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Abstract

:

Parameters of the solar cell equivalent circuit models have a significant role in assessing the solar cells’ performance and tracking operational variations. In this regard, estimating solar cell parameters is a difficult task because cells have nonlinear current-voltage characteristics. Thus, a fast and accurate optimization algorithm is usually required to solve this engineering problem effectively. This paper proposes two hybrid variants of honey badger algorithm (HBA) and artificial gorilla troops optimizer (GTO) to estimate solar cell parameters. The proposed algorithms minimize the root mean square error (RMSE) between measurement and simulation results. In the first variant, GTO is used to determine the initial population of HBA, while in the second variant, HBA is used to determine the initial population of GTO. These variants can efficiently improve convergence characteristics. The proposed optimization algorithms are applied for parameter estimation of different equivalent circuit models of solar cells and various photovoltaic (PV) modules. Namely, the proposed algorithms test three solar cell equivalent models: single-diode, double-diode, and triple-diode equivalent circuit models. Different photovoltaic modules are investigated, such as the RadioTechnique Compelec (RTC) France solar cell, Solarex’s Multicrystalline 60 watts solar module (MSX 60), and the Photowatt, France solar panel (Photo-watt PWP 201). In addition, the applicability of the proposed optimization algorithms is verified using obtained results from a commercial solar module called Shell Monocrystalline PV module (SM55) with different irradiation and temperature levels. The good results of the proposed algorithms show that they can efficiently improve convergence speed and the accuracy of the obtained results than other algorithms used for parameter estimation of PV equivalent circuit models in the literature, particularly in terms of the values of the RMSE and statistical tests. In addition, the parameters estimated by the proposed methods fit the simulation data perfectly at different irradiance and temperature levels for the commercial PV module.
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1. Introduction


The transmission and distribution systems in modern power systems represent vital links in the power supply chain. Unlike a transmission system that consists of a small number of significant components, a distribution system includes a large number of small elements, which increases the complexity of the supervision and control of this system. With the growing dependence of society and economy on electricity, the transmission and the distribution systems need to ensure an acceptable level of reliability, quality, and security of electricity supply in the most economically efficient way. The power system is going through a dynamic transition. Reducing carbon dioxide (CO2) emissions requires reliance on renewable energy sources (RESs) to drastically reduce or even eliminate the use of coal in energy production. These days, power systems involve an increasing number of components that rely on power-electronic elements, such as energy storage systems, reactive energy compensation systems, electric vehicles, etc. These additional components are essential for regulating power, losses, and voltage deviations [1].



RESs such as solar and wind energy resources mainly depend on geographic location, air temperature, and climate-related factors such as time of day, season, wind speed, level of direct sunlight, pressure gradient, and others [2,3]. The use of RESs in transmission and distribution systems is increasing worldwide, further complicating power systems operation because RESs are characterized by an intermittent and unpredictable nature, which significantly complicates the management of these systems [4,5].



In European electricity markets, fuel prices represent a large share of the electricity prices. Although RESs can provide flexibility in the market, frequently, renewable electricity may not be consumed in the domestic market due to insufficient national network capacity. Consequently, electricity flows are pushed to grids of neighboring countries, resulting in recurring and severe congestion problems that also affect continuously-based or discretely-based intraday markets [6,7].



Renewable energy is the fastest-growing energy source in the United States (U.S.), with solar generation (including solar distributed generation) accounting for 3.3% of total U.S. generation in 2020 [8,9]. In this context, many countries, such as Egypt and Saudi Arabia, provide incentives for the use of solar PV systems to enable a powerhouse for growth in renewable electricity. However, the proper and efficient use of solar PV requires voltage and current regulation systems to maintain power at the maximum power point (MPP). Because of this, modeling, analysis and testing of current-voltage characteristics of solar cells are essential, and this is confirmed by many publications that deal with modeling and estimating the parameters of equivalent circuit models of solar cells.



Three equivalent circuit models of solar cells, which differ in the number of diodes, are commonly used in the literature. The simplest and most widely used solar model is the single-diode model (SDM) [3,10]. It is a model represented by a single current source (representing the photo-current), a diode connected in parallel to the current source, a parallel-connected resistor, and a series-connected resistor. As the diode is modeled with two unknown parameters, this model is described with five unknown parameters [11]. To increase the model’s accuracy, a parallel-connected diode is added in the double-diode model (DDM), and two parallel-connected diodes are added in the triple-diode model (TDM). Thus, the two-diode model is described with seven unknown parameters, and the three-diode model is described with nine unknown parameters. These models’ accuracy is higher than the accuracy of SDMs [12].



Determining the unknown parameters of solar cells is a challenging scientific problem. Today, many approaches, algorithms, and methods can estimate parameters of different equivalent circuit models of solar cells and PV modules. Solar panel manufacturers generally provide nominal irradiance and temperature data associated with values of open-circuit voltage, short-circuit current, and current at maximum power. The parameter estimation of equivalent circuit models of solar cells can be performed based on manufacturer’s data [3]. However, the manufacturer’s data do not provide sufficient information for complete and accurate modeling of solar cells, mainly due to unsung resistors data. Thus, it is necessary to use analytical, numerical or metaheuristic-based methods to estimate unknown parameters of solar cells equivalent circuit models using measured voltage-current data. Unfortunately, these methods require solving transcendental nonlinear equations.



Numerical methods such as Newton and Levenberg–Marquardt-based methods can be used for parameter estimation. However, these methods depend on the initial values of the parameters, require many iterations to obtain an acceptable solution, and do not usually converge towards a global solution [10]. These are the main reasons for the application of metaheuristic methods to estimate parameters of equivalent circuit models of solar cells.



Nowadays, many algorithms are used to estimate parameters of equivalent circuit models of solar cells. These algorithms can be divided into several groups based on their inspiration processes or implemented methods; for instance, a group of bio-inspired algorithms (BIA) that are inspired by biological processes in nature and includes genetic algorithms based on non-uniform mutation (GAMNU) [13], bee pollinator flower pollination algorithm (BPFPA) [14], memetic adaptive differential evolution (MADE) [15], and improved shuffled complex evolution (ISCE) [16]. Additionally, a group of socially-oriented algorithms that are inspired by describing the behavior of people and children under specific situations have emerged. A group of socially-oriented algorithms inspired by teaching–learning behaviour of people and children has also emerged. This group includes the gaining–sharing knowledge-based algorithm (GSK) [17], teaching-learning-based optimization (TLBO) and improved TLBO (ITLBO) [18], and teaching–learning-based artificial bee colony (TLABC) [19]. Another group includes algorithms that rely on natural physical processes, such as water movement, earth movement, and others, such as the wind-driven optimization (WDO) algorithm [20]. A group of algorithms inspired by the behavior and lifestyle of animals and birds has also developed. This group includes the Whippy Harris hawks optimization algorithm (WHHO) [21], cat swarm optimization (CSO) [22], modified particle swarm optimization (MPSO) [23], artificial bee colony (ABC) [24] and marine-predators algorithm (MPA) [25] algorithms. Besides, as many processes have a chaotic nature, many chaotic algorithms are often developed by adding chaotic variations to some algorithms, such as the chaotic optimization approach (COA) [26], chaotic successful history-based adaptive differential evolution variants with linear population size reduction algorithm (CLSHADE) [12], and chaotic gradient-based optimization (CGBO) with chaotic drifts [27]. Finally, a group of algorithms relies on hybridizing two or more algorithms to enhance their performance in finding global solutions [28,29]. The main advantage of the hybrid algorithms is their better proximity to global solutions than standard algorithms. Moreover, these algorithms require a small number of iterations to get the optimal solution. Moreover, hybridization of algorithms uses exploration and exploitation features of each algorithm, which significantly improves the quality of solutions that can be obtained.



The subject of research in this paper is two-fold. The first goal is to propose a new hybrid metaheuristic algorithm for efficiently estimating parameters of different equivalent circuit models of solar cells and PV modules. In this regard, two hybridization variants that rely on the honey badger algorithm (HBO) [30] and the artificial gorilla troops optimizer (GTO) [31] are proposed. The second goal is to estimate the accuracy of parameters of SDM, DDM, and TDM of well-known solar cells and modules presented in the literature to compare the obtained results with numerous results in the literature.



The main advantages of this research are outlined as follows:




	
A new metaheuristic algorithm for estimating parameters of equivalent circuit models of solar cells and PV modules has been proposed.



	
Two types of hybridization of algorithms used have been proposed.



	
Statistical analysis of the results of these algorithms is examined.



	
Performance of the proposed algorithms is compared with several well-known algorithms used in parameter estimation problems.



