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Abstract: This study deals with the influence of a wavy interface separating two layers filled with
power law fluid and porous media, respectively. The governing equations are solved using the
Finite Element Method (FEM) and the numerical model is validated by comparing with experimental
findings. The parameters governing the studied configuration are varied as: Rayleigh number
(103 ≤ Ra ≤ 106), power law index (0.6 ≤ n ≤ 1.4), Darcy number (10−2 ≤ Da ≤ 10−6), buoyancy
ratio (0.1 ≤ N ≤ 10) and Lewis number (1 ≤ Le ≤ 10). It is inferred that the temperature gradient
increases by augmenting the Rayleigh number, as the flow is observed from the vertical to horizontal
direction in both layers. Constant enhancement in the heat and mass transfer is also observed by
enriching the buoyancy effect. Moreover, the average Nusselt and Sherwood numbers decline by
increasing the width of the porous layer.

Keywords: non-Newtonian fluid; layers; double diffusive; natural convection; FEM

1. Introduction

The double diffusion is a phenomenon that occurs in several engineering and in-
dustrial applications such as pulp paper, oil drilling, heat removal, heat storage, and
food processing [1–6]. There are relatively few works that have been conducted on non-
Newtonian fluid, instead of Newtonian fluid. Al-Amir et al. [7] reported the impact of
the Prandtl number on the natural convection in cavity-containing non-Newtonian and
nanofluid porous mediums, which are separated by the sinusoidal interface. It has been
realized that the average Nusselt number rises by enhancing the Darcy and Prandlt number,
and reduces by enriching the power law index. Alsabery et al. [8] examined the trapezoidal-
shaped cavity including two layers (porous and non-Newtonian). The results confirmed
that the flow rises remarkably when using silver nanofluid, and the effectiveness of heat
transfer is perceived by varying the angle of inclination. The impact of wavy interfaces on
the natural convection in non-Darcy porous cavities is studied by Nguyen et al. [9], using
the incompressible smoothed particle hydrodynamics (ISPH) method. The results indicated
that the average Nusselt number decreases by increasing the amplitude and undulation
number of the interface separating the layers. Alsabery et al. [10] performed a numerical
study to investigate the effect of the inclination on natural convection in a cavity filled
with a porous media and a non-Newtonian fluid. The findings showed that convection is

Mathematics 2022, 10, 1060. https://doi.org/10.3390/math10071060 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071060
https://doi.org/10.3390/math10071060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4368-7458
https://doi.org/10.3390/math10071060
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071060?type=check_update&version=2


Mathematics 2022, 10, 1060 2 of 18

more intense for lower values of power law index. Power law fluids have attracted the
researchers due to their importance in several engi-neering applications [11]. More related
studies can be found in References [12–16]. The natural convection in porous layers has
been studied Al-Srayyih et al. [17] using Galerkin Finite Element Method (GFEM). It was
found that the enhancement of the heat transfer occurs using nanofluids. Barnoon et al. [18]
investigated the coupled radiation-convection in a cavity filled with a non-Newtonian fluid
and equipped with internal obstacles. The authors concluded that the tilt angle has an
important effect of the values of Nusselt number. Jabber et al. [19] investigated the 2D
natural convection in an enclosure filled with a porous medium saturated with a anofluid
and equipped by wavy interfaces. The authors mentioned that power law index causes a
reduction of the heat transfer rate. The effect of a power law fluid on natural convection in
a cavity having wavy wall has been investigated by Chen et al. [20]. It was shown that the
rate of heat transfer of pseudoplastic fluid is better compared to Newtonian fluid. Kefayati
et al. [21] applied LBM to realize the behavior of non-Newtonian fluid under natural con-
vection; a uniform magnetic field is also applied in this study. The results indicated that the
heat transfer increases with the power law index and decreases with the Hartman number.
Saleh et al. [22] studied a differentially heated cavity equipped with rotating obstacles. The
results showed that the values of Nusselt number remain constant at L/D > 0.77. Other
research papers related to the effect of separating interfaces in cavities are reported [23–28].
Turan et al. [29] studied the natural convection of a non-Newtonian fluid. They investigated
the influence of the Prandtl number, and proposed new correlations for the Nusselt number
for Newtonian and non-Newtonian fluids.

Based on the above-described literature review, and to the best of the authors’ knowl-
edge, there is currently no published work on wavy interfaces in square cavities filled
with two layers (non-Newtonian and porous (Newtonian)). The applications of the current
study are in engineering and industry. We can further study this by increasing the layers.
The effect of various controlled parameters, such as the Rayleigh number, power law index,
Darcy number, buoyancy ratio, and Lewis number, is examined in detail.

