7N9) virus. Xing et al. [8]
investigated the recurrent factors of the outbreak. Guo et al. [9] implemented the global
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dynamics of an avian–human influenza model. Li et al. [10] also obtained global stabilities
of an A(H7N9) transmission model. Authors of this article, in their previous research [11,12]
paid attention to the transmission of the virus in the environment. These studies were
mainly finished before 2017 and focused on human infection with the low pathogenic avian
influenza (LPAI). As we emphasize the simultaneous transmission of multiple viruses, we
will take human infections with both the low and high A(H7N9) avian influenza viruses
as an example to carry out this investigation. There are several studies concerning the
transmission of two strains. For example, Tuncer et al. [13] introduced the dynamics of low
and high pathogenic avian influenza in wild and domestic bird populations but emphasized
that LPAI and HPAI can coexist in both populations. Kuddus et al. [14] investigated a
two-strain disease model to simulate the prevalence of drug-susceptible and drug-resistant
disease strains. In the present investigation, more complex and sensitive dynamics will be
given out and the key control measures in the case of human infection with two strains of
zoonotic virus also will be proposed.

Figure 2. Geographical distributions of the previous five waves in mainland China. Remark: (1) The
epidemic mainly occurred in mainland China, therefore there are only maps of mainland China. (2) It
seems that all cases of Taiwan, Hong Kong and Macao were infected in mainland China, therefore
they are not included when considering the geographical characteristics of disease transmission. (3)
We depicted these graphics with the purpose of exploring the epidemic extension geographically in
general, therefore the names of provinces, cities and municipalities are not marked. (4) Details of the
provinces, cities and municipalities in which human cases were confirmed in every wave are listed in
Table A1 in Appendix A.1. (5) The case in Guizhou in wave 2, a person who had just come back from
Zhejiang, should be identified as infected in Zhejiang; therefore, Guizhou is excluded in the graphic
for 2013–2014.

The organization of this paper is as follows. In Section 2, we establish a mathematical
model of avian–human infections in the fifth wave in mainland China. In Section 3, the
existence of equilibria are investigated. Thresholds and the bifurcation portrait are given.
In Section 4, local and global stabilities of equilibria are discussed dynamically. In Section 5,
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numerical simulations are implemented to clarify the dynamics of the model and the effect
of control measures, and to carry out some comparative studies on human infections with
low pathogenic, high pathogenic and mixed A(H7N9) viruses. In Section 6, we end this
paper with conclusions and discussions.

2. The Model

In the present paper, the density of susceptible poultry population is denoted by Sa(t),
the density of infected poultry with low pathogenic A(H7N9) virus is denoted by Ea(t)
because of very mild or no disease symptoms and the density of infected poultry with high
pathogenic A(H7N9) virus is denoted by Ia(t). Na(t) = Sa(t) + Ea(t) + Ia(t). Densities
of susceptible, infected and recovered human population are denoted by Sh(t), Ih(t) and
Rh(t), respectively.

In view of biosafety, the implemented practical measures are to close the live poultry
markets (LPMs) and to kill all the poultry within 3 kilometers of the outbreak, which would
severely knock down the poultry industry and cause huge economic loss. In fact, the
positive rates of H5, H7 and H9 in farms are far less than that in the live poultry markets.
Yan et al. in [15], Zhu et al. in [16] and Cao et al. in [17] were all convinced that the
positive rate in live poultry markets was much higher than that in poultry farms. Chen et al.
in [18], noted that 44.4% of retail LPMs and 50.0% of wholesale LPMs were confirmed to be
contaminated while no positive samples were detected from poultry farms. It seems that
maintaining normal production can be considered in the outbreak. Therefore, we carry out
our study with the premise of maintaining normal production. The following assumptions
are made to establish the two-strain avian–human infection model:

Hypothesis 1 (H1). Since we are considering normal production, the constant recruitment in
poultry should be considered in the model. Moreover, in modern society, due to the expansion of
people’s activities, migration is certain. Let A > 0 and B > 0 be the constant recruitment rate of
poultry population and human population, respectively. Because the infected poultry with the high
pathogenic A(H7N9) virus is easy to distinguish and the infected poultry with the low pathogenic
A(H7N9) virus continues to show no disease symptoms, we consider that the susceptible and the
infected poultry with the low pathogenic A(H7N9) virus are all included in the recruitment of
poultry. 0 ≤ a ≤ 1 represents the proportion of the latter in the recruitment.

Hypothesis 2 (H2). The infected poultry with the low pathogenic A(H7N9) virus and the infected
poultry with the high pathogenic A(H7N9) virus are all infectious, because they are carrying a
virus.

Hypothesis 3 (H3). Let d > 0 be the output rate in the poultry industry including natural deaths
and sales. ρ > 0 is the natural death rate of the human population. ξ > 0 is the additional death
rate of Ia(t) due to infection with the high pathogenic A(H7N9) virus. δ > 0 is the extra death rate
of human cases caused by disease. γ > 0 represents the recovery rate of human cases.

Hypothesis 4 (H4). Suppose infections in poultry are due to contact. A saturated incidence
function x/(1 + αx) is used to describe the contact behaviors in poultry for the reason that the
poultry population is large and densely populated. Because

(
x

1 + αx
)′ =

1
1 + αx

− αx
(1 + αx)2 =

1
(1 + αx)2 > 0, (

x
1 + αx

)′′ = − 2α

(1 + αx)3 < 0

and x/(1 + αx)→ 1/α for the larger x, it is a monotonically increasing convex function and will
reach saturation for the larger x. Therefore, it can express the saturated contact effect in poultry.
x only represents the argument of the function. The corresponding infection rate functions are
β1SaEa/(1 + α1Ea) and β2Sa Ia/(1 + α2 Ia).
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Hypothesis 5 (H5). As with human infections, many research results have confirmed that human
behaviors, such as personal hygienic practice, reduced exposure to live poultry and disinfection of
live poultry markets, will directly reduce the incidence of disease [19–22], because human behaviors
will be affected by propaganda and psychosocial effects. At the beginning, human infections will
expand due to people’s response lags. With the increase of human cases, the authorities concerned
and mass media would respond and inform the public. Benefiting from protective awareness and
behavioral changes, the incidence will decrease. Therefore, the incidence function g(x) from poultry
to humans should satisfy g(0) = 0, g′(0) > 0 and g(x) will decrease when x is relatively large.
Let g(x) = x/(1 + νx2), there is

g′(x) =
1− νx2

(1 + νx2)2 , g′′(x) = − 4νx
(1 + νx2)3 < 0.

Obviously, g(0) = 0, g′(0) > 0, and g′(x) > 0 for the small x while g′(x) < 0 for the larger
x. In fact, g′(x) will obtain the maximum value at x = 1/

√
ν which means the infections will

increase at the beginning and then decrease after a certain time. The corresponding infection rate
functions are η1EaSh/(1 + ν1E2

a) and η2 IaSh/(1 + ν2 I2
a ).

Based on the above analysis, the disease transmission mechanism is presented in
Figure 3 and we establish the two-strain avian–human infection model as follows.

dSa

dt
= (1− a)A− β1SaEa/(1 + α1Ea)− β2Sa Ia/(1 + α2 Ia)− dSa,

dEa

dt
= aA + β1SaEa/(1 + α1Ea)− dEa,

dIa

dt
= β2Sa Ia/(1 + α2 Ia)− dIa − ξ Ia,

dSh
dt

= B− η1EaSh/(1 + ν1E2
a)− η2 IaSh/(1 + ν2 I2

a )− ρSh,

dIh
dt

= η1EaSh/(1 + ν1E2
a) + η2 IaSh/(1 + ν2 I2

a )− δIh − ρIh − γIh,

dRh
dt

= γIh − ρRh,

(1)

with the initial conditions Sa(0) = Sa0 > 0, Ea(0) = Ea0 ≥ 0, Ia(0) = Ia0 > 0, Sh(0) = Sh0 >
0, Ih(0) = Ih0 ≥ 0, Rh(0) = Rh0 ≥ 0.

It is obvious that all the solutions initiating in R6
+ exist continuously for all t ≥ 0 and

are unique. Where R6
+ = {(x, y, z, u, v, w) ∈ R6 : x ≥ 0, y ≥ 0, z ≥ 0, u ≥ 0, v ≥ 0, w ≥ 0}.

Firstly, the biological validity should be guaranteed. Let Na(t) = Sa(t) + Ea(t) +
Ia(t), Nh(t) = Sh(t) + Ih(t) + Rh(t). Then, we have

dX
dt

= A− dNa − ξ Ia ≤ A− dNa.

dY
dt

= B− ρNh − δIh ≤ B− ρNh.