	
The three equivalent circuit models of solar cells are addressed and investigated.



	
The applicability and efficiency of the proposed methods are tested on commercial PV modules for different levels of temperature and irradiance.








The rest of the paper is organized as follows. In Section 2, a short review of the solar cell models is introduced. The description of the novel hybrid algorithm is presented in Section 3. Numerical results are shown in Section 4. In Section 5, the efficiency of the proposed algorithms for a commercial photovoltaic model, known as monocrystalline SM55 (SM55), is verified, whose current-voltage curves measured for different levels of irradiance and temperature were obtained from the manufacturer’s datasheet. The main contributions of this work and future work directions are given in Section 6.




2. Solar Cell Equivalent Circuits


The simplest equivalent circuit of a solar PV cell consists of an ideal current source (Ipv) and a parallel-connected diode (D) [32,33,34,35,36,37,38,39]. The current of the ideal current source is directly proportional to the light flux to which the solar cell is exposed. The construction of the solar cell itself is a p-n junction. However, if one wants to consider the losses of solar cells, in that case, the previous model is supplemented with two resistances, one resistance is connected in parallel to the diode (RP), and the other resistance is connected in series (RS) with the diode. The equivalent circuit represents a five-parameter single-diode model (SDM) of a solar cell, shown in Figure 1a. This model is the most widely recognized model of solar cells. Its mathematical relation for current and voltage has the following form [40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56]:


  I =  I  p v   −  I  01    (  e x p  (    U + I  R S     n 1   V  t h     − 1  )  −   U + I  R S     R P     )   



(1)




where I01 denotes the reverse saturation current, n1 represents the ideality factor, and Vth is the thermal voltage, and it equals KBT/q, in which KB is Boltzmann constant, T is the temperature in Kelvin, and q is the electron charge.



The analytical solution of current as a function of voltage for SDM of solar cells is given as follows [11]:


  I =    R P   (   I  p v   +  I 0   )  − U    R S  +  R P    −    n 1   V  t h      R S    · W  (     I  01    R P   R S     n 1   V  t h    (   R S  +  R P   )    e x p  (     R P   (   R S   I  p v   +  R S   I  01   + U  )     n 1   V  t h    (   R S  +  R P   )     )   )   



(2)







In addition, the analytical solution of voltage as a function of current is given in (3).


  U =  (   I  p v   +  I  01    )   R P  − I  (   R S  +  R P   )  −  n 1   V  t h   W  (     I  01    R P     n 1   V  t h     e x p  (     R P   (   I  p v   +  I  01   − I  )     n 1   V  t h      )   )   



(3)







In the five-parameter SDM, current and voltage can be expressed in terms of the Lambert W function, where W denotes the solution of the Lambert equation. In mathematics, the Lambert W function is a set of multivalued functions that are formulated as x = ϑ exp(−x), where its solution can be expressed in the form x = W(ϑ) [11,12]. Lambert W function can be solved using iterative-based methods or analytically using Taylor series or special trans function theory [57]. It should be mentioned that many mathematical programs such as Matlab, Mathematica and Maple have embedded solvers that can solve Lambert W functions.



An additional diode is added in DDM, and two other diodes are added in TDM. Therefore, the DDM is characterized by seven unknown parameters, while the TDM is characterized by nine unknown parameters. These models’ accuracy is higher than the accuracy of SDM [11,12]. The seven-parameter DDM and nine-parameter TDM of PV equivalent circuits are shown in Figure 1b,c, respectively.



The mathematical expressions of current and voltage for DDM and TDM have the forms given in (4) and (5), respectively. In these equations, I02 and I03 denote the reverse saturation currents of the second and third diodes, while n2 and n3 represent the second and third solar cells’ ideality factors, respectively.


  I =  I  p v   −  I  01    (   e    U + I  R S     n 1  ×  V  t h       − 1  )  −  I  02    (   e    U + I  R S     n 2  ×  V  t h       − 1  )  −   U + I  R S     R P     



(4)






  I =  I  p v   −  I  01    (   e    U + I  R S     n 1  ×  V  t h       − 1  )  −  I  02    (   e    U + I  R S     n 2  ×  V  t h       − 1  )  −  I  03    (   e    U + I  R S     n 3  ×  V  t h       − 1  )  −   U + I  R S     R P     



(5)







Equations (4) and (5) are transcendental equations that cannot be solved analytically [11,12] because of the high nonlinearity of the current expressions of these models. Thus, an iterative procedure is needed to solve them. In [12], expressions of current as a function of voltage are given for DDM and TDM, respectively, as follows:


  I =    R p     R p  +  R s     (   I  p v   +  I  01   +  I  02   −  U   R P    −    n 1   V  t h      R s     (  1 +    R s     R p     )  ⋅ Ψ  )   



(6)






  I =    R p     R p  +  R s     (   I  p v   +  I  01   +  I  02   +  I  03   −  U   R P    −    n 1   V  t h      R s     (  1 +    R s     R p     )  ⋅ Ψ  )   



(7)




where the variable Ψ represents the solution of the transcendent equations of DDM (Equation (8)) and TDM (Equation (9)). The constants     α  T D M    ,    α  D D M    ,    β  T D M    ,    β  D D M    ,    δ  T D M    ,    δ  D D M    ,    γ  T D M    , and    σ  T D M     rely on the parameters of the PV equivalent circuit models. The expressions describing these constants are given in the Appendix A at the end of the paper. Besides, readers can refer to [12] for detailed derivations of solutions of (6) and (7).


   α  D D M   +  β  D D M   · e x p  (  Ψ ·  δ  D D M    )  = Ψ · e x p  ( Ψ )   



(8)






   α  T D M   +  β  T D M   · e x p  (  Ψ ·  δ  T D M    )  +  γ  T D M   · e x p  (  Ψ ·  σ  T D M    )  = Ψ · e x p  ( Ψ )   



(9)








3. Proposed Hybrid Algorithms


Metaheuristic algorithms are among the most popular techniques for solving engineering optimization problems because of their effectiveness and ability to converge to global/semi-global solutions. Generally, metaheuristic algorithms have sets of potential solutions to the optimization problem. Each solution is iteratively updated following a specific procedure based on the nature of the algorithm. However, these algorithms are characterized by their stochastic nature because the population of solutions in the first iteration are randomly initialized between specific limits [5,58,59]. In this regard, the starting initial point has a significant impact on the convergence speed of the algorithm. To overcome this disadvantage, two new metaheuristic algorithms are proposed in this work. The algorithms proposed in this paper rely on the hybridization of two recently developed metaheuristic algorithms (honey badger algorithm (HBA) [30] and artificial gorilla troops optimizer (GTO) [60]). The first proposed algorithm is called GTO-HBA, and it used HBA to be the main algorithm whose initial population is determined using the GTO algorithm. The second proposed algorithm is called HBA-GTO, and it uses HBA to initialize the population of the GTO algorithm, instead of the random initialization. Therefore, the best possible starting point, i.e., population in the first iteration, would be obtained because the proposed algorithms depend on executing the algorithms one after another while benefiting from the exploration and exploitation capabilities of each algorithm. Further, the obtained population is sorted based on the value of the fitness function of each individual. The best individual that has the minimum fitness function value is chosen.



HBA imitates honey badger’s behaviour when locating food sources. Mathematically, each badger in the population is represented by its position xi = [xi1, xi2, …, xiD], where D denotes the number of variables, and i = 1, 2, 3,..., N, and N stands for population size. The main equations repeated in HBA are the digging and honey phases. These equations are employed to update the positions of honey badgers.



The digging phase is expressed as follows:


   x  n e w   =  x  p r e y   + F ⋅ β ⋅ I ⋅  x  p r e y   + F ⋅  r 3  ⋅ α ⋅  d i   |  c o s  (  2 π  r 4   )   [  1 − c o s  (  2 π  r 5   )   ]   |   



(10)




where xnew denotes the updated position of the honey badger, xprey is the best badger obtained so far, β denotes the ability of the honey badger to get food (selected to be 6 in this work), and r3, r4, and r5 are random numbers between 0 and 1. The smell intensity of the prey Ii, source strength S, distance between the prey and ith badger di, density factor α, and flag F, are expressed as follows:


   I i  =  r 2   (   S  4 π  d i 2     )   



(11)






  S =    (   x i  −  x  i + 1    )   2   



(12)






   d i  =  x  p r e y   −  x i   



(13)






  α = e x p  (  −  t   t  m a x        )   



(14)






  F =  {      1 ,         i f    r 6  ≤ 0.5         − 1 ,                             e l s e          



(15)




where t stands for the current iteration, tmax is the maximum number of iterations, and r2 and r6 are random numbers with the range [0, 1].