2. Problem Formulation

The problem configuration is schematically illustrated in (Figure 1). It consists of 2D
double-diffusive convection in a cavity containing two fluid layers (non-Newtonian and
porous Newtonian fluid), which are separated by a sinusoidal wall. L and H represent
the length and height of the cavity, respectively. θh and Ch are the high temperature and
concentration at the left wall, respectively. Similarly, θc and Cc are the low temperature and
concentration at the right wall, respectively. The remaining horizontal walls are considered
to be adiabatic. The flow is considered to be laminar, steady, and incompressible, with the
application of the Darcy–Brinkman–Forchheimer model.

The wavy interface is derived from the following equation:

X = Hp + A Sin
(

2πK
L

Y + ϕ

)
(1)

where Hp and A represent the width of the porous layer and the amplitude, respectively. ϕ
denotes the phase shift, which is taken as π

2 .
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3. The Governing Equations

Under the above-considered assumptions, the dimensionless systems of the equations
for the fluid region and porous layer are written as follows [30–36]:

For the non-Newtonian fluid layer:

∂U
∂X

+
∂V
∂Y

= 0 (2)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+
Pr√
Ra

[
2

∂

∂X

(
µa

M
∂U
∂X

)
+

∂

∂Y

(
µa

M

(
∂U
∂Y

+
∂V
∂X

))]
(3)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+
Pr√
Ra

[
2

∂

∂Y

(
µa

M
∂V
∂Y

)
+

∂

∂X

(
µa

M

(
∂U
∂Y

+
∂V
∂X

))]
+ Pr(θ + NC) (4)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1√
Ra

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(5)

U
∂C
∂X

+ V
∂C
∂Y

=
1

Le
√

Ra

(
∂2C
∂X2 +

∂2C
∂Y2

)
(6)

µa = M

{
2

[(
∂U
∂X

)2
+

(
∂V
∂Y

)2
]
+

(
∂V
∂X

+
∂U
∂Y

)2
} n−1

2

(7)

where N is the buoyancy ratio and n is the power law index.
The following also applies:

Pr =
µa

ρα
(8)

Ra =
ρβgyL3(TH − TC)

µaα
(9)

Le =
ae

D
(10)
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For the porous fluid layer:
∂U
∂X

+
∂V
∂Y

= 0 (11)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+
Prm√
Ram

(
∂2U
∂X2 +

∂2U
∂Y2

)
− Prm U

Dam
√

Ram
−

U
∣∣U∣∣

√
Dam

1.75√
150

(12)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+
Prm√
Ram

(
∂2V
∂X2 +

∂2V
∂Y2

)
+ Prm

(
θ + NC

)
− Prm V

Dam
√

Ram
−

V
∣∣U∣∣

√
Dam

1.75√
150

(13)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1√
Ram

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(14)

U
∂C
∂X

+ V
∂C
∂Y

=
1

Le
√

Ram

(
∂2C
∂X2 +

∂2C
∂Y2

)
(15)

where the following parameters are entered in the above problem:

Da =
K
L2 (16)

The relationship among the actual and modified Prandtl, Rayleigh and Darcy numbers
can be written as follows: Prm = Pr ∈, Ram = Ra ∈ and Dam = Da

∈ .
The boundary conditions of the proposed problem in the corresponding regions are

as follows:

U = 0, θ = 1, V = 0, C = 1 (left wall)
U = 0, θ = 0, V = 0, C = 0 (right wall)
∂θ
∂Y = ∂C

∂Y = 0, U = V = 0 and ∂θ
∂Y = ∂C

∂Y = 0, U = V = 0 (top/bottom walls)

The numbers on the vertical hot wall are given as follows:

Nu =

(
− ∂θ

∂X

)
X=0

: Nusselt number (local) (17)

Sh =

(
− ∂C

∂X

)
X=0

: Sherwood number (local) (18)

Nuavg =
∫ 1

0
Nu dY : Nusselt number (average) (19)

Shavg =
∫ 1

0
Sh dY : Sherwood number (average) (20)

4. Solution Methodology

The mathematical models presented in Equations (2)–(7) and (11)–(15) is solved using
the higher order Galerkin finite element method. As a first step, a weak formulation is
developed by choosing a suitable test space. Afterwards, a hybrid mesh, consisting of both
triangular and quadrilateral elements, is generated to cover the computational domain. A
finite element method involving the cubic polynomials (P3) is implemented to compute
the velocity, temperature, and concentration fields, while the pressure is approximated by
the quadratic (P2) finite element space of functions. The stability and robustness of this
higher-order pair of FEMs has been tested in [37]. The system of discretized equations is
simplified using the adaptive Newton’s method. For further details regarding the solver,
the reader is referred to [38].