By the differential inequality, we can obtain

0 ≤ Na(t) ≤
A
d
+ Na(Sa0 , Ea0 , Ia0)e

−dt, 0 ≤ Nh(t) ≤
B
ρ
+ Nh(Sh0 , Ih0 , Rh0)e

−ρt.

Thus, 0 ≤ Na ≤ A/d and 0 ≤ Nh ≤ B/ρ as t→ +∞.
Therefore, all the solutions of System (1) that initiate in R6

+ are confined in the region

Ω = {(Sa, Ea, Ia, Sh, Ih, Rh) ∈ R6
+ : 0 < Sa + Ea + Ia < A/d + ε, 0 < Sh + Ih + Rh < B/ρ + ε}
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for any ε > 0 and t→ +∞. Hence, all the solutions of System (1) are ultimately uniform-
bounded and the system is dissipative.

Sa

Ea

Ia

Sh Ih Rh

(1-a)A

dSa

β
1S

a I
a

1+α 1
E a

β 1
S a

E a

1+α
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1+ν1Ea
2

Figure 3. The disease transmission mechanism.

3. Existence of Equilibria

For a dynamic system, an equilibrium point corresponds to its constant solution. In
epidemiology, equilibria can be classified as the disease-free equilibrium point and the
disease-existence equilibrium point. Let us discuss the existence of equilibria firstly. As
the constant solution of a differential equation ẋ = f (x), it can be obtained by solving the
equation f (x) = 0. Therefore, the Equilibria of System (1) depend on that of the system’s
avian-subsystem which is as follows.

dSa

dt
= (1− a)A− β1SaEa/(1 + α1Ea)− β2Sa Ia/(1 + α2 Ia)− dSa,

dEa

dt
= aA + β1SaEa/(1 + α1Ea)− dEa,

dIa

dt
= β2Sa Ia/(1 + α2 Ia)− dIa − ξ Ia,

(2)

Natually, all solutions of System (2) that initiate in R3
+ are confined in the region

Ωa = {(Sa, Ea, Ia) ∈ R3
+ : 0 < Sa + Ea + Ia < A/d + ε}

for any ε > 0 and t→ +∞, and System (2) is dissipative.
In view of solving equilibria, the third question of System (2) hints there is Ia = 0.

Therefore, in the case of a = 0 there is an axis equilibrium point M0(A/d, 0, 0) and a
boundary equilibrium point M1(A/d− E(1)

a , E(1)
a , 0) if Aβ1 > d2, where E(1)

a = (Aβ1 −
d2)/d(α1d + β1). It is obvious that there is M1 → M0 as Aβ1 → d2. While in the case of
a 6= 0, by the direct calculation, we can obtain

(α1d + β1)E2
a + (−Aβ1

d
+ d− aAα1)Ea − aA = 0. (3)

Denote
h(x) = (α1d + β1)x2 + (−Aβ1

d
+ d− aAα1)x− aA,
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then h(0+) = −aA < 0 and

h((
A
d
)−) =

α1 A2

d
(1− a) + A(1− a) > 0.

According to the properties of quadratic function, Equation (3) has an unique positive

root Ẽ(1)
a ∈ (0, A/d). Therefore, there is another boundary equilibrium point M̃1(A/d−

Ẽ(1)
a , Ẽ(1)

a , 0). Equation (3) also hints M̃1 → M1 as a→ 0. However, the existence of M1 is
conditional. M̃1’s unconditional existence and M1’s conditional existence indicate that it
is possible to avoid the outbreak in poultry if we can put an end to the infected poultry
in recruitment.

Suppose Ia 6= 0, then in the case of a = 0 there is a boundary equilibrium point

M2(
Aα2 + d + ξ

dα2 + β2
, 0,

Aβ2 − d(d + ξ)

(d + ξ)(dα2 + β2)
)

under the condition of Aβ2 > d(d + ξ). It is obvious that M2 → M0 as Aβ2 → d(d + ξ). If
also Ea 6= 0 , by the detailed calculation, we can obtain

I(3)a =
(d + Aα1)β2 − (d + ξ)(β1 + dα1)

(d + ξ)(α2β1 + α1β2 + dα1α2)
, E(3)

a =
(d + ξ + Aα2)β1 − d(β2 + dα2)

d(α2β1 + α1β2 + dα1α2)
,

then

E(3)
a > 0, I(3)a > 0 i f

{
(d + Aα1)β2 > (d + ξ)(β1 + dα1),

(d + ξ + Aα2)β1 > d(β2 + dα2).

From the expression of Equation (2), it can be seen that E(3)
a = (β1S(3)

a /d− 1)/α1,

I(3)a = [β2S(3)
a /(d + ξ)− 1]/α2,

then it should be S(3)
a > d/β1 and S(3)

a > (d + ξ)/β2. Additionally, S(3)
a < A/d also should

be satisfied. Therefore,

A
d

> S(3)
a >

d
β1

,
A
d

> S(3)
a >

d + ξ

β2
.

That is, there is a positive equilibrium point

M3(
(d + ξ)(1 + α2 I(3)a )

β2
, E(3)

a , I(3)a ) i f


Aβ1 > d2, Aβ2 > d(d + ξ),

(d + Aα1)β2 > (d + ξ)(β1 + dα1),
(d + ξ + Aα2)β1 > d(β2 + dα2).

In the case of a = 0, the equilibrium point also can be obtained from the second and
third equations of System (2) by eliminating Sa. Then there is E(3)

a = [(1 + α2 I(3)a ) · β1(d + ξ)/β2d− 1]/α1,

I(3)a = [(1 + α1E(3)
a ) · β2d/β1(d + ξ)− 1]/α2.

And
I(3)a > 0 i f (d + Aα1)β2 > (d + ξ)(β1 + dα1).

Therefore,

E(3)
a >

1
α1

[
β1(d + ξ)

β2d
− 1],
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thus E(3)
a > 0 if β1(d + ξ)/β2d ≥ 1. Hence M3 exists if

β1 + dα1

Aα1 + d
<

β2

d + ξ
≤ β1

d
.

Similarly,
E(3)

a > 0 i f (d + ξ + Aα2)β1 > d(β2 + dα2)

and
I(3)a >

1
α2

[
β2d

β1(d + ξ)
− 1].

Therefore, M3 exists if

β2 + dα2

Aα2 + d + ξ
<

β1

d
≤ β2

d + ξ
.

In the case of Ia 6= 0 and a 6= 0, a direct calculation yields

d[α1(β2 + α2d) + α2β1]E2
a + [(β2 + α2d)(d− α1aA)− β1(Aα2 + d + ξ)]Ea − aA(β2 + α2d) = 0 (4)

Denote

g(x) = d[α1(β2 + α2d) + α2β1]x2 + [(β2 + α2d)(d− α1aA)− β1(Aα2 + d + ξ)]x− aA(β2 + α2d),

then g(0+) = −aA(β2 + α2d) < 0,

g(( A
d )
−) = (1− a)A2/d · α1(β2 + α2d) + (1− a)A(β2 + α2d)− Aβ1(d + ξ)/d

= (1− a)A/d · (β2 + α2d)(Aα1 + d)− Aβ1(d + ξ)/d
= A/d · [(1− a)(β2 + α2d)(Aα1 + d)− β1(d + ξ)].

It is obvious that g(( A
d )
−) > 0 if

(1− a)(Aα1 + d)(β2 + α2d) > β1(d + ξ).

Of course, g(( A
d )
−) > 0 if

(1− a)d(β2 + α2d) > β1(d + ξ) or (1− a)Aα1(β2 + α2d) > β1(d + ξ).

Therefore, Equation (4) has an unique positive root E∗a ∈ (0, A/d). Furthermore

g(
aA
d
) =

aA
d
[(a− 1)Aα2β1 − β1(d + ξ)] < 0.

That is E∗a ∈ (aA/d, A/d). Then, there is a positive equilibrium point M∗(S∗a , E∗a , I∗a )
with S∗a = (dE∗a − aA)(1 + α1E∗a )/β1E∗a > 0 and I∗a = β2S∗a /α2(d + ξ)− 1/α2. Therefore, it
still requires A/d > S∗a > (d + ξ)/β2. Thus, M∗ exists if

Aβ2 > d(d + ξ) and (1− a)(Aα1 + d)(β2 + α2d) > β1(d + ξ).