The honey phase occurs when the honey badger follows the honey guide bird, and it is represented by (16).


   x  n e w   =  x  p r e y   + F  r 1  α  d i   



(16)




where r1 denotes a random number with the range [0, 1].



Finally, the position of the honey badger (individual) with the lowest fitness function value represents the final solution obtained by HBA.



GTO algorithm is inspired by behavior of gorillas. Like HBA, each gorilla in the population represents the potential solution to the optimization problem.



In each iteration, the exploration phase comes first and is represented by (17):


  X  (  t + 1  )  =  {       (  U B − L B  )   y 1  + L B ,                                                                                                                                   r a n d < p         (   y 2  − C  )   X r   ( t )  + L H ,                                                                                                                           r a n d ≥ 0.5        X  ( i )  − L  (  L  (  X  ( t )  − G  X r   ( t )   )  +  y 3   (  X  ( t )  − G  X r   ( t )   )   )  ,     r a n d < 0.5        



(17)







GX(t + 1) and X(t) represent the vectors of gorilla positions in the current and next iterations, respectively. The parameter p explores the probability of choosing an exploration strategy to an unidentified position and must be in the range [0, 1], while rand, y1, y2, and y3 are random numbers range between 0 and 1. The parameters Xr(t) and GXr(t) stand for randomly chosen gorillas from populations X and GX, respectively. The variables C, L, and H, can be calculated as follows:


  C = F  (  1 −  t   t  m a x      )   



(18)






  F = cos  (  2  y 4   )  + 1  



(19)






  L = C · l  



(20)






  H = Z X  ( t )   



(21)




where y4 is a random number with the range [0, 1], l is a random number with the range [−1, 1], while Z is a random number with the range [−C, C]. At the end of exploration, the fitness function of all GX solutions is calculated. If the cost of GX(t) < X(t), then the GX(t) gorilla will replace X(t) solution. The best solution is the gorilla whose fitness function value has the lowest value (Silverback). Further, the exploitation phase comes after the exploration phase. It is mainly controlled by the parameter W that needs to be set at the beginning of the procedure. Depending on the value of C, vector GX(t + 1) is calculated according to the following relations:


  G X  (  t + 1  )  =  {      L M  (  X  ( t )  −  X  s i v e r b a c k    )  + X  ( t )  ,                         i f   C ≥ W        X  s i l v e r b a c k   −  (   X  s i l v e r b a c k   Q − X  ( t )  Q  )  A ,     i f   C < W        



(22)




where the variable M can be calculated as follows in terms of population size (N), and g, which equals 2L.


  M =    (     |   1 N    ∑   i = 1  N  G  X i   ( t )   |   g   )     1 g     



(23)







In addition, Q simulates the impact force, and A represents the degree of violence in case of conflicts, and are expressed using the following equations:


  Q = 2  y 5  − 1  



(24)






  A = β · E  



(25)






  E =  {       N 1  ,         r a n d ≥ 0.5          N 2  ,           r a n d < 0.5        



(26)




where rand and y5 denote random numbers with the range [0, 1], and β, N1, and N2 are coefficients that are specified before starting the optimization process. Similar to the exploration phase, the fitness function for each gorilla from GX population must be calculated after the exploitation phase. If the cost of GX(t) is lower than the cost of X(t), the GX(t) solution replaces the X(t) solution, and it becomes the best solution (Silverback). The pseudo-codes of the GTO-HBA Algorithm 1 (Proposed 1) and HBA-GTO Algorithm 2 (Proposed 2), which enable a detailed view of their procedure, are presented in Algorithms 1 and 2, respectively.



	Algorithm 1: Complete pseudo-code of the artificial gorilla troops optimizer-honey badger algorithm (GTO-HBA) (Proposed 1).



	1: Set parameters N, C, β, and tmax



	2: Initialize the population using the GTO algorithm [60]:

   {      1 :    Set   parameters    N ,  N 1  ,  N 2  , p , β ,    and     t  m a x             2 :    Randomly   initialize   the   population        3 :    Evaluate   the   fitness   of   each   gorilla            4 : for   t = 1   to    t  max             5 :    Update    L    and    C       6 :    Conduct   the   exploration   phase   and   calculate   population    G X  ( t )                7 :    Evaluate   the   fitness   of   each   gorilla   and   update   the   population    X  ( t )        8 :    Determine   the   best   gorilla        S i l v e r b a c k                                 9 :  endfor        10 :    Return   the   final   population             

3: Evaluate the fitness of each badger xi and assign it to fi

4: Save the best position xprey and assign it to fprey



	5: for t = 1 to tmax



	6:   Update factor α

7:   for i = 1 to N



	8:         Calculate intensity Ii

9:         if r < 0.5



	10:          Update the positions according to the digging phase

11:         else

12:          Update the positions according to the honey phase



	13:        endif

14:        Evaluate new positions and assign them to fnew

15:        if fnew ≤ fi

16:        set xi = xnew and fi = fnew



	17:        endif

18:        if fnew ≤ fprey

19:        set xprey = xnew and fprey = fnew



	20:        endif

21:   end for

22: end for

23: Return xprey—the optimal solution










	Algorithm 2: Complete pseudo-code of the honey badger algorithm and artificial gorilla troops optimizer (HBA-GTO) (Proposed 2).



	1: Set parameters N, N1, N2, p, β, and tmax



	2: Initialize the population of gorillas using HBA [30]:

   {      1 :  Set   parameters    N , C , β ,   a n d    t  m a x              2 :   Initialize   the   population   randomly         3 :   Evaluate   the   fitness   of   each   badger     x i     and   assign   it   to     f i         4 :   Save   the   best   position     x  p r e y    and   assign   it   to     f  p r e y             5 :  for    t = 1   t o    t  m a x             6 :    Update   factor    α       7 :    for    i = 1   t o   N               8 :                    Calculate   intensity     I i        9 :                if    r < 0.5               10 :                    Update   the   positions   according   to   the   digging   phase        11 :                else        12 :                    Update   the   positions   according   to   the   honey   phase                13 :                endif        14 :                Evaluate   new   positions   and   assign   them   to     f  n e w         15 :                if     f  n e w   ≤  f i        16 :               s e t    x i  =  x  n e w   a n d    f i  =  f  n e w                 17 :                endif        18 :                if     f  n e w   ≤  f  p r e y         19 :               s e t    x  p r e y   =  x  n e w     a n d    f  p r e y   =  f  n e w                 20 :                endif        21 :    endfor        22 :  endfor        23 :  Return   final   population             

3: Evaluate the fitness of each gorilla



	4: for t = 1 to tmax



	5:      Update L and C

6:      Conduct the exploration phase and calculated population GX(t)



	7:      Evaluate the fitness of each gorilla and update the population X(t)

8:      Determine the best gorilla—Silverback



	9: end for

10: Return Xsilverback—the optimal solution







4. Numerical Results


The proposed algorithms are applied for estimation of parameters of different equivalent circuit models (SDM, DDM, and TDM) of solar cells and PV modules, such as the RadioTechnique Compelec (RTC) France solar cell, Solarex’s Multicrystalline 60 watts solar module (MSX 60), and the Photowatt, France solar panel (Photo-watt PWP 201). The performance of the proposed algorithms is compared with several published algorithms presented in the literature for the estimation of PV equivalent circuit parameters. The parameters of the equivalent circuit models of solar cells/modules are estimated to minimize the objective function that represents the root mean square error (RMSE), as expressed in Equation (27). We used the best results (parameters values) each author obtained in the cited literature and compared them with the results obtained in this work in terms of RMSE between calculated and measured current-voltage curves. The RMSE calculation (under the focus of this work) is significant to indicate the efficiency of the optimization techniques referred to in reaching the desired solution, especially while studying the same commercially known solar cell. All comparisons are performed under the same environment on a computer with the following hardware settings: AMD A4 CPU 4 × 2.5 GHz, 4 GB RAM, and 1 TB hard drive on Windows 10 operating system.


  R M S E =    1  N m    ∑  k = 1   N m      I  k   meas    −  I  k   sim     2     



(27)




where    I k  m e a s     and    I k  s i m       denote the measured and simulated solar current at point k. Nm denotes the number of measurements.



In addition, the mean absolute error (MAE) and the mean absolute percentage error (MAPE), formulated in Equations (28) and (29), have been calculated for the results obtained.