Mathematics 2022, 10, 1060 5 of 18

4.1. Grid Convergence

As shown in Table 1, eight number of elements are compared to check the mesh
independency at Gr = 105, Da = 10−3, ε = 0.75 and Hp = 0.1. From this comparison it is
clear that the deviations of Nuav and Shav between the grids G7 and G8 are very small.
Thus, for time economy and results accuracy the grid G7 was retained for all the performed
simulations. The grid for the proposed computational model is displayed in Figure 2.

Table 1. Convergence of grid analysis.

Grid NEL DOFs Nuavg Shavg

G1 230 3322 3.428355 5.767679
G2 352 4974 3.418098 5.727896
G3 540 7319 3.420159 5.715686
G4 1006 13007 3.422258 5.703224
G5 1520 19040 3.424014 5.701316
G6 2470 29757 3.424601 5.700223
G7 6544 76933 3.424613 5.698674
G8 16790 192148 3.424915 5.698709
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4.2. Code Validation

The current results are checked by comparing them to those of Gibanov et al. [39], by
evaluating the average Nusselt number under the same conditions. As is shown in Table 2,
the error did not exceed 0.36%, which represents good agreement among the two results.
Moreover, the numerical code is checked by comparing the isotherms and streamlines
with those found by Gibanov et al. [39]. The results of the current numerical model are in
concordance with the results of Gibanov et al. [39] (Figure 3).

Table 2. Validation of the code of average Nu with [39]. Adapted with permission from ref. [39].
Copyright 2017 Springer Nature.

Present Study [39] Error

12.57879 12.5335 0.36%

Present Model Gibanov et al. [39].
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In addition to the above validation, to strengthen the reliability of the implemented
FEM, we also confirmed the validation by comparing it with the experimental study of
Corvaro and Paroncini [40], as demonstrated in Figure 4.
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Figure 4. Comparison with the results of Corvaro and Paroncini [40] (Reprinted with permission
from ref. [40]. Copyright 2007 Elsevier): flow field (experimental in (a)), isotherms (numerical in (b)),
and isotherms (experimental in (c)). The corresponding present numerical study is given in (d–f).
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5. Results and Discussion

The results of the different numerical simulation cases are presented by streamlines,
isotherms and isoconcentration contours, as well as variations in the local Nu and Sh, and
variations in the average Nu and Sh. All the simulations are performed for the fixed values
of n = 0.6, Da = 10−3, ε = 1.0, Le = 2.5, Pr = 1, N = 0.1, M = 2, Hp = 0.5, A = 0.05, and Ra = 105.

For each case, one parameter is varied. In fact, the results will consecutively present
the effect of the variation in the Rayleigh number (Ra), power law index (n), Darcy number
(Da), buoyancy number (N), and Lewis number (Le). Furthermore, the effects of the width
of the porous media (Hp), the undulation number of interface (K), and its amplitude (A) on
the average Nu and Sh are presented for a range of the power law index (n), varied from
0.6 to 1.6.

5.1. Impact of Rayleigh Number

Figure 5 presents the effect of the Rayleigh number on the streamlines (left side),
isotherms (center), and isoconcentrations (right side). Due to its great effect on the heat
transfer rate, the Rayleigh number is varied from 103 to 106. For a low Rayleigh number
(Ra = 103), the center of the main vortex is located on the non-Newtonian side of the cavity
and rotates counterclockwise. By increasing the Ra number, the rotation of the main vortex
is intensified. Remarkable penetration in the direction of the porous layer is detected, due
to the elongation of the main vortex.

As can be observed for Ra = 106, the intensity of the streamlines occurs at the core of
the cavity, indicating an increase in the heat transport, due to the natural convection. Here,
it is noticed that the center of the vortex is still on the non-Newtonian side. By increasing
the Ra number, the behavior of the isotherms is modified, due to the enhancement of the
temperature gradient. When the Ra number is equal to 103, the isotherms are parallel
to each other, indicating the domination of the conductive heat transfer mode, but as
its value rises, an increase in the temperature gradient is observed. The thermal flow
passes from a conductive regime to a convective regime by increasing the Ra number.
Indeed, the stratification of the isotherms is pronounced when the Ra number passes from
103 to 106. The thermal gradient is more densely packed close to the downside of the
hot wall, indicating an important thermal boundary layer. This fact is confirmed by the
coordinates of the height of the local Nusselt numbers in Figure 4. The isoconcentration
behavior is greatly affected by the increase in the Ra numbers, which indicates a progressive
move from a diffusive to convective mass transfer. When Ra = 106, the solutal gradient near
the hot wall is important, which indicates the importance of the convective transfer from
the non-Newtonian fluid layer to the porous layer.