Equation (4) also hints M∗ → M3 as a→ 0.
Denote

R1 =
Aβ1

d2 , R2 =
Aβ2

d(d + ξ)
, R3 =

(Aα1 + d)β2

(β1 + dα1)(d + ξ)
,

R̃3 =
(Aα2 + d + ξ)β1

d(β2 + dα2)
, R4 =

(1− a)(Aα1 + d)(β2 + α2d)
β1(d + ξ)

.
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Noticing that if R1 = 1 and R2 = 1, there are

R3 =
(Aα1 + d)β2

(β1 + dα1)(d + ξ)
=

(Aα1 + d)β2 · A
(β1 + dα1)(d + ξ) · A =

(Aα1 + d)d
A(β1 + dα1)

=
Aα1d + d2

Aα1d + Aβ1
= 1,

R̃3 =
(Aα2 + d + ξ)β1

d(β2 + dα2)
=

(Aα2 + d + ξ)β1 A
(β2 + dα2)dA

=
(Aα2 + d + ξ)d

A(β2 + dα2)
=

Aα2d + d(d + ξ)

Aα2d + Aβ2
= 1.

Then E(3)
a → 0, I(3)a → 0, M3 → M0 as R1 → 1 and R2 → 1.

Summarizing up, the equilibria and their existence conditions are listed in Table 1, and
the corresponding conclusions are as follows:

Theorem 1.

(i) Suppose a = 0, System (2) always has an axis equilibrium point M0(A/d, 0, 0);

And, there also exist two boundary equilibria M1(A/d − E(1)
a , E(1)

a , 0) if R1 > 1 and
M2((Aα2 + d+ ξ)/(dα2 + β2), 0, (Aβ2− d(d+ ξ))/(d+ ξ)(dα2 + β2)) if R2 > 1, where
E(1)

a = (Aβ1 − d2)/d(α1d + β1);
And, there is a positive equilibrium point M3((d + ξ)(1 + α2 I(3)a )/β2, E(3)

a , I(3)a ) if R1 >

1, R2 > 1, R3 > 1 and R̃3 > 1, where I(3)a = [(d + Aα1)β2 − (d + ξ)(β1 + dα1)]/(d +

ξ)(α2β1 + α1β2 + dα1α2), E(3)
a = [(d + ξ + Aα2)β1 − d(β2 + dα2)]/d(α2β1 + α1β2 +

dα1α2).

(ii) Suppose a 6= 0, System (2) has a boundary equilibrium point M̃1(
A
d − Ẽ(1)

a , Ẽ(1)
a , 0), where

Ẽ(1)
a is the unique positive root of Equation (3), and have a positive equilibrium point M∗ if

R2 > 1 and R4 > 1.
(iii) M̃1 → M1 and M∗ → M3 as a→ 0.
(iv) M1 → M0 if R1 → 1; M2 → M0 if R2 → 1; M3 → M0 if R1 → 1 and R2 → 1.

Corollary 1. As a = 0, System (2) has a positive equilibrium point M3 if R3 > 1, R1 ≥ R2 or
R̃3 > 1, R2 ≥ R1.

Corollary 2. M0 undergoes the transcritical bifurcations to bifurcate equilibria M1, M2 and M3
as R1,2 increase from R1,2 = 1 to R1,2 > 1.

By directly calculation, we also find that R3 = R2 if R1 = 1; R3 < R2 if R1 > 1;
R̃3 = R1 if R2 = 1; R̃3 < R1 if R2 > 1. The calculations are as follows:

i f R1 ≥ 1, R3 =
(Aα1 + d)β2

(β1 + dα1)(d + ξ)
=

(Aα1 + d)β2 A
(Aβ1 + Adα1)(d + ξ)

≤ (Aα1 + d)Aβ2

d(d + Aα1)(d + ξ)
= R2,

i f R2 ≥ 1, R̃3 =
(Aα2 + d + ξ)β1

d(β2 + dα2)
=

(Aα2 + d + ξ)Aβ1

d(Aβ2 + Adα2)
≤ (Aα2 + d + ξ)Aβ1

d2(d + ξ + Aα2)
= R1.

Thus, there is

Corollary 3. Suppose a = 0, System (2) has a positive equilibrium point M3 if R1 > 1, R3 >
1, R̃3 > 1 or R2 > 1, R̃3 > 1, R3 > 1.

As for these thresholds, there are the following relationships.

R1 > 1⇔ d
A

<
β1

d
, R2 > 1⇔ d

A
<

β2

d + ξ
, R3 > 1⇔ β1 + dα1

Aα1 + d
<

β2

d + ξ
,

R̃3 > 1⇔ β2 + dα2

Aα2 + d + ξ
<

β1

d
, R4 > 1⇔ β1

Aα1 + d
<

(1− a)(β2 + α2d)
d + ξ

.
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Details of the existence of equilibria are presented in Table 1.

Table 1. Existence of equilibria.

Case Equilibria Threshold Condition Characteristic Remarks

a = 0 M0(
A
d , 0, 0) None Unconditional existence

M1(S
(1)
a , E(1)

a , 0) R1 = Aβ1
d2 > 1 d

A < β1
d For larger β1, M1 exists.

M2(S
(2)
a , 0, I(2)a ) R2 = Aβ2

d(d+ξ)
> 1 d

A < β2
d+ξ For larger β2, M2 exists.

M3(S
(3)
a , E(3)

a , I(3)a ) R1 > 1, R2 > 1 d
A < β1

d , β2+dα2
Aα2+d+ξ < β1

d For larger β1 and β2,

R3 > 1, R̃3 > 1 d
A < β2

d+ξ , β1+dα1
Aα1+d < β2

d+ξ M3 may exist.

or R3 > 1, R1 ≥ R2
β1+dα1
Aα1+d < β2

d+ξ < β1
d

or R̃3 > 1, R2 ≥ R1
β2+dα2

Aα2+d+ξ < β1
d < β2

d+ξ

or R1 > 1, R3 > 1, R̃3 > 1 R3 < R2 if R1 > 1
or R2 > 1, R̃3 > 1, R3 > 1 R̃3 < R1 if R2 > 1

a 6= 0 M̃1(S̃
(1)
a , Ẽ(1)

a , 0) None Unconditional existence
M∗(S∗a , E∗a , I∗a ) R2 > 1, R4 > 1 β1

Aα1+d < (1−a)(β2+α2d)
d+ξ R4 = (1−a)(Aα1+d)(β2+α2d)

β1(d+ξ)
d
A < β2

d+ξ For larger β2, M∗ exists.

Where, {(β1, β2)|R1 > 1, R2 > 1, R3 > 1, R̃3 > 1} = {(β1, β2)|R1 > 1, R3 > 1, R̃3 > 1} = {(β1, β2)|R2 > 1, R̃3 >

1, R3 > 1} = {(β1, β2)|R3 > 1, R1 ≥ R2} ∪ {(β1, β2)|R̃3 > 1, R2 ≥ R1}.

The above results indicate that M1 and M2 exist with the larger β1 and β2, respectively.
M∗ will exist for larger β2, but the necessary existence conditions of M3 may be stronger.
In other words, the existence of M3 is sensitive to parameters. Additionally, although
M̃1 → M1 and M∗ → M3 as a→ 0, which we can detect from Equations (3) and (4), both
the satisfied conditions are stronger. The reason is

β1

Aα1 + d
<

β1 + dα1

Aα1 + d
<

β2

d + ξ
<

β2 + α2d
d + ξ

. (5)

The unequal relationship between the two ends of (5) corresponds to R4 > 1 at a = 0,
while the intermediate unequal relationship of (5) corresponds to R3 > 1. Moreover, M̃1
exists unconditionally while M1 exists if R1 > 1. In other words, these equilibria more
likely to not exist if a = 0. It also indicates that it will be beneficial to disease control if we
can eliminate the infected poultry in the recruitment.

Let M(Sa, Ea, Ia) be an equilibrium point of System (2), a direct calculation yields a
corresponding equilibrium point M(Sa, Ea, Ia, Sh, Ih, Rh) of System (1), where

Sh = B/[
η1Ea

1 + ν1E2
a
+

η2 Ia

1 + ν2 I2
a
+ ρ], Ih = [

η1EaSh
1 + ν1E2

a
+

η2 IaSh
1 + ν2 I2

a
]/(γ + δ + ρ), Rh =

γIh
ρ

.

In the following, we will hold names of equilibria unchanged. Correspondingly, the
existence of equilibria in System (1) is as follows.

Theorem 2.

(i) Suppose a = 0, System (1) always has an axis equilibrium point M0; and, there also exists
two boundary equilibria M1 if R1 > 1 and M2 if R2 > 1; and, there is a positive equilibrium
point M3 if R1 > 1, R2 > 1, R3 > 1 and R̃3 > 1.

(ii) Suppose a 6= 0, System (1) has a boundary equilibrium point M̃1 and may have a positive
equilibrium point M∗ if R4 > 1 and R2 > 1.