  M A E =  1   N m      ∑   k = 1    N m     |   I k  m e a s   −  I k  s i m    |   



(28)






  M A P E =   100    N m      ∑   k = 1    N m     |     I k  m e a s   −  I k  s i m      I k  m e a s      |   



(29)







The obtained results are presented in Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 for the investigated cells/modules. Table 1 shows the RMSE, MAE and MAPE values calculated using 40 methods to estimate parameters of the equivalent circuit models of the RTC France solar cell. It should be noted that RMSE, MAE and MAPE have been calculated on the basis of the parameters in the papers when they were not presented. Table 2 shows the values of the parameters of the equivalent circuits obtained using these methods for the RTC France solar cell. Similarly, Table 3 shows the RMSE, MAE and MAPE values obtained using 12 different methods to estimate parameters of the equivalent circuit models of the SOLAREX MSX–60 module. Table 4 shows the parameters obtained using these methods. Besides, Table 5 shows the RMSE, MAE and MAPE values obtained using 33 different methods to estimate parameters of the equivalent circuit models of the Photowatt-PWP201 module. Table 6 shows the parameters obtained using these methods.



Figure 2, Figure 3 and Figure 4 show the RMSE values calculated by applying algorithms presented in the literature and the proposed algorithm for the investigated solar cells/modules. What is generally observed from the results presented is the apparent difference in the accuracy of the RMSE calculation. The RMSE values for the data given in the Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 are shown using circle labels for the methods given in the literature. The same figures show the RMSE values using lines for the proposed algorithms. It is clear from the presented figures that the accuracy of calculation of the parameters using the proposed algorithms is better than the accuracy achieved by the previous approaches. For some methods in Table 1, Table 3 and Table 5, the accuracy of SDM results was higher than that of DDM, and this is not consistent with reality or practice. In Equations (2), (4) and (5), we can see the current as a free part as well as in the exponential part. This means that it will not be mathematically accurate to say that the free part of the equations is the calculated current, while the current in the exponential part is the measured current as usually presented in the literature. This is the main difference as it is not mathematically precise to use the measured current if we need to calculate the solar cell current, and this is the major reason for the shortcomings many of the reported works made with the determination of their RMSE calculations. The solutions obtained by solving the Lambert W function have addressed these shortcomings and enabled obtaining better RMSE values.



Besides, the effectiveness of the proposed algorithms is validated compared to the other algorithms presented in the literature based on MAE and MAPE results presented in Table 1, Table 3 and Table 5. However, the best value of RMSE error does not coincide with the best MAE and MAPE values. This means that simultaneously determining the parameters of the equivalent circuit models of solar cells/modules using the three criteria can achieve better results.



The voltage-current and power-voltage characteristics for RTC France solar cell, together with the experimental results carried out in prior authors’ works in [11,12], are presented in Figure 5 and Figure 6, respectively. Readers can refer to [11,12] for more details about the experimental setup. In this case, these characteristics are visualized for the proposed algorithm, in addition to Whippy Harris hawks optimization (WHOO) [21] and the genetic algorithm based on non-uniform mutation (GAMNU) [13], that investigated the same solar PV cell under the same conditions.



Moreover, the corresponding figures for the Solarex MSX 60 and Photowatt-PWP201 modules are explored in Figure 7, Figure 8, Figure 9 and Figure 10. These characteristics are also compared with related characteristics obtained for results presented in the literature such as the Newton method (NM) [42] and Bézier curves (BC) [41] for the Solarex MSX 60 module, and Gradient-based optimizer (GBO) [27] and modified teaching-learning-based optimization (MTLBO) [46] for the Photowatt-PWP201 module, in addition to experimental results obtained from datasheets and manufacturer data for both modules.



It is clear from the mentioned figures and Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6 that the proposed algorithms provide low RMSE values. Additionally, in line with engineering practice, it is clear from the results obtained that the best results in terms of accuracy were obtained with TDM, followed by DDM, then SDM for all studied solar cells/modules.



It can be concluded from the presented current-voltage and power-voltage characteristics in Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 that the equivalent PV circuit parameters obtained by the proposed algorithms provide voltage-current and power-voltage curves that are well in line with experimental values from other algorithms studied. This validates superiority of the proposed algorithms over other considered algorithms.



Algorithm tests: A comparison between the proposed algorithms and other algorithms (GTO [60], HBA [30], a recently-developed algorithm called the aquila optimizer (AO) algorithm [59], and the well-known particle swarm optimization (PSO)) [5] is introduced in terms of the convergence speed to demonstrate superiority of the proposed algorithms over other considered algorithms. GTO and HBA were selected because they are the two main algorithms used in the proposed hybrid algorithms. The AO was selected as the representative of the new algorithms introduced in the literature. The PSO algorithm was chosen because of its maturity. The number of runs and iterations is set to 30 and 100, respectively, in all algorithms.



Moreover, parameters of these algorithms, and the lower and upper limits of the decision variables were maintained the same as originally selected by authors of these algorithms in [30,59,60]. The RTC France solar cell was investigated in this test.



The 3D characteristics of fitness function, number of iterations and number of runs for the proposed algorithms and PSO are presented in Figure 11a, Figure 12a and Figure 13a, respectively. The mean fitness function versus number of iterations for the proposed algorithms and PSO is explored in Figure 11b, Figure 12b and Figure 13b, respectively, using the results obtained.



As can be seen, the optimal results obtained from the proposed algorithms are similar. The best solution, which has the minimum fitness function value, is chosen as the optimal solution. It should be explained that the variation of results is due to the randomness of some parameters in the equations that govern the performance of these algorithms.



Further, the best, worst, mean, and median values were calculated to assess the results obtained from the proposed algorithms and other considered algorithms statistically. The results obtained are presented in Table 7 and Table 8 for the Wilcoxon test. The proposed algorithms provide approximately the same results, which means that both algorithms can effectively solve the considered parameters estimation problem.




5. Results Obtained for a Commercial PV Module


The applicability of the proposed algorithm (HBA-GTO) for estimating the five parameters of the SDM of a commercial PV module, known as monocrystalline SM55 (SM55), is presented in this section, based on current-voltage curves taken from the manufacturer’s datasheet with different irradiance and temperature levels that were presented in [63]. The current-voltage characteristic at standard test conditions (1000 W/m2 and 25 °C) were used in this investigation.



The parameters obtained are presented in Table 9. The simulated current-voltage and power-voltage characteristics are presented in Figure 14 and Figure 15, respectively. After that, using the parameters obtained by optimization, different irradiance (800 W/m2, 600 W/m2, 400 W/m2 and 200 W/m2 at 25 °C) and temperature (40 °C and 50 °C at an irradiance of 1000 W/m2) levels were investigated to assess the accuracy of the obtained solutions, as shown in Figure 16, Figure 17, Figure 18 and Figure 19.



It is clear that the proposed algorithms can be efficiently applied to estimate parameters of equivalent circuits of commercial solar PV modules. The proposed methods fit the simulation data perfectly at different irradiance and temperature levels, and it was not necessary to extract parameters for all combinations of irradiance and temperature, as presented in some works in the literature [49]. Finally, based on the results provided, statistical analysis and comparative analysis with previous works, it can be concluded that the methods proposed can find the parameters of the equivalent circuits (SDM, DDM and TDM) of solar cells/modules efficiently.




6. Conclusions


This paper addressed estimation of parameters of different equivalent circuit models of solar cells and various PV modules using hybrid variants of HBA and artificial GTO algorithms. The proposed algorithms tested three solar cell equivalent models: SDM, DDM, and TDM. Different PV modules are investigated, such as the RTC France solar cell, and the Solarex MSX 60 and Photowatt PWP 201 modules. In addition, the applicability of the proposed optimization algorithms is verified using obtained results from a commercial monocrystalline solar module under different irradiation and temperature conditions.



The RMSE results obtained are compared with other results presented in the literature. Superiority of the proposed algorithms was validated in terms of estimated parameters accuracy, convergence characteristics, and statistical tests. It was clear from the results that the best value of RMSE error does not coincide with the best MAE and MAPE values. This means that simultaneously determining the parameters of the equivalent circuit models of solar cells/modules using the three criteria can achieve better results. Attention will be paid to other combinations of metaheuristic algorithms to estimate the parameters of the equivalent circuit models of solar cells/modules based on RMSE, MAE and MAPE minimization in future works.