Figure 6 presents the variation in the local Nu and Sh for different Ra numbers. The
curves prove the high increase in the Nu and Sh values when the Rayleigh number passes
from 105 to 106. Table 3 presents a comparison between the average Nu and average Sh
for various Rayleigh numbers, under the same conditions. For Ra = 103 and Ra = 104, the
Nu values are low compared to the other Rayleigh values. This is due to the lower heat
exchange between the porous medium layer and the non-Newtonian layer. The maximum
values of the average Nu and Sh numbers confirm the importance of the mass transfer effect
on behalf of the heat transfer, especially when the Ra numbers increase. This is due to the
current case condition, in which the buoyancy number is equal to 0.1.

Table 3. Average Nu and Sh comparison.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Nuavg 1.003544 1.294151 3.425027 8.530151
Shavg 1.021881 2.017548 5.699002 13.07502
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the heat transfer and show a great impact on the mass transfer between the two layers. As 
the power law index rises, the intensity and movement of the streamlines are slightly af-
fected in the cavity, which means that the energy required to rotate the vortex decreases. 
This fact is explained further by plotting the variation in the local Nu and Sh, and calcu-
lating their mean values at the hot wall (Table 4). Regardless of the fact that they exhibit 
the same behavior, it is clear in Figure 8 that the variation in the local Nu and Sh drops by 
increasing the n values. 

Figure 6. Variation in local Nu and Sh.
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5.2. Impact of Power Law Index

Figure 7 presents the streamlines (left side), the isotherms (center), and the isocon-
centration (right side). By definition, the power law index affects the heat generation and,
consequently, the viscosity. The expected results need to demonstrate the regression of the
heat transfer and show a great impact on the mass transfer between the two layers. As the
power law index rises, the intensity and movement of the streamlines are slightly affected
in the cavity, which means that the energy required to rotate the vortex decreases. This
fact is explained further by plotting the variation in the local Nu and Sh, and calculating
their mean values at the hot wall (Table 4). Regardless of the fact that they exhibit the same
behavior, it is clear in Figure 8 that the variation in the local Nu and Sh drops by increasing
the n values.

Table 4. Average Nu and Sh comparison.

n = 0.6 n = 0.8 n = 1 n = 1.2 n = 1.4

Nuavg 3.424915 3.338505 3.272834 3.221858 3.181187
Shavg 5.698709 5.519309 5.383465 5.278273 5.194299
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the non-Newtonian zone. By increasing the Darcy numbers, the spread of the streamline 
through the wavy interface is increasingly developed. The thermal and solutal gradient 
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equal to 10−4. A noticeable increase in the heat and mass transfer effect takes place for Da 
= 10−3 and 10−2, which is described by the rise in the vortex rotation intensity through the 
two sides of the wavy interface. Table 5 presents the evolution of the average Nu and Sh 
for the various values of Da, when Ra = 105, Da = 10−3, 𝜖 = 0.75, and Hp = 0.1. The great 
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5.3. Impact of Darcy Number

Figure 9 presents the effect of the Darcy number (Da) variation on the streamlines,
isotherms, and isoconcentrations, while the other parameters are constant. When the Da is
equal to 10−6 and 10−5, the streamlines are localized in the non-Newtonian zone, which
indicates that no exchange is performed between the porous and non-Newtonian layers.
The isothermal and isoconcentration lines are parallel in the porous zone, compared to
the non-Newtonian zone. By increasing the Darcy numbers, the spread of the streamline
through the wavy interface is increasingly developed. The thermal and solutal gradient
near the downside of the hot wall is noticed, due to the rise in the Darcy numbers. The
results show that for Da = 10−2, thermal stratification takes place and solutal distortion
appears in the core cavity, since the value of the Darcy number increases to 10−3.

The variation in the local Nu and Sh for different Darcy numbers (Da) is shown in
Figure 10. For low values of Darcy numbers (10−6 and 10−5), the heat and mass transfer
are almost constant and at low levels. A slight increase is detected when the Darcy number
is equal to 10−4. A noticeable increase in the heat and mass transfer effect takes place for
Da = 10−3 and 10−2, which is described by the rise in the vortex rotation intensity through
the two sides of the wavy interface. Table 5 presents the evolution of the average Nu and
Sh for the various values of Da, when Ra = 105, Da = 10−3, ε = 0.75, and Hp = 0.1. The
great increase in the heat and mass transfer values can be deduced by the increase in the
diffusivity of the fluid flow through the interface to the porous medium.