Only the axis equilibrium point M0(A/d, 0, 0, B/ρ, 0, 0) is the disease-free equilibrium
point. All the boundary equilibria M1, M̃1 and M2 and the positive equilibria M3 and M∗
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are the disease-existence equilibria. Epidemiologically, the existence of a disease-free equi-
librium point indicates that it is possible to eliminate the disease, the existence of a disease-
existence equilibrium point means the disease may exist. Therefore, all R1, R2, R3, R̃3 and
R4 are thresholds of disease existence and the disease will exist with great probability.
Results also indicate that we will do our best to put an end to the infected poultry in the
recruitment and control the transmission in poultry so as to keep βi, i = 1, 2 lower.

Dynamically, M0 will undergo a series of transcritical bifurcations. M0 will bifurcate
an equilibrium point M1 as R1 increases from R1 = 1 to R1 > 1 and will bifurcate an
equilibrium point M2 as R2 increases from R2 = 1 to R2 > 1. M0 also may bifurcate an
equilibrium point M3 as R1,2 increase from R1,2 = 1 to R1,2 > 1 when R3 > 1 and R̃3 > 1
are satisfied. The bifurcation portrait of equilibria in the case of a = 0 is depicted in Figure 4.

Figure 4. The bifurcation portrait of equilibria. l1 : R1 = 1 : β1 = d2

A ; l2 : R2 = 1 : β2 =
d(d+ξ)

A ; l3 : R3 = 1 : β2 = d+ξ
Aα1+d β1 +

α1d(d+ξ)
Aα1+d ; l4 : R̃3 = 1 : β2 = Aα2+d+ξ

d β1 − dα2; l5 : β2 =
d+ξ

d β1; R3 > 1 : β2 > d+ξ
Aα1+d β1 +

α1d(d+ξ)
Aα1+d ; R̃3 > 1 : β2 < Aα2+d+ξ

d β1− dα2; D1 = {(β1, β2)|R̃3 >

1, R2 ≥ R1}, D2 = {(β1, β2)|R3 > 1, R1 ≥ R2}. GAS—globally asymptotically stable; LAS—locally
asymptotically stable; US—unstable.

4. Stability of Equilibria

In terms of the dynamics of infectious disease, the stability of a disease-existence equi-
librium point means the pandemic will occur, and the stability of a disease-free equilibrium
point means the extinction of the disease. Now, we will discuss the stability of equilibria.
Firstly, we investigate System (1). The Jacobian matrix of System (1) is given as
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J =



− β1Ea
1+α1Ea

− β2 Ia
1+α2 Ia

− d − β1Sa
(1+α1Ea)2 − β2Sa

(1+α2 Ia)2 0 0 0
β1Ea

1+α1Ea

β1Sa
(1+α1Ea)2 − d 0 0 0 0

β2 Ia
1+α2 Ia

0 β2Sa
(1+α2 Ia)2 − d− ξ 0 0 0

0 η1ν1ShE2
a−η1Sh

(1+ν1E2
a )2

η2ν2Sh I2
a−η2Sh

(1+ν2 I2
a )2 − η1Ea

1+ν1E2
a
− η2 Ia

1+ν2 I2
a
− ρ 0 0

0 η1Sh−η1ν1ShE2
a

(1+ν1E2
a )2

η2Sh−η2ν2Sh I2
a

(1+ν2 I2
a )2

η1Ea
1+ν1E2

a
+ η2 Ia

1+ν2 I2
a

−ω 0

0 0 0 0 γ −ρ


.

Denote

J =
(

H O
L Q

)
,

where

H =


− β1Ea

1+α1Ea
− β2 Ia

1+α2 Ia
− d − β1Sa

(1+α1Ea)2 − β2Sa
(1+α2 Ia)2

β1Ea
1+α1Ea

β1Sa
(1+α1Ea)2 − d 0

β2 Ia
1+α2 Ia

0 β2Sa
(1+α2 Ia)2 − d− ξ

,

Q =

 −
η1Ea

1+ν1E2
a
− η2 Ia

1+ν2 I2
a
− ρ 0 0

η1Ea
1+ν1E2

a
+ η2 Ia

1+ν2 I2
a

−ω 0
0 γ −ρ

, ω = γ + δ + ρ.

Therefore, J evaluated at every equilibrium point is stable if and only if so are H and Q
as J is a block triangular matrix. Obviously, all the eigenvalues of the submatrix Q at every
equilibrium point have the negative real parts, then the local stability of every equilibrium
point depends on the evaluation of submatrix H. The Jacobian submatrix H corresponds
to the poultry subsystem (2) which is independent of System (1). H evaluated at every
equilibrium point M0, M1, M̃1, M2, M3, M∗ is as follows, respectively.

J; H|M0 =

 −d − Aβ1
d − Aβ2

d
0 Aβ1

d − d 0
0 0 Aβ2

d − d− ξ

,

J; H|M1,M̃1
=

 −
β1Ea

1+α1Ea
− d − β1Sa

(1+α1Ea)2 −β2Sa
β1Ea

1+α1Ea

β1Sa
(1+α1Ea)2 − d 0

0 0 β2Sa − d− ξ


M1,M̃1

,

J; H|M2 =


− β2 I(2)a

1+α2 I(2)a
− d −β1S(2)

a − β2S(2)
a

(1+α2 I(2)a )2

0 β1S(2)
a − d 0

β2 I(2)a

1+α2 I(2)a
0 β2S(2)

a

(1+α2 I(2)a )2
− d− ξ

,

J; H|M3,M∗ =


− β1Ea

1+α1Ea
− β2 Ia

1+α2 Ia
− d − β1Sa

(1+α1Ea)2 − β2Sa
(1+α2 Ia)2

β1Ea
1+α1Ea

β1Sa
(1+α1Ea)2 − d 0

β2 Ia
1+α2 Ia

0 β2Sa
(1+α2 Ia)2 − d− ξ


M3,M∗

.

The corresponding eigenvalues of M0 at submatrix H are−d, Aβ1/d− d and Aβ2/d−
d− ξ. Then the axis equilibrium point M0 is locally asymptotically stable (LAS) if thresholds
R1 < 1 and R2 < 1; M0 is an unstable saddle if the threshold R1 > 1 or R2 > 1; M0 is locally
stable if R1 = 1 and R2 < 1 or R1 < 1 and R2 = 1 because the unique zero eigenvalue is a
simple eigenvalue; M0 is a high-order singular point if R1 = 1 and R2 = 1.
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Because coordinates of M̃1 satisfy the condition

aA +
β1S̃(1)

a Ẽ(1)
a

1 + α1Ẽ(1)
a

− dẼ(1)
a = 0,

then

β1S̃(1)
a

(1 + α1Ẽ(1)
a )2

− d <
β1S̃(1)

a

1 + α1Ẽ(1)
a

− d = − aA

Ẽ(1)
a

< 0.

For M1, there is β1S(1)
a /(1 + α1E(1)

a )2 − d < β1S(1)
a /(1 + α1E(1)

a ) − d = 0. So that
J; H|M1,M̃1

can characterize as

J; H|M1,M̃1
:

 − − −
+ − 0
0 0 β2Sa − d− ξ


For the first second-order block matrix M12 =

(
a11 a12
a21 a22

)
:
(
− −
+ −

)
, it is easy to

notice that there are two negative real part eigenvalues. Therefore, the local stability of either
M1 or M̃1 depends on the sign of β2Sa− d− ξ. Additionally β2Sa− d− ξ < Aβ2/d− d− ξ.
Thus, M1 and M̃1 are all locally asymptotically stable (LAS) if the threshold R2 < 1.

Because M2 satisfies β2S(2)
a I(2)a /(1 + α2 I(2)a ) = dI(2)a + ξ I(2)a , so that

β2S(2)
a /(1 + α2 I(2)a )2 − d − ξ = (d + ξ)/(1 + α2 I(2)a ) − d − ξ < d + ξ − d − ξ = 0. Sim-

ilarly, J; H|M2 can characterize as

J; H|M2 :

 − − −
0 β1S(2)

a − d 0
+ 0 −


Moreover, the second-order block matrix M13 =

(
a11 a13
a31 a33

)
:
(
− −
+ −

)
, as

the same reason that the local stability of M2 depends on the sign of β1S(2)
a − d. And

β1S(2)
a − d < Aβ1/d− d. Thus, M2 is locally asymptotically stable (LAS) if the threshold

R1 < 1.
Similar to the above analysis, for J; H|M3,M∗ , there are a22 < 0 and a33 < 0. The

Jacobian matrix J; H|M3,M∗ can be characterized as

J; H|M3,M∗ ,

 a11 a12 a13
a21 a22 0
a31 0 a33

 :

 − − −
+ − 0
+ 0 −


The corresponding characteristic polynomial is∣∣∣∣∣∣

λ− a11 −a12 −a13
−a21 λ− a22 0
−a13 0 λ− a33

∣∣∣∣∣∣ = λ3 − (a11 + a22 + a33)λ
2 + (a11a22 + a11a33 + a22a33 − a13a31 − a12a21)λ

+ a13a22a31 + a12a21a33 − a11a22a33,

where a11 < 0, a22 < 0, a33 < 0, a12 < 0, a13 < 0, a21 > 0, a31 > 0. Then

−(a11 + a22 + a33) > 0, a11a22 + a11a33 + a22a33 − a13a31 − a12a21 > 0, a13a22a31 + a12a21a33 − a11a22a33 > 0.