Moreover, the parameters estimated by the proposed methods fit the simulation data perfectly at different irradiance and temperature levels for the commercial PV module. Finally, the good results of the proposed hybrid algorithms show that they can efficiently improve convergence speed and accuracy of the results obtained when solving the parameter estimation problem of PV equivalent circuit models compared to the algorithms studied in this work.
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	ABC-DE
	Artificial bee colony-differential evolution



	ABC-TRR
	Artificial bee colony-trust-region reflective algorithm



	A&I
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	BC
	Bézier curves
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	Bio-inspired algorithms



	BHCS
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	Improved gradient-based optimization algorithm with chaotic drifts



	CLSHADE
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	Chaotic Nelder–Mead slime mould algorithm
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	Chaotic optimization approach



	CPMPSO
	Classified perturbation mutation-based particle swarm optimization



	CS
	Cuckoo search optimization



	CSO
	Cat swarm optimization



	DDM
	Double-diode model



	DE
	Differential evolution



	DE-WOA
	Hybrid DE with whale optimization algorithm



	DSO
	Drone squadron optimization



	EHA–NMS
	Eagle-based hybrid adaptive Nelder–Mead simplex algorithm



	EHHO
	Enhanced Harris hawk optimization



	EO
	Equilibrium optimizer method



	GA
	Genetic algorithm



	GAMNU
	Genetic algorithm based on non-uniform mutation



	GBO
	Gradient-based optimizer



	GOFPANM
	Generalized opposition-flower pollination algorithm-Nelder–Mead simplex method



	GSK
	Gaining–sharing knowledge-based algorithm



	GTO
	Gorilla troops optimizer



	HBA
	Honey badger algorithm



	IJAYA
	Improved JAYA optimization



	IMO
	Ions motion algorithm



	ISCE
	Improved shuffled complex evolution



	ITLBO
	Improved teaching–learning-based optimization



	IWOA
	Improved whale optimization algorithm



	MADE
	Memetic adaptive DE



	MAE
	Mean absolute error



	MAPE
	Mean absolute percentage error



	MLBSA
	Multiple learning backtracking search algorithm



	MPA
	Marine-predators algorithm



	MPSO
	Modified particle swarm optimization



	MSSO
	Modified simplified swarm optimization algorithm



	MSX 60
	Solarex’s multicrystalline 60 watts solar module



	MTLBO
	Modified teaching-–earning-based optimization



	NM
	Newton method



	OBWOA
	Opposition-based whale optimization algorithm



	ORcr-IJADE
	Onlooker-ranking-based and improved adaptive and differential evolution



	PGJAYA
	Performance-guided JAYA algorithm



	Photowatt PWP
	Photowatt solar panel of model PWP



	PSO
	Particle swarm optimization



	PV
	Photovoltaic



	RESs
	Renewable energy sources



	RTC
	RadioTechnique Compelec



	SDM
	Single-diode model



	SMA
	Slime mould algorithm



	SM55
	Shell monocrystalline PV module



	STLBO
	Simplified teaching–learning-based optimization



	TDM
	Triple-diode model



	TLABC
	Teaching–learning-based artificial bee colony



	TLBO
	Teaching–learning-based optimization



	TLO
	Teaching–learning optimization



	TSO
	Transient search optimization



	TVA-CPSO
	Time-varying acceleration coefficients PSO



	WHHO
	Whippy Harris hawks optimization



	WOA
	Whale optimization algorithm



	WDO
	Wind-driven optimization








Appendix A


The constants      α  T D M    ,    α  D D M    ,    β  T D M    ,    β  D D M    ,    δ  T D M    ,    δ  D D M    ,    γ  T D M    , and    σ  T D M     are expressed as follows:


   α  D D M   =      R S     n 1  ⋅  V  t h        (  1 +    R S     R P     )    ⋅  I  o 1   ⋅ exp  (   U   n 1  ⋅  V  t h      )  ⋅ exp  (       R S     n 1  ⋅  V  t h      (   I  p v   +  I  01   +  I  02   −  U   R P     )     (  1 +    R S     R P     )     )   



(A1)






   β  D D M   =      R S     n 1  ⋅  V  t h        (  1 +    R S     R P     )    ⋅  I  02   ⋅ exp  (   U   n 2  ⋅  V  t h      )  ⋅ exp  (     R s     n 2  ⋅  V  t h        (   I  p v   +  I  01   +  I  02   −  U   R P     )     (  1 +    R S     R P     )     )   



(A2)






   δ  D D M   = 1 −    n 1     n 2     



(A3)






   α  T D M   =      R S     n 1  ⋅  V  t h        (  1 +    R S     R P     )    ⋅  I  01   ⋅ exp  (   U   n 1  ⋅  V  t h      )  ⋅ exp  (       R S     n 1  ⋅  V  t h      (   I  p v   +  I  01   +  I  02   +  I  03   −  U   R P     )     (  1 +    R S     R p     )     )   



(A4)






   β  T D M   =      R S     n 1  ⋅  V  t h        (  1 +    R S     R P     )    ⋅  I  02   ⋅ exp  (   U   n 2  ⋅  V t     )  ⋅ exp  (     R S     n 2  ⋅  V  t h        (   I  p v   +  I  01   +  I  02   +  I  03   −  U   R P     )     (  1 +    R S     R P     )     )   



(A5)






   γ  T D M   =      R S     n 1  ⋅  V  t h        (  1 +    R S     R P     )    ⋅  I  03   ⋅ exp  (   U   n 3  ⋅  V  t h      )  ⋅ exp  (     R S     n 3  ⋅  V  t h        (   I  p v   +  I  01   +  I  02   +  I  03   −  U   R P     )     (  1 +    R s     R P     )     )   



(A6)






   δ  T D M   = 1 −    n 1     n 2     



(A7)






   σ  T D M   = 1 −    n 1     n 3     



(A8)
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Figure 1. Photovoltaic (PV) equivalent circuits models: (a) single-diode model (SDM), (b) double-diode model (DDM) and (c) triple-diode model (TDM). 
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Figure 2. RMSE comparison for methods used to estimate the RTC France solar cell parameters. 
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Figure 3. RMSE comparison for methods used to estimate the Solarex MSX–60 PV solar module parameters. 
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Figure 4. RMSE comparison for methods used to estimate the Photowatt-PWP201 module parameters. 






Figure 4. RMSE comparison for methods used to estimate the Photowatt-PWP201 module parameters.



[image: Mathematics 10 01057 g004]







[image: Mathematics 10 01057 g005 550] 





Figure 5. Current-voltage characteristics of the RTC France solar cell. 
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Figure 6. Power-voltage characteristics of the RTC France solar cell. 
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Figure 7. Current-voltage characteristics of the Solarex MSX–60 PV module. 
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Figure 8. Power-voltage characteristics of the Solarex MSX–60 PV solar module. 
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Figure 9. Current-voltage characteristics of the Photowatt-PWP201 module. 
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Figure 10. Power-voltage characteristics of the Photowatt-PWP201 module. 
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Figure 11. Proposed Algorithm 1: (a) fitness function for a different number of runs, and (b) mean fitness value versus iteration number. 
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Figure 12. Proposed Algorithm 2: (a) fitness function for a different number of runs, and (b) mean fitness value versus iteration number. 
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Figure 13. Particle swarm optimization (PSO): (a) fitness function for a different number of runs, and (b) mean fitness value versus iteration number. 
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Figure 14. Current-voltage characteristics at 1000 W/m2 and 25 °C. 
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Figure 15. Power-voltage characteristics at 1000 W/m2 and 25 °C. 
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Figure 16. Current-voltage characteristics at 25 °C for different irradiance levels. 
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Figure 17. Power-voltage characteristics at 25 °C for different irradiance levels. 
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Figure 18. Current-voltage characteristics at 1000 W/m2 for different temperature levels. 
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Figure 19. Power-voltage characteristics at 1000 W/m2 for different temperature levels. 
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Table 1. Numerical results obtained for the solar RTC France cell.
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#

	
Refs.