Table 5. Average Nu and Sh comparison.

Da = 10−6 Da = 10−5 Da = 10−4 Da = 10−3 Da = 10−2

Nuavg 1.3556 1.373742 1.652894 3.425139 4.703467
Shavg 1.537805 1.582851 2.50985 5.699306 7.181993
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5.4. Impact of Buoyancy Ratio

The effect of the variation in the buoyancy number N from 0.1 to 10, when the other
values remain constant, is presented in Figure 11. The behavior of the streamlines is
similar to the Ra variation cases. The main cell is lengthened to the whole cavity space
by increasing the N values, although the center of the vortex is still localized in the non-
Newtonian zone. The thermal gradient is densely packed near the downside of the hot wall
in the porous media zone by the increase in the N values, which results in intensification
of the heat transfer through the interface. Moreover, the solutal gradient is tightened near
the downside of the hot wall and the topside of the cold wall, and stratification of the
isoconcentrations takes place in the core region of the cavity.

These behaviors could be explained by the profiles of the local Nu and Sh in Figure 12,
and their average values in Table 6. The enhancement of the heat and mass transfer through
the interface is measured by increasing the buoyancy effect.
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Table 6. Average Nu and Sh comparison.

N = 0.1 N = 1 N = 5 N = 10

Nuavg 3.424915 4.102939 5.831249 7.130527
Shavg 5.698709 7.080791 10.47675 12.8777
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behavior of the local Nu is almost the same for different values of Lewis number. On the 
other hand, the local Sh is enriched by increasing the Lewis number. The particular reason 
for this minor change in these results is the small value of the buoyancy ratio (N = 0.1). 
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equation. Table 7 depicts the trend of the average Nu and Sh for different Lewis numbers 
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5.5. Impact of Lewis Number

Figure 13 indicates the streamlines at the left side, the isotherms at the center, and the
isoconcentration at the right side. It can be observed that there is not a significant change in
the streamline (left side), isotherm (center), and isoconcentration (right side) contours by
enhancing the Lewis number for both layers. This is confirmed by Figure 14, where the
behavior of the local Nu is almost the same for different values of Lewis number. On the
other hand, the local Sh is enriched by increasing the Lewis number. The particular reason
for this minor change in these results is the small value of the buoyancy ratio (N = 0.1).
Furthermore, it is observed that there is a minor effect of concentration in the momentum
equation. Table 7 depicts the trend of the average Nu and Sh for different Lewis numbers
(Le), which reflects the minor decline in the local Nusselt number as the Lewis number
rises, but the average Sherwood numbers increase considerably.

Table 7. Average Nu and Sh comparison.

Le = 1 Le = 2.5 Le = 5 Le = 10

Nuavg 3.483756 3.425136 3.389914 3.366655
Shavg 3.48395 5.699383 7.703609 10.18238

In the next portion of this discussion, some plots of the average Nu and Sh are drawn
on the power law index. Figure 15 indicates that the average Nu and Sh decline with an
increase in the width of the porous layer with power law indices. The behavior of the
average Nu and Sh with the undulation parameter and amplitude of the interface is shown
in Figures 16 and 17, respectively. It is visualized, in both figures, that the results switch
towards the decline direction, by increasing the values of K and A, correspondingly.
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effects of the Rayleigh number, power law index, Darcy number, buoyancy ratio, and Lewis
number are studied. The main conclusions can be summarized as follows:

• The temperature gradient rises by augmenting the Rayleigh number, as the flow is
observed from the vertical to horizontal direction in both layers of the cavity, which
seems to be a remarkable change in heat transfer. Similar behavior is observed in the
concentration case.

• By increasing the values of the power law indices, a decline in the average Nu and Sh
is observed.

• When Da 10−6 to 10−5, the streamlines are localized in the non-Newtonian zone, which
may indicate that no exchange is observed between the porous and non-Newtonian
layers. By increasing the value of Da, the wavy interface is changed.

• Constant enhancement in heat and mass transfer is noticed in a wavy interface by
enriching the buoyancy effect.

• The local Nu is almost the same for different values of Lewis number. On the other
hand, the local Sh is enriched by increasing the Lewis number.

• The average Nusselt and Sherwood numbers decline by increasing the width of the
porous layer with power law indices.

• It is visualized, in both figures, that the average Nu and Sh move towards the decline
direction, by increasing the values of K and A, correspondingly.
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