And the Routh–Hurwitz table is as follows.
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λ3 1 a11a22 + a11a33 + a22a33 − a13a31 − a12a21
λ2 −(a11 + a22 + a33) a13a22a31 + a12a21a33 − a11a22a33
λ1 ∆/(a11 + a22 + a33) 0
λ0 a13a22a31 + a12a21a33 − a11a22a33 0

where

∆ =

∣∣∣∣ 1 a11a22 + a11a33 + a22a33 − a13a31 − a12a21
−(a11 + a22 + a33) a13a22a31 + a12a21a33 − a11a22a33

∣∣∣∣
=

∣∣∣∣ 1 a11a22 + a11a33 + a22a33 − a13a31 − a12a21
−a11 a22(a11a22 + a11a33 + a22a33 − a12a21) + a33(a11a33 + a22a33 − a13a31)

∣∣∣∣
:

∣∣∣∣ 1 +
+ −

∣∣∣∣ < 0,

Then
∆ < 0,

∆
a11 + a22 + a33

> 0.

Therefore, items in the first column of the Routh–Hurwitz table are all positive. Thus by
the Routh–Hurwitz criterion, all eigenvalues of the submatrix J; H|M3,M∗ have negative real
parts. That is, positive equilibra M3 and M∗ are locally asymptotically stable if they exist.

Summarizing up the above analysis, we have following conclusions. Results are also
represented in Table 2.

Theorem 3.

(i) The axis equilibrium point M0 is locally asymptotically stable if R1 < 1 and R2 < 1;
(ii) M1 is locally asymptotically stable if R1 > 1 and R2 < 1;
(iii) M̃1 is locally asymptotically stable if R2 < 1;
(iv) M2 is locally asymptotically stable if R2 > 1 and R1 < 1;
(v) M3 is locally asymptotically stable if R1 > 1, R2 > 1, R3 > 1 and R̃3 > 1;
(vi) M∗ is locally asymptotically stable if R2 > 1 and R4 > 1.

The locally asymptotical stability of an equilibrium point means trajectories initiating
in its neighborhood will converge to it eventually, which reflects the local dynamics of the
system. Next, we will investigate the global stabilities of equilibria which will represent the
global dynamics of the system. We investigate the avian subsystem (2) firstly. Choosing the
Liapunov function V = Ia, then

V̇|(2) = (
β2Sa

1 + α2 Ia
− d− ξ)Ia ≤ (β2Sa − d− ξ)Ia ≤ (

Aβ2

d
− d− ξ)Ia.

Therefore V̇|(2) ≤ 0 as R2 ≤ 1. Let D = {(Sa, Ea, Ia) ∈ R3
+ : V̇ = 0} = {Ia = 0}. By

the LaSalle Invariance Principle, all solutions of the avian subsystem (2) will approach the
Sa − Ea plane.

Now, considering the limit system of the avian subsystem (2) about Ia, we obtain
dSa

dt
= (1− a)A− β1SaEa/(1 + α1Ea)− dSa , F(Sa, Ea),

dEa

dt
= aA + β1SaEa/(1 + α1Ea)− dEa , G(Sa, Ea).

By theories of limit system, the stabilities of equilibria M0, M1 and M̃1 convert to that
of the corresponding limit system’s equilibria (still marked as M0, M1 and M̃1, respectively.).
It is easy to obtain the corresponding equilibria M0 = (A/d, 0), M1(S

(1)
a , E(1)

a )(as R1 > 1 )
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and M̃1(S̃
(1)
a , Ẽ(1)

a ) of the limit system. Furthermore, M0 is locally asymptotically stable as
R1 < 1 and R2 < 1, M1 and M̃1 are locally asymptotically stable as R2 < 1, respectively.

Next, we select the Dulac function B(Sa, Ea) = E−1
a , then

∂(BF)
∂Sa

+
∂(BG)

∂Ea
= − β1

1 + α1Ea
− d

Ea
− aA

(Ea)2 −
α1β1Sa

(1 + α1Ea)2 < 0.

The Dulac criterion implies that the existence of periodic trajectories are excluded
in the region D̃ = {(Sa, Ea) ∈ R2

+ : 0 ≤ Sa + Ea ≤ A/d + ε}. Therefore, by Poincaré-
Bendixson theorem, equilibria M0, M1 and M̃1 are globally asymptotically stable in D̃,
respectively. That is, M0(A/d, 0, 0) is globally asymptotically stable as R2 ≤ 1 and R1 < 1;

M1(S
(1)
a , E(1)

a , 0) is globally asymptotically stable as R1 > 1 and R2 ≤ 1; M̃1(S̃
(1)
a , Ẽ(1)

a , 0) is
globally asymptotically stable as R2 ≤ 1. Similarly, M0(A/d, 0, 0) is also globally asymptot-
ically stable as R1 ≤ 1 and R2 < 1.

Using the same discussion for the limiting human-subsystem, we can obtain the
globally asymptotical stability of M2 as R1 ≤ 1 and R2 > 1. Details can refer to the
Appendix A.2. Therefore, by the LaSalle Invariance Principle and the theory of limit system,
we can conclude that

Theorem 4.

(i) M0 is globally asymptotically stable as R2 ≤ 1 and R1 < 1 or R1 ≤ 1 and R2 < 1;
(ii) M1 is globally asymptotically stable as R1 > 1 and R2 ≤ 1;
(iii) M̃1 is globally asymptotically stable as R2 ≤ 1;
(iv) M2 is globally asymptotically stable as R1 ≤ 1 and R2 > 1.

The globally asymptotical stability of a disease-free equilibrium point means the
disease will be eradicated finally. This theorem tells us that for the lower β1 and β2 it
is possible to eliminate the epidemic. Therefore, we should put an end to the infected
individuals in the recruitment firstly, then try to control the spread of disease in poultry. Of
course, properly reducing the circulation will help control the epidemic.

In the following, we will investigate global stabilities of positive equilibria M3 and
M∗. Moreover, it suffices to discuss System (2). M3 is the unique equilibrium point in
Ωa as a = 0 and there is an unique equilibrium point M∗ in Ωa as a 6= 0. Based on the
above analysis, all solutions of System (2) are ultimately uniform bounded and System (2)
is dissipative. Therefore, System (2) is uniformly persistent and domain Ωa is a bounded
cone. That is, there is a compact subset K ⊂ Ωa.

Let x 7→ f (x) ∈ Rn be a C1 function for x in an open set Ωa ⊂ Rn. Consider the
differential equation

x′ = f (x). (6)

Denote x(t, x0) as the solution of (6) with respect to x(0, x0) = x0. We make the
following two basic assumptions of Equation (6):

Hypothesis 6 (H6). There exists a compact absorbing set K ⊂ Ωa.

Hypothesis 7 (H7). There exists an unique equilibrium point x in Ωa.

Therefore, the System (2) satisfies conditions Hypotheses 6 and 7. In order to investi-
gate the global stability of the positive equilibria, we introduce the Bendixson criterion [23]:

Let x 7→ P(x) be an
(

n
2

)
×
(

n
2

)
matrix-valued function that is C1 for x ∈ Ω.
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Assume that P−1(x) exists and is continuous for x ∈ K. Denote

B = Pf P−1 + P
∂ f [2]

∂x
P−1,

where the matrix Pf is obtained by replacing each entry pij of P by its derivative in the

direction of f ,
∂P∗ij
∂x f =

dPij
dt |(6).

∂ f [2]
∂x is the second additive compound matrix [24,25] of the

Jacobian matrix ∂ f
∂x of f , µ(B) is the Lozinskil’ measure of B with respect to a vector norm

|| · || in RN , N =

(
n
2

)
, defined by

µ(B) = lim
h→0+

||I + hB|| − 1
h

.

A quantity q is defined as

q = lim sup
t→+∞

sup
x0∈K

1
t

∫ t

0
µ(B(x(s, x0)))ds.

Then,

Lemma 1 ([23]). if Ωa is simply connected and the assumptions (H1), (H2) hold, the unique
equilibrium point x of (6) is globally stable in Ωa if q < 0.