	
First Author

	
Year

	
Method

	
Model

	
Root Mean Square Error

(RMSE)

	
Mean Absolute Error (MAE)

	
Mean Absolute Percentage Error (MAPE)






	
1

	
[32]

	
Ndi

	
2021

	
EO

	
SDM

	
0.000776865

	
0.000678644363621

	
0.462865302508924




	
2

	
[21]

	
Naeijian

	
2021

	
WHHO

	
SDM

	
0.000791502

	
0.000667595306139

	
0.344470169829233




	
3

	
[13]

	
Saadaou

	
2021

	
GAMNU

	
SDM

	
0.000812621

	
0.000719474973281

	
0.643237501038952




	
4

	
[17]

	
Xiong

	
2021

	
GSK

	
SDM

	
0.000776134

	
0.000676554109096

	
0.451972461015800




	
5

	
[33]

	
Kumar

	
2020

	
SMA

	
SDM

	
0.000795243

	
0.000667150561147

	
0.332742958125476




	
6

	
[34]

	
Jiao

	
2020

	
EHHO

	
SDM

	
0.000786704

	
0.000701818945693

	
0.558833901459953




	
7

	
[22]

	
Gude

	
2020

	
CSO

	
SDM

	
0.000860194

	
0.000663573496324

	
0.210089090921584




	
8

	
[18]

	
Li

	
2019

	
ITLBO

	
SDM

	
0.000777792

	
0.000687239590168

	
0.502104166185744




	
9

	
[35]

	
Yu

	
2019

	
PGJAYA

	
SDM

	
0.000777792

	
0.000687239590168

	
0.502104166185744




	
10

	
[29]

	
Chen

	
2019

	
BHCS

	
SDM

	
0.000775415

	
0.000679675374715

	
0.455550255014124




	
11

	
[23]

	
Merchaoui

	
2018

	
MPSO

	
SDM

	
0.004359909

	
0.002889258774089

	
4.353156563261146




	
12

	
[19]

	
Chen

	
2018

	
TLABC

	
SDM

	
0.000775416

	
0.000679670632200

	
0.455459033518709




	
13

	
[36]

	
Lin

	
2017

	
MSSO

	
SDM

	
0.000809159

	
0.000665110052013

	
0.295109693517836




	
14

	
[14]

	
Ram

	
2017

	
BPFPA

	
SDM

	
0.000955513

	
0.000824210723789

	
0.736974713224005




	
15

	
[37]

	
Derick

	
2017

	
WDO

	
SDM

	
0.000894818

	
0.000721091048657

	
0.410871168713455




	
16

	
[38]

	
Yu

	
2017

	
IJAYA

	
SDM

	
0.000776055

	
0.000674909321295

	
0.443697941771721




	
17

	
[17]

	
Xiong

	
2021

	
GSK

	
DDM

	
0.000765347

	
0.000674714400538

	
0.477776103165468




	
18

	
[13]

	
Saadaou

	
2021

	
GAMNU

	
DDM

	
0.000795540

	
0.000671452693614

	
0.333198261209489




	
19

	
[32]

	
Ndi

	
2021

	
EO

	
DDM

	
0.006348583

	
0.006174565636472

	
2.943474469938229




	
20

	
[21]

	
Naeijian

	
2021

	
WHHO

	
DDM

	
0.000774553

	
0.000654593080672

	
0.327472776645842




	
21

	
[39]

	
Liu

	
2021

	
CNMSMA

	
DDM

	
0.000757922

	
0.000662676325841

	
0.426575266450123




	
22

	
[33]

	
Kumar

	
2020

	
SMA

	
DDM

	
0.007025646

	
0.004360131396396

	
7.646965757100302




	
23

	
[34]

	
Jiao

	
2020

	
EHHO

	
DDM

	
0.000764087

	
0.000671304856402

	
0.454160791097682




	
24

	
[22]

	
Gude

	
2020

	
CSO

	
DDM

	
0.000869770

	
0.000680544614180

	
0.300124951077260




	
25

	
[26]

	
Ćalasan

	
2019

	
COA

	
DDM

	
0.000757686

	
0.000667871337617

	
0.450126256899350




	
26

	
[24]

	
Abd Elaziz

	
2018

	
ABC

	
TDM

	
0.000990246

	
0.000771873120355

	
0.505954728856906




	
27

	
2018

	
OBWOA

	
TDM

	
0.000823136

	
0.000650108387227

	
0.218668597114990




	
28

	
2018

	
STLBO

	
TDM

	
0.000823698

	
0.000649122444713

	
0.215757981839370




	
29

	
[40]

	
Premkumar

	
2020

	
R-II

	
TDM

	
0.005125476

	
0.003367928190167

	
5.136372818754378




	
30

	
2020

	
R-III

	
TDM

	
0.002249998

	
0.001572560907759

	
2.495078551153684




	
31

	
2020

	
PSO

	
TDM

	
0.002171714

	
0.001543183004978

	
2.383178745442769




	
32

	
2020

	
CS

	
TDM

	
0.004569170

	
0.003033484788679

	
4.539593940311719




	
33

	
2020

	
ABC

	
TDM

	
0.002471743

	
0.001761292412332

	
2.292317731497820




	
34

	
2020

	
TLO

	
TDM

	
0.000779584

	
0.000654100267008

	
0.331628211492756




	
35

	
Proposed Algorithm 1

	
SDM

	
0.000774655

	
0.000681168150469

	
0.455157210140345




	
36

	
Proposed Algorithm 2

	
SDM

	
0.000774656

	
0.000681221910233

	
0.455412179465424




	
37

	
Proposed Algorithm 1

	
DDM

	
0.000756129

	
0.000668726140277

	
0.457389890766874




	
38

	
Proposed Algorithm 2

	
DDM

	
0.000755910

	
0.000662136081515

	
0.426224519512442




	
39

	
Proposed Algorithm 1

	
TDM

	
0.000751879

	
0.000659656489694

	
0.420986462546710




	
40

	
Proposed Algorithm 2

	
TDM

	
0.000752053

	
0.000663697106339

	
0.440229380526819
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Table 2. Parameters of the equivalent circuit models of the solar RTC France cell using the methods presented in Table 1.
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	#
	Ipv (A)
	I01 (μA)
	n1
	RS (Ω)
	RP (Ω)
	I02 (μA)
	n2
	I03 (μA)





	1
	0.7607597037
	0.32628893
	1.48219300
	0.03634099
	54.20659400
	-
	-
	-



	2
	0.76077551
	0.32302031
	1.48110808
	0.03637710
	53.71867407
	-
	-
	-



	3
	0.76077400
	0.32559540
	1.48209600
	0.03634020
	53.89686000
	-
	-
	-



	4
	0.76080000
	0.32310000
	1.48120000
	0.03640000
	53.72270000
	-
	-
	-



	5
	0.76076000
	0.32314000
	1.48114000
	0.03637000
	53.71489000
	-
	-
	-



	6
	0.76077500
	0.32300000
	1.48123800
	0.03637500
	53.74282000
	-
	-
	-



	7
	0.76080000
	0.32300000
	1.48100000
	0.03640000
	53.71850000
	-
	-
	-



	8
	0.76080000
	0.32300000
	1.48120000
	0.03640000
	53.71850000
	-
	-
	-



	9
	0.76080000
	0.32300000
	1.48120000
	0.03640000
	53.71850000
	-
	-
	-



	10
	0.76078000
	0.32302000
	1.48118000
	0.03638000
	53.71852000
	-
	-
	-



	11
	0.76078700
	0.31068300
	1.47526200
	0.03654600
	52.88971000
	-
	-
	-



	12
	0.76078000
	0.32302000
	1.48118000
	0.03638000
	53.71636000
	-
	-
	-



	13
	0.76077700
	0.32356400
	1.48124400
	0.03637000
	53.74246500
	-
	-
	-



	14
	0.76000000
	0.31060000
	1.47740000
	0.03660000
	57.71510000
	-
	-
	-



	15
	0.76080000
	0.32230000
	1.48080000
	0.03676800
	57.74614000
	-
	-
	-



	16
	0.76080000
	0.32280000
	1.48110000
	0.03640000
	53.75950000
	-
	-
	-



	17
	0.76080000
	0.25950000
	1.46270000
	0.03660000
	54.93300000
	0.47910000
	1.99830000
	-



	18
	0.76082700
	0.32245246
	1.48102800
	0.03636440
	53.11079000
	0.00027392
	1.47010100
	-



	19
	0.76792000
	0.39999000
	2.00000000
	0.03659000
	54.17614000
	0.26605000
	1.46451000
	-



	20
	0.76078094
	0.22857400
	1.45189500
	0.03672887
	55.42643282
	0.727182
	2
	-



	21
	0.76078100
	0.22597600
	1.45101700
	0.036740
	55.48545
	0.75068100
	1.9999990
	-



	22
	0.76076000
	0.74874000
	2.00000000
	0.03677
	55.71456
	0.22652000
	1.4546300
	-



	23
	0.760769017
	0.58618400
	1.968451449
	0.036598831
	55.63943956
	0.24096500
	1.456910409
	-



	24
	0.76080
	0.22730
	1.45130
	0.03670
	55.43270
	0.73840000
	1.99990
	-



	25
	0.76078
	0.22597
	1.45102
	0.03674
	55.48542
	0.749346
	2.00000
	-



	26
	0.760700
	0.2000
	1.4414
	0.03687
	55.8344
	0.500000
	1.90000
	0.2100



	27
	0.760770
	0.2353
	1.4543
	0.03668
	55.4448
	0.221300
	2.00000
	0.4573



	28
	0.760800
	0.2349
	1.4541
	0.0367
	55.2641
	0.229700
	2.00000
	0.4443



	29
	0.760792
	0.2600
	1.4608
	0.03660
	54.9149
	0.000006
	1.14660
	0.5700



	30
	0.760791
	0.2100
	1.7714
	0.03670
	55.3571
	0.220000
	1.45130
	0.9900



	31
	0.760782
	0.2500
	1.4601
	0.03660
	55.3133
	0.041000
	1.74090
	1.0000



	32
	0.760776
	0.1400
	1.4872
	0.03630
	53.7218
	0.190000
	1.47710
	0.0310



	33
	0.760790
	0.3200
	1.8666
	0.03670
	55.4411
	0.230000
	1.45210
	0.7400



	34
	0.760763
	0.2800
	1.4684
	0.03650
	55.3821
	0.000670
	1.54680
	1.0000



	35
	0.76077537
	0.320741243
	1.48046987
	0.0364
	53.5397184
	-
	-
	-



	36
	0.76077541
	0.3207412
	1.48047001
	0.0364
	53.5397
	-
	-
	-



	37
	0.7607801
	0.84162
	1.999999
	0.03679
	55.73
	0.2154505
	1.44706
	-



	38
	0.76078
	0.841611
	2.00000
	0.0367905
	55.72835
	0.2154501
	1.44704
	-



	39
	0.7607602
	0.876504
	1.99504
	0.0369201
	55.6798
	0.20441
	1.442401
	0.0001805



	40
	0.7607601
	0.876499
	1.99501
	0.0369202
	55.6801
	0.204401
	1.44241
	0.0001801
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Table 3. Numerical results obtained for the Solarex MSX–60 PV solar module.
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#

	
Refs.

	
First Author

	
Year

	
Method

	
Model

	
RMSE

	
MAE

	
MAPE






	
1

	
[42]

	
Bana

	
2018

	
NM

	
SDM

	
0.101844933535061

	
0.086404559671331

	
7.989316753756794




	
2

	
[41]

	
Szabo

	
2018

	
BC

	
SDM

	
0.030722505654028

	
0.023915966897748

	
1.928605918749928




	
3

	
[43]

	
Silva

	
2016

	
A&I

	
SDM

	
0.018106614648430

	
0.015234044936426

	
1.804005972558074




	
4

	
[44]

	
Villalva

	
2009

	
A&I

	
SDM

	
0.028396627361794

	
0.020903325782359

	
1.703387713558635




	
5

	
[12]

	
Calasan

	
2021

	
CLSHADE

	
DDM

	
0.012028665165887

	
0.008871675551380

	
1.300255779491913




	
6

	
[45]

	
Qais

	
2020

	
TSO

	
TDM

	
0.017009785983445

	
0.014438913645570

	
1.467713460523862




	
7

	
Proposed Algorithm 1

	
SDM

	
0.012105788990909

	
0.009207999217896

	
1.210171037317782




	
8

	
Proposed Algorithm 2

	
SDM

	
0.012120811620560

	
0.009345995684596

	
1.276143583474973




	
9

	
Proposed Algorithm 1

	
DDM

	
0.011955126049429

	
0.008847188231494

	
1.292653674324527




	
10

	
Proposed Algorithm 2

	
DDM

	
0.011896989581563

	
0.008827736037378

	
1.286768018642119




	
11

	
Proposed Algorithm 1

	
TDM

	
0.011683038647976

	
0.008837712415575

	
1.260645716394877




	
12

	
Proposed Algorithm 2

	
TDM

	
0.011660925987728

	
0.008830639239597

	
1.256151650040435








It should be noted that abbreviations of the different algorithms are presented in the list of abbreviations at the end of the paper.
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Table 4. Parameters of the equivalent circuit models of the Solarex MSX–60 module using the methods presented in Table 3.
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	#
	Ipv (A)
	I01 (μA)
	n1
	RS (Ω)
	RP (Ω)
	I02 (μA)
	n2
	I03 (μA)





	1
	3.8084
	4.8723 × 10−10
	1.0003
	0.3692
	169.0471
	-
	-
	-



	2
	3.808
	1.22 × 10−9
	1.045
	0.316
	146.08
	-
	-
	-



	3
	3.7983
	6.79 × 10−8
	1.28
	0.251
	582.7278
	-
	-
	-



	4
	3.808244
	1.21946 × 10−9
	1.045334
	0.316000
	146.081207
	-
	-
	-



	5
	3.812527
	0.12311 × 10−6
	1.32290
	0.226800
	800
	7.29990 × 10−11
	1.98800
	-



	6
	3.8019
	3.3525 × 10−7
	1.9346
	0.22724
	450.13
	1 × 10−12
	1.7208
	6.4568 × 10−8



	7
	3.8127
	0.14051 × 10−6
	1.332513
	0.22351
	1105.5869
	-
	-
	-



	8
	3.81268
	0.14 × 10−6
	1.3325
	0.2235
	1155.6258
	-
	-
	-



	9
	3.812527
	0.12312 × 10−6
	1.32288
	0.226805
	805.46
	7.30 × 10−11
	1.98800
	-



	10
	3.81252689
	0.1231199 × 10−6
	1.32286
	0.226801
	807.11
	7.299 × 10−11
	1.9881
	-



	11
	3.81252
	0.12314 × 10−6
	1.32274
	0.226756
	831.01000
	7.29990 × 10−11
	1.98888
	1.24 × 10−10



	12
	3.81253
	0.12312 × 10−6
	1.32271
	0.2267586
	827.51000
	7.30000 × 10−11
	1.99060
	1.2488 × 10−10
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Table 5. Numerical results obtained for the Photowatt-PWP201 module.
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#

	
Refs.

	
First Author

	
Year

	
Method

	
Model

	
RMSE

	
MAE

	
MAPE






	
1

	
[27]

	
Premkumar

	
2021

	
CGBO

	
SDM

	
0.002203160582196

	
0.001777355730246

	
0.391412974711076




	
2

	
GBO

	
SDM

	
0.002203160582196

	
0.001777355730246

	
0.391412974711076




	
3

	
[46]

	
Basset

	
2021

	
MTLBO

	
SDM

	
0.002192702293887

	
0.001732693097767

	
0.386396089379751




	
4

	
[47]

	
Gnetchejo

	
2021

	
DSO

	
SDM

	
0.005525262416993

	
0.004319124678700

	
6.249226276809913




	
5

	
[25]

	
Ridha

	
2020

	
MPA

	
SDM

	
0.002741282553112

	
0.002131950064861

	
0.661561491439685




	
6

	
[48]

	
Basset

	
2020

	
EO

	
SDM

	
0.002307739416553

	
0.001831385873737

	
0.525272290565770




	
7

	
[61]

	
Liang

	
2020

	
CPMPSO

	
SDM

	
0.002192702238676

	
0.001732692519390

	
0.386403196851621




	
8

	
[35]

	
Yu

	
2019

	
PGJAYA

	
SDM

	
0.002193558995652

	
0.001733161807074

	
0.384469167044506




	
9

	
[62]

	
Muangkote

	
2019

	
ORcr-IJADE

	
SDM

	
0.002192747605064

	
0.001732930882957

	
0.383436962669269




	
10

	
[18]

	
Li

	
2019

	
ITLBO

	
SDM

	
0.002192702300691

	
0.001732692943681

	
0.386396861783031




	
11

	
2019

	
TLBO

	
SDM

	
0.004291553746717

	
0.003496972143159

	
1.247781769889620




	
12

	
[15]

	
Li

	
2019

	
MADE

	
SDM

	
0.002192702238262

	
0.001732692528770

	
0.386403149832207




	
13

	
[28]

	
Xiong

	
2018

	
WOA

	
SDM

	
0.002657115956104

	
0.002085699153659

	
0.539623953519785




	
14

	
[50]

	
Yu

	
2018

	
MLBSA

	
SDM

	
0.002162931772907

	
0.001693675233514

	
0.388880476705581




	
15

	
[28]

	
Xiong

	
2018

	
DE-WOA

	
SDM

	
0.002192747607804

	
0.001732930797684

	
0.383437390120559




	
16

	
[51]

	
Wu

	
2018

	
ABC-TRR

	
SDM

	
0.002192747605338

	
0.001732930874429

	
0.383437005413906




	
17

	
[16]

	
Gao

	
2018

	
ISCE

	
SDM

	
0.002192747603968

	
0.001732930917066

	
0.383436791688368




	
18

	
[28]