Here, we denote the right hand of System (2) by f (x) with x = (Sa, Ea, Ia), the Jacobian
matrix J = ∂ f

∂x = J; H|M3,M∗ of System (2) has been listed above, its second additive
compound matrix J[2] is

J[2] =


β1Sa

(1+α1Ea)2 −
β1Ea

1+α1Ea
− β2 Ia

1+α2 Ia
− 2d 0 β2Sa

(1+α2 Ia)2

0 β2Sa
(1+α2 Ia)2 −

β1Ea
1+α1Ea

− β2 Ia
1+α2 Ia

− 2d− ξ − β1Sa
(1+α1Ea)2

− β2 Ia
1+α2 Ia

β1Ea
1+α1Ea

β1Sa
(1+α1Ea)2 +

β2Sa
(1+α2 Ia)2 − 2d− ξ

.

Define the function P(x) = P(Sa, Ea, Ia) = diag(1, Sa/Ia, Sa/Ia), then
Pf P−1 = diag(0, S′a/Sa − I′a/Ia, S′a/Sa − I′a/Ia). The matrix

B = Pf P−1 + P
∂ f [2]

∂x
P−1 =

(
B11 B12
B21 B22

)
,

where

B11 =
β1Sa

(1 + α1Ea)2 −
β1Ea

1 + α1Ea
− β2 Ia

1 + α2 Ia
− 2d, B12 = (0,

β2 Ia

(1 + α2 Ia)2 ), B21 = (0,− β2Sa

1 + α2 Ia
)T ,

B22 =

 S′a/Sa − I′a/Ia +
β2Sa

(1+α2 Ia)2 −
β1Ea

1+α1Ea
− β2 Ia

1+α2 Ia
− 2d− ξ − β1Sa

(1+α1Ea)2

β1Ea
1+α1Ea

S′a/Sa − I′a/Ia +
β1Sa

(1+α1Ea)2 +
β2Sa

(1+α2 Ia)2 − 2d− ξ

.

Let (u, v, w) be the vector in R3 ∼= R

(
3
2

)
, we take a norm in R3 as ||(u, v, w)|| =

max{|u|, |v|+ |w|} and µ denotes the Lozinskil’ measure with respect to this norm. By the
method in Fiedler [24], we have µ(B) ≤ sup{g1, g2}, where

g1 = µ1(B11) + |B12|, g2 = |B21|+ µ1(B22).
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|B12| and |B21| are the matrix norms with respect to the l1 vector norm, µ1 is the
Lozinskil’ measure with respect to the l1 norm.

There are
|B12| =

β2 Ia

(1 + α2 Ia)2 , |B21| =
β2Sa

1 + α2 Ia

and

g1 =
β1Sa

(1 + α1Ea)2 −
β1Ea

1 + α1Ea
− α2β2 I2

a
(1 + α2 Ia)2 − 2d,

g2 = β2Sa/(1 + α2 Ia) + S′a/Sa − I′a/Ia
+max{β2Sa/(1 + α2 Ia)2 − β2 Ia/(1 + α2 Ia)− 2d− ξ, 2β1Sa/(1 + α1Ea)2 + β2Sa/(1 + α2 Ia)2 − 2d− ξ}

= β2Sa/(1 + α2 Ia) + S′a/Sa − I′a/Ia + 2β1Sa/(1 + α1Ea)2 + β2Sa/(1 + α2 Ia)2 − 2d− ξ.

Because

S′a
Sa

= (1− a)A/Sa − β1Ea/(1 + α1Ea)− β2 Ia/(1 + α2 Ia)− d,

E′a
Ea

= aA/Ea + β1Sa/(1 + α1Ea)− d,

I′a
Ia

= β2Sa/(1 + α2 Ia)− d− ξ,

Then

g1 =
E′a
Ea
− β1Ea

1 + α1Ea
− β1α1EaSa

(1 + α1Ea)2 −
α2β2 I2

a
(1 + α2 Ia)2 − d− aA

Ea
,

g2 =
S′a
Sa

+ 2
E′a
Ea

+
I′a
Ia
− 2β1α1EaSa

(1 + α1Ea)2 −
β2α2 IaSa

(1 + α2 Ia)2 −
2aA
Ea

+ 2d + ξ.

It is obvious that g1 ≤ E′a/Ea − d, and there are constants ks, Ks, ke, Ke, ki, Ki > 0 and
T > 0 independent of (Sa(0), Ea(0), Ia(0)) ∈ K such that ks ≤ Sa(t) ≤ Ks, ke ≤ Ea(t) ≤
Ke, ki ≤ Ia(t) ≤ Ki for t > T because of the uniform persistence of the system. Then

g2 ≤
S′a
Sa

+ 2
E′a
Ea

+
I′a
Ia
− (

2β1α1keks

(1 + α1Ke)2 +
β2α2kiks

(1 + α2Ki)2 +
2aA
Ke
− 2d− ξ).

Denote
d̃ =

2β1α1keks

(1 + α1Ke)2 +
β2α2kiks

(1 + α2Ki)2 +
2aA
Ke
− 2d− ξ.

Therefore, along each solution (Sa(t), Ea(t), Ia(t)) of System (2) such that
(Sa(0), Ea(0), Ia(0)) ∈ K and t > T, we have

1
t

∫ t

0
g1ds ≤ 1

t

∫ T

0
g1ds +

1
t

ln
Ea(t)
Ea(T)

− d
t− T

t
,

1
t

∫ t

0
g2ds ≤ 1

t

∫ T

0
g2ds +

1
t

ln
Sa(t)
Sa(T)

+
2
t

ln
Ea(t)
Ea(T)

+
1
t

ln
Ia(t)
Ia(T)

− d̃
t− T

t
i f d̃ > 0.

Let b = max{d, d̃}, then q ≤ −b/2 < 0.
Hence, by Lemma 1, we have (Sa(t), Ea(t), Ia(t)) → (S∗a , E∗a , I∗a ) or

M3(S
(3)
a , E(3)

a , I(3)a )(a = 0) as t→ +∞. Then, we get the conclusion:

Theorem 5. Either the positive equilibrium point M3 (in the case of a = 0) or M∗ (in the case of
a 6= 0) exists and will be globally asymptotically stable if 2β1α1keks/(1+ α1Ke)2 + β2α2kiks/(1+
α2Ki)

2 + 2aA/Ke > 2d + ξ.
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The global stability of the positive equilibrium point means the pandemic will occur.
Therefore, it is possible for the global stability of the disease-existence equilibrium point
M3 or M∗ for the larger β1 and β2. Results also indicate the pandemic risk is increased if
there is infected poultry in the recruitment.

Summing up the above analysis, the global stabilities of equilibria are presented in
Table 2.

Table 2. Global stabilities of equilibria.

Case Equilibria Stabilities and Conditions Remarks

a = 0 M0(
A
d , 0, 0) R1 ≤ 1, R2 < 1 or R2 ≤ 1, R1 < 1

M1(S
(1)
a , E(1)

a , 0) R1 > 1, R2 ≤ 1 Exists if R1 > 1 .
M2(S

(2)
a , 0, I(2)a ) R2 > 1, R1 ≤ 1 Exists if R2 > 1.

M3(S
(3)
a , E(3)

a , I(3)a ) For larger β1 and β2
2β1α1keks
(1+α1Ke)2 +

β2α2kiks
(1+α2Ki)2 > 2d + ξ

and R1 > 1, R2 > 1, R3 > 1, R̃3 > 1 Exists if R1 > 1, R2 > 1, R3 > 1 and R̃3 > 1

a 6= 0 M̃1(S̃
(1)
a , Ẽ(1)

a , 0) R2 ≤ 1
M∗(S∗a , E∗a , I∗a ) For larger β1 and β2

2β1α1keks
(1+α1Ke)2 +

β2α2kiks
(1+α2Ki)2 +

2aA
Ke

> 2d + ξ

and R2 > 1, R4 > 1 Exists if R2 > 1, R4 > 1

5. Simulations

In simulations, for mathematical convenience, we suppose α1 = α2 = α, η1 = η2 = η
and ν1 = ν2 = ν. There are reports from the Chinese CDC that in April 2017, 8500 poultry
in a farm in Hebei were infected with the new H7N9 and 5000 died; in May, 7500 poultry in
a farm in Henan were infected and 5770 died; in a farm in Tianjin, 10,000 were infected and
6000 died; in a farm in Shangxi, were infected and 22,000 died; in a farm in Hohhot, Inner
Mongolia, 59,556 were infected and 35,526 died; in June, in a farm in Batou, Inner Mongolia,
3850 were infected and 2056 died; in a farm in Heilongjiang, 20,150 were infected and 19,500
died, and so on. These data indicate that poultry can be infected with high pathogenic
viruses in large numbers. Therefore, without loss of generality, we suppose β2 > β1. For
an outbreak region, let us refer to A = 10,000 and B = 500. For poultry infection with
the high pathogenic A(H7N9) virus, the extra death rate caused by the disease might be
ξ = 0.6 as well based on the above data. Poultry on farms usually are kept for 50 days
in the farm industry in China, so the output rate is d = 1/50 = 0.02. The natural death
rate of people can be given as ρ = 1/(75× 365) as far as life expectancy is 75 years. The
death rate of confirmed cases is about 40% and the treatment time of confirmed cases
would be 15 days to 20 days according to documents from the Chinese CDC. Because the
severe critical pneumonia mostly occurs about 3 to 7 days after the onset of the disease
for a confirmed case, we may take an average of 5 days as reference, then the death rate
due to disease is δ = 1/5× 0.4 = 0.08 and the recovery rate is γ = 1/15× 0.6 = 0.04. Let
p = 0.2, β1 = 0.003, α = 0.0001, η = 0.0001, ν = 0.0005 as well.