	
Xiong

	
2018

	
IWOA

	
SDM

	
0.002192213422029

	
0.001731871744843

	
0.389108171505321




	
19

	
[52]

	
Xu

	
2017

	
GOFPANM

	
SDM

	
0.002192747602872

	
0.001732930951174

	
0.383436620706835




	
20

	
[53]

	
Elazab

	
2017

	
WOA

	
SDM

	
0.002335740096957

	
0.001841026675079

	
0.332600274029797




	
21

	
[54]

	
Jordehi

	
2016

	
TVACPSO

	
SDM

	
0.003934939903764

	
0.003196946998661

	
4.232444252386350




	
22

	
[55]

	
Chen

	
2016

	
EHA-NMS

	
SDM

	
0.002192747604790

	
0.001732930891484

	
0.383436919923165




	
23

	
[58]

	
Javidy

	
2015

	
IMO

	
SDM

	
0.002835333050835

	
0.002165750688947

	
0.381968187687215




	
24

	
[27]

	
Premkumar

	
2021

	
CGBO

	
DDM

	
0.002199165255522

	
0.001759965636308

	
0.343756630837216




	
25

	
2021

	
GBO

	
DDM

	
0.002199691952382

	
0.001769207464245

	
0.368397908487905




	
26

	
[48]

	
Basset

	
2020

	
EO

	
DDM

	
0.002416169330585

	
0.001882811345434

	
0.375619719216614




	
27

	
[58]

	
Javidy

	
2015

	
IMO

	
DDM

	
0.003177249323240

	
0.002272124722926

	
0.743764711488892




	
28

	
Proposed Algorithm 1

	
SDM

	
0.002101381507033

	
0.001770256665782

	
0.529618617926409




	
29

	
Proposed Algorithm 2

	
SDM

	
0.002104650458946

	
0.001774133525922

	
0.460871551281877




	
30

	
Proposed Algorithm 1

	
DDM

	
0.002076434123783

	
0.001706530046156

	
1.026218805598722




	
31

	
Proposed Algorithm 2

	
DDM

	
0.002072962280362

	
0.001701420988536

	
1.006077058292598




	
32

	
Proposed Algorithm 1

	
TDM

	
0.002040806557869

	
0.001676862715116

	
0.667708048509709




	
33

	
Proposed Algorithm 2

	
TDM

	
0.002041811785061

	
0.001685648251157

	
0.656010002550055
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Table 6. Parameters of the equivalent circuit models of the Photowatt-PWP201 module using the methods presented in Table 5.
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	#
	Ipv (A)
	I01 (μA)
	n1
	RS (Ω)
	RP (Ω)
	I02 (μA)
	n2
	I03 (μA)





	1
	1.0305
	3.48
	48.6428
	1.2013
	981.9821
	-
	-
	-



	2
	1.0305
	3.48
	48.6428
	1.2013
	981.9821
	-
	-
	-



	3
	1.0305143
	3.4823
	48.6428349
	1.2012710
	981.9823732
	-
	-
	-



	4
	1.032357
	2.496596
	47.33406
	1.240547
	748.32309
	-
	-
	-



	5
	1.0273
	4.51
	49.6486
	1.1781
	1977.6535
	-
	-
	-



	6
	1.0296
	3.76
	48.9340
	1.1943
	1139.0284
	-
	-
	-



	7
	1.0305143
	3.4823
	48.6428348
	1.2012710
	981.9822493
	-
	-
	-



	8
	1.0305
	3.4818
	48.642372
	1.2013
	981.8545
	-
	-
	-



	9
	1.030514
	3.482263
	48.64284
	1.201271
	981.98224
	-
	-
	-



	10
	1.0305143
	3.4823
	48.6428349
	1.201271
	981.9821925
	-
	-
	-



	11
	1.0357161
	4.13
	49.2820100
	1.2222703
	999.6274934
	-
	-
	-



	12
	1.0305143
	3.4823
	48.6428348
	1.2012710
	981.9822603
	-
	-
	-



	13
	1.0280
	4.75
	49.8593
	1.1680
	1712.8543
	-
	-
	-



	14
	1.0309977
	3.4279
	48.583600
	1.2026154
	931.9237428
	-
	-
	-



	15
	1.030514
	3.482263
	48.64284
	1.201271
	981.98214
	-
	-
	-



	16
	1.030514
	3.482263
	48.64284
	1.201271
	981.98223
	-
	-
	-



	17
	1.030514
	3.482263
	48.64284
	1.201271
	981.98228
	-
	-
	-



	18
	1.0305
	3.4717
	48.631284
	1.2016
	978.6771
	-
	-
	-



	19
	1.030514
	3.482263
	48.64284
	1.201271
	981.98232
	-
	-
	-



	20
	1.0294212
	3.8525
	49.0306622
	1.1906302
	1179.9442886
	-
	-
	-



	21
	1.031435
	2.6386
	47.556648
	1.235611
	821.59514
	-
	-
	-



	22
	1.030514
	3.482263
	48.64284
	1.201271
	981.98225
	-
	-
	-



	23
	1.0264
	3.45
	48.5924
	1.2112
	1899.6737
	-
	-
	-



	24
	1.0305
	3.48
	48.6428
	1.2013
	981.8874
	3.89 × 10−6
	34.7828
	-



	25
	1.0305
	3.47
	48.6314
	1.2016
	981.2677
	0
	50
	-



	26
	1.0288
	9.38 × 10−4
	47.1325
	1.1896
	1310.6705
	3.96
	49.1369
	-



	27
	1.0251
	0
	45.7618
	1.2339
	1849.8346
	3.07
	48.1472
	-



	28
	1.03241
	2.5538
	47.48801
	1.2386
	752.8111
	-
	-
	-



	29
	1.0323
	2.554
	47.48563
	1.23861
	772.8905
	-
	-
	-



	30
	1.03242
	2.5130
	47.418
	1.2393
	744.724
	3.89 × 10−6
	50
	-



	31
	1.0325
	2.5150
	47.421
	1.23928
	743.666
	3.8885 × 10−6
	49.88
	-



	32
	1.0323818
	2.512908
	47.42295
	1.2393
	743.724
	1.86 × 10−4
	48.88
	1.35 × 10−6



	33
	1.032383
	2.512914
	47.423
	1.2393
	753.659
	1.16 × 10−3
	48.93
	1.05 × 10−6
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Table 7. Comparison of the statistical results.






Table 7. Comparison of the statistical results.





	Algorithms
	Best
	Worst
	Mean
	Median
	Standard Deviation





	Proposed 1
	7.7465 × 10−4
	7.8447 × 10−4
	7.7591 × 10−4
	7.7468 × 10−4
	3.5901 × 10−6



	Proposed 2
	7.7466 × 10−4
	7.8842 × 10−4
	7.7504 × 10−4
	7.7472 × 10−4
	3.9844 × 10−6



	GTO
	7.7488 × 10−4
	7.8447 × 10−4
	7.7501 × 10−4
	7.7501 × 10−4
	3.711 × 10−6



	HBA
	7.7524 × 10−4
	8.5089 × 10−4
	7.8427 × 10−4
	7.7921 × 10−4
	1.4697 × 10−5



	AO
	16.000 × 10−4
	95.000 × 10−4
	51.000 × 10−4
	49.000 × 10−4
	18.000 × 10−4



	PSO
	7.7453 × 10−4
	8.5089 × 10−4
	7.9619 × 10−4
	7.9570 × 10−4
	1.9585 × 10−5
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Table 8. Wilcoxon rank-sum test.






Table 8. Wilcoxon rank-sum test.





	Algorithms
	Proposed 1 Versus Proposed 2
	Proposed 1 Versus HBA
	Proposed 1 Versus GTO
	Proposed 1 Versus AO
	Proposed 1 Versus PSO





	p-value
	8.5641 × 10−4
	8.1465 × 10−5
	0.0103
	3.01 × 10−11
	2.8314 × 10−8



	Algorithms
	Proposed 2 versus Proposed 1
	Proposed 2 versus HBA
	Proposed 2 versus GTO
	Proposed 2 versus AO
	Proposed 2 versus PSO



	p-value
	8.5641 × 10−4
	5.1857 × 10−7
	0.3112
	3.01 × 10−11
	2.9215 × 10−9
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Table 9. The estimated value of the parameters of the commercial solar module.






Table 9. The estimated value of the parameters of the commercial solar module.





	Parameters
	Ipv (A)
	I0 (μA)
	RS (Ω)
	RP (Ω)
	n





	Value
	3.45884
	0.041477
	0.3876853
	549.98057
	1.28087
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