Now we carry out simulations with the purpose of investigating system dynamics,
explaining control measures and doing some comparative studies for human infections with
the low, high and mixed A(H7N9) viruses. Firstly, the dynamic behaviors of System (2) are
illustrated in Figure 5. For the above parameters, all five thresholds are greater than 1 and it
can be seen from Figure 5a that the positive equilibrium point M∗ is globally asymptotically
stable. If we let A = 1000, there is R3 < 1. Therefore, the positive equilibrium point M∗

does not exist and we can see from Figure 5b that the trajectories tend to the boundary
equilibrium point M̃1.



Mathematics 2022, 10, 1037 19 of 27

0

2

4

15

6

10
4

Ia

8

10

10

810

10
4

Ea

6

Sa

10
4

45
2

0 0

(a) In the case of Ri > 1

0

2

10

4

10

6

Ia

10
4

8

10

8

10
4

Ea

65

Sa

10
44

2
0 0

(b) In the case of R4 < 1

Figure 5. The dynamic behaviors of System (2) under different thresholds. (a) All trajectories converge
to the positive equilibrium point, which means that the disease will be prevalent. (b) All trajectories
tend to the Sa − Ea plane, which hints that slowing down production and trade will help reduce the
probability of mixed transmission.

Furthermore, the dynamics of System (1) is depicted in Figure 6 which presents curves
of Ih(t) for human infections with the low, high and mixed A(H7N9) viruses. We can see
that the mixed A(H7N9) viruses will cause more serious infections than the other two, so the
unusually serious epidemic in the fifth wave is explicated. The curve of Ih(t) corresponding
to human infections with the low pathogenic A(H7N9) virus shows a different trend, that
the curve will reach a small peak in a short time, then increase further after falling. This
hints that people should respond quickly to control the epidemic before reinflating for the
low pathogenic A(H7N9) infections. Moreover, it also suggests that human infection with
the mixed A(H7N9) viruses is not the simple superposition of human infection with the
low and high pathogenic A(H7N9) viruses.

In view of the practical control measures, we can see from Figures 7 and 8 that there
are serious infections if Ia(0) 6= 0, which can be detected from the representations of the
three up curves and the two down curves which correspond to Ia(0) = 0. This suggests
that the more important thing is to identify and eliminate the infected poultry with the
high pathogenic A(H7N9) virus. It is possible for us to eliminate the infected poultry with
symptoms by killing and burying all sick poultry. As for the identification of infected
poultry with low pathogenic A(H7N9) viruses on farms and in the recruitment, which one
is more important? Figures 7 and 8 tell us that it is different in the short term and in the
long term, which can be extracted from the two down curves in Figures 7 and 8. It seems
that in the short term, the identification and elimination of the infected poultry on farms is
prioritized. However, if we cannot eliminate the infected poultry with the low pathogenic
A(H7N9) virus in the recruitment, there is no difference for Ea(0) = 0 or not which can be
seen from the overlap curves. However, without the identification technology, it is also
important to eliminate the infected poultry with the low pathogenic A(H7N9) virus in
the recruitment which can be captured from the two up curves in Figure 8. In short, the
identification technology is very important for the control of disease. It is more important
for the identification of infected poultry with the high pathogenic A(H7N9) virus, than the
infected poultry with the low pathogenic A(H7N9) virus on farms and in the recruitment.
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Figure 6. Dynamics for cases of LP, HP and the mixed infections. Left: cases of a 6= 0, Ea(0) =

1, Ia(0) = 0 indicating Ia ≡ 0 corresponds to human infections with the low pathogenic A(H7N9)
virus (LP); middle: cases of a = 0, Ea(0) = 0, Ia(0) = 1 indicating Ea ≡ 0 corresponds to human
infections with the high pathogenic A(H7N9) virus (HP); right: cases of a 6= 0, Ea(0) = 1, Ia(0) = 1
corresponds to human infections with the mixed low and high pathogenic A(H7N9) viruses (Mixed).
This suggests that the mixed low and high pathogenic A(H7N9) viruses will cause more serious
infections in humans and that it is not the simple superposition of the LP and HP infections.
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Figure 7. Evolutions of Ih(t) for different initial values of Ea, Ia and a within 10 days. Curves
corresponding to cases of a 6= 0, Ea(0) = 0, Ia(0) 6= 0 and a 6= 0, Ea(0) 6= 0, Ia(0) 6= 0 are overlapping.
Curves corresponding to cases of a 6= 0, Ea(0) = 0, Ia(0) = 0 and a 6= 0, Ea(0) 6= 0, Ia(0) = 0 are
overlapping. It is very important to clear away high pathogenic infections in poultry, as shown by
the rising and falling trend of the curve.
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Figure 8. Evolutions of Ih(t) for different initial values of Ea, Ia and a in the longer days. Curves
corresponding to cases of a 6= 0, Ea(0) = 0, Ia(0) 6= 0 and a 6= 0, Ea(0) 6= 0, Ia(0) 6= 0 are overlapping.
Curves corresponding to cases of a 6= 0, Ea(0) = 0, Ia(0) = 0 and a 6= 0, Ea(0) 6= 0, Ia(0) = 0 are
overlapping. The existence of poultry infected with the high pathogenic virus is the greatest threat to
human beings, which can be seen from the rising trend of curves. Otherwise, the curve is descending.

From Figures 9 and 10, we can see that the rapid infection of all poultry will occur
whether by the low pathogenic virus or the high pathogenic virus. However, the infection
caused by the low pathogenic virus of poultry to human beings far exceeds that caused by
the high pathogenic virus in terms of time and quantity. There are two waves of human
infections in the case of the mixed transmission. This may be the reason that the Chinese
government decisively implemented strict vaccine measures against all poultry in the
country when the mixed A(H7N9) infections seriously threatened people in 2017.

Figure 11 suggests that controlling contact both in poultry and between human and
poultry can effectively control the epidemic in a month and losing controlling contacts in
poultry will cause a serious pandemic. It seems it is very sensitive of parameters η and ν
embodying human response and the psychosocial effect, compared to parameters β and
α which correspond to the transmission in poultry. Losing control of the contact between
poultry will lead to a surge of human cases, which is depicted in Figure 12. Therefore,
controlling the contact between poultry is as significant as controlling the contact for people
with poultry. In short, we should respond immediately and take measures to reduce the
contagions in poultry, and at the same time publicize the information so as to avoid the
dangerous levels of exposure once a human case is confirmed.



Mathematics 2022, 10, 1037 22 of 27

0 20 40 60
-5

0

5

10

15

20
104

0 20 40 60
-5

0

5

10

15

20
104

0 20 40 60

day

-5

0

5

10

15

20

n
u
m

b
e
r 

o
f 
S

a
(t

),
 E

a
(t

),
 I

a
(t

)

104 A=0

S
a
(t)

E
a
(t)

I
a
(t)

Figure 9. Evolutions of Sa(t), Ea(t) and Ia(t) for LP, HP and the mixed infections. From left to right
are LP, HP and mixed infections, respectively. No matter whether the low pathogenic virus or the high
pathogenic virus, the rapid infections of all poultry will occur. In the case of the mixed transmission, if
the live poultry markets and farms are closed, a large number of deaths caused by the high pathogenic
virus will greatly reduce the number of poultry infected with the low pathogenic virus.
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Figure 10. Evolutions of Ih(t) for LP, HP and the mixed infections. From left to right are LP, HP and
the mixed infections, respectively. The infection rate caused by the low pathogenic virus of poultry to
human beings far exceeds that caused by the high pathogenic virus in terms of time and quantity.
Moreover, the mixed transmission will form two infection peaks.
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6. Conclusions and Discussion

In 2013, the avian influenza A(H7N9) virus, which previously circulated only in
poultry, began to infect humans. Hereafter, a new wave of epidemics emerged in every
autumn and winter, severely discouraging the poultry industry and threatening public
health. Frightened by the surge in number of human cases and the extension of the
distribution of infected areas in the wave of 2016–2017, considering the fact that human
infections with both the original low pathogenic and the newly emerging high pathogenic
A(H7N9) viruses, we established and analyzed a two-strain avian–human infection model
in order to investigate the dynamics of the epidemic, to explain and explore disease control
measures and to make some comparative studies for human infections with the low or high
pathogenic viruses and the mixed infections.

Because the low and high pathogenic A(H7N9) viruses are susceptible to both poultry
and humans, the dynamics of the epidemic are more complex and sensitive. Theoretical
results suggest there are four equilibria in the case of a = 0 and two equilibria in the case of
a 6= 0. In addition to the trivial equilibrium point M0, the others are all the disease-existence
equilibria, including the boundary equilibria. It greatly increases the risk of pandemic. We
also obtain the bifurcation portrait of the existence and stability of equilibria at a = 0. From
the perspective of the existence conditions, basically equilibria M1 and M2 will exist for the
larger βi, i = 1, 2. However, for the positive equilibrium point M3, the situation becomes
more complicated, which also hints at the complex and sensitive nature of the dynamics.
In fact, the existence of M3 is not inevitable, which can be detected from the expressions
of its existence thresholds. We also know the existing equilibria M̃1 and M∗ in the case
of a 6= 0 will converge to the corresponding M1 and M3 at a = 0, although the required
existence conditions are stronger. In any case, theoretically it is still the prior to eliminate
the infected poultry in the recruitment so that a = 0, which may be beneficial to the disease
eradication. The trivital equilibrium point M0 is a high-order singular point as R1 = 1 and
R2 = 1 and will bifurcates equilibria M1, M2 and M3 as Ri, i = 1, 2 increase from Ri = 1
to Ri > 1, i = 1, 2. Of course, Ri, i = 1, 2 are the bifurcation thresholds. M0 undergoes
the transcritical bifurcations. Furthermore, if we can put an end to the infected poultry in
recruitment, the stabilities of equilibria tell us that we have the possibility to eradicate the
epidemic by controlling the transmission in poultry such that Ri < 1, i = 1, 2. The related
results are presented in Theorems 1–3. The global stabilities of the positive equilibria M3
and M∗ indicate again the importance of eliminating the infected poultry in recruitment
which can be extracted from Theorem 4.

The implemented simulations verify the theoretical results and reveal that the dynam-
ics of human infections with the low pathogenic A(H7N9) virus are different from that of
the high pathogenic A(H7N9) virus and the mixed infections. The mixed low and high
pathogenic A(H7N9) viruses would cause more serious infections in humans. Moreover,
human infections with mixed low and high pathogenic A(H7N9) viruses is not the simple
superposition of human infections with low and high pathogenic A(H7N9) viruses. For
disease control, simulations suggest that the more important thing is to develop the identifi-
cation technology to eliminate the infected poultry. Again, controlling the contact between
human and poultry can effectively control the epidemic, and controlling the contagions
in poultry can avoid a terrible rise in infections in humans. Evacuation stocking, isolated
chicken houses and public notification mechanisms should be strengthened. This can
give reference to the case of the simultaneous spreading of two strains between humans
and poultry.

Because of the diversity of disease transmission, the widely used SEIR model is ex-
tended to include more categories of population, such as the asymptomatic, the hospitalized
patients and the isolated individuals, etc. Additionally, more and more factors are also con-
sidered in modeling, such as medical resources, traffic power, contact behaviors, social and
economic factors, and so on. Among these newly emerging models, it is worth mentioning
those researches based on complex networks and networked populations. For example,
Wang et al. in [26] gave a detailed and valuable introduction on epidemics in networked
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populations, which contributed the understanding of the complex networked disease trans-
mission. Li et al. in [27] proposed a modified signed-susceptible-infectious-susceptible
epidemiological model with positive and negative transmission rates and structural balance.
Research on epidemic spreading via complex systems would be a successful way for us to
face the challenge of disease transmission.

Obviously, this study is mainly focused on theoretical dynamics. In view of the
realities of a complex epidemic, there are some factors which should be taken into account.
For example, factor of the transmissions caused by the latent poultry infected with the
high pathogenic virus should be considered, and the transmission via environment and
objects should also be incorporated into models. From the point of view of disease control,
the isolation of poultry production and trading/marketplaces are also worth considering.
Therefore, further research will be carried out. There are also issues of the cotransmission
and alternate prevalence of multivirulent strains in human seasonal influenza epidemic
and the cross-transmission of sudden infectious diseases in the influenza season. In view of
the interpersonal transmission of diseases, a networked approach will help to understand
the spread of the disease. We will consider these in our subsequent research.
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Appendix A

Appendix A.1

Table A1. Provinces, cities and municipalities where human cases occurred.

Wave Place

1st Shanghai, Anhui, Jiangsu, Zhejiang, Henan, Beijing, (Taiwan), Fujian, Hunan, Jiangxi, Shangdong, Hebei (2013.7), Guangdong (2013.7)
2nd New added: Guangxi, Jilin, Guizhou(back from Zhejiang), Hongkong, Xinjiang (2014.7); Not reappearing: Jiangxi, Henan, Hebei
3rd New added: Hubei, Guizhou; Not reappearing: Guangxi, Jixin, Henan, Hebei; Resumed: Jiangxi
4th New added: Tianjin, Liaoning; Not appearing: Xinjiang, Guizhou; Resumed: Hebei
5th New added: Sichuan, Yunnan, Tibet, Shaanxi, Shanxi, Chongqing, Gansu, Inner Mongolia, Macao

Appendix A.2. The Global Stability of M2

Choosing the Liapunov function V = Ea, then

V̇|(2) =
β1SaEa

1 + α1Ea
− dEa ≤ (β1Sa − d)Ea ≤ (

Aβ1

d
− d)Ea.
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Therefore V̇|(2) ≤ 0 as R1 ≤ 1. Let D = {(Sa, Ea, Ia) ∈ R3
+ : V̇ = 0} = {Ea = 0}. By

the LaSalle Invariance Principle, all the solutions of the avian-subsystem (2) will approach
the Sa − Ia plane.

Now considering the limit system of the avian-subsystem (2) about Ea, we obtain
dSa

dt
= A− β2Sa Ia

1+α2 Ia
− dSa , F(Sa, Ia),

dIa

dt
= β2Sa Ia

1+α2 Ia
− dIa − ξ Ia , G(Sa, Ia).

Then by the theory of limit system, the stability of the equilibrium point M2 converts
to the stability of the corresponding equilibrium point (still marked as M2) of the limit
system. It is easy to obtain the corresponding equilibrium point M2(S

(2)
a , I(2)a )(as R2 > 1 )

and M2 is locally asymptotically stable as R1 < 1 and R2 > 1. Next, we select the Dulac
function B(Sa, Ia) = I−1

a , then

∂(BF)
∂Sa

+
∂(BG)

∂Ia
= − β2

1 + α2 Ia
− d

Ia
− α2β2Sa

(1 + α2 Ia)2 < 0.

The Dulac criterion implies that the existence of periodic trajectories are excluded
in the region D̃ = {(Sa, Ia) ∈ R2

+ : 0 ≤ Sa + Ia ≤ A
d + ε}, Therefore, by Poincaré-

Bendixson theorem the equilibrium point M2 is globally asymptotically stable in D̃. That is,
M2(S

(2)
a , 0, I(2)a ) is globally asymptotically stable as R2 > 1 and R1 ≤ 1.

Furthermore, we consider the limiting human sub-system

dSh
dt = B− η2 I(2)a Sh

1+ν2(I(2)a )2
− ρSh,

dIh
dt = η2 I(2)a Sh

1+ν2(I(2)a )2
− (δ + ρ + γ)Ih,

dRh
dt = γIh − ρRh.

It is easy that

lim
t→+∞

Sh(t) =
B

η2 I(2)a

1+ν2(I(2)a )2
+ ρ

= S(2)
h , lim

t→∞
Ih(t) =

η2 I(2)a S(2)
h

1+ν2(I(2)a )2

δ + ρ + γ
= I(2)h , lim

t→∞
Rh(t) =

γI(2)h
ρ

= R(2)
h .

Therefore, M2 is globally asymptotically stable as R1 ≤ 1 and R2 > 1.
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