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Abstract: Osteosarcoma is a primary malignant tumor. It is difficult to cure and expensive to treat.
Generally, diagnosis is made by analyzing MRI images of patients. In the process of clinical diagnosis,
the mainstream method is the still time-consuming and laborious manual screening. Modern com-
puter image segmentation technology can realize the automatic processing of the original image of
osteosarcoma and assist doctors in diagnosis. However, to achieve a better effect of segmentation, the
complexity of the model is relatively high, and the hardware conditions in developing countries are
limited, so it is difficult to use it directly. Based on this situation, we propose an osteosarcoma aided
segmentation method based on a guided aggregated bilateral network (OSGABN), which improves
the segmentation accuracy of the model and greatly reduces the parameter scale, effectively alleviating
the above problems. The fast bilateral segmentation network (FaBiNet) is used to segment images. It
is a high-precision model with a detail branch that captures low-level information and a lightweight
semantic branch that captures high-level semantic context. We used more than 80,000 osteosarcoma
MRI images from three hospitals in China for detection, and the results showed that our model can
achieve an accuracy of around 0.95 and a params of 2.33 M.

Keywords: osteosarcoma; MRI image segmentation; artificial intelligence; mean teacher; auxiliary
diagnosis; lightweight segmentation model

1. Introduction

Osteosarcoma is an aggressive bone malignancy that frequently occurs in the extremi-
ties of children and adolescents with a very poor natural prognosis [1]. The incidence of
osteosarcoma is the highest among all primary malignant tumors in the world, reaching
three per million, with a male-female ratio of about 1.5:1. At the same time, the survival
rate of this tumor is also low. Before the 1980s, the five-year survival rate of patients with
osteosarcoma was less than 20% [2–4]. This kind of tumor has a high degree of malignancy
and is prone to metastases, even to the lungs, so its treatment is also more difficult. But
early detection and treatment can improve patients’ survival and reduce the chance of
amputation. In clinical diagnosis, MRI images do not cause great radiation and biological
damage to the tissue during examination and are more obvious in tissue components such
as tumors and blood vessels [5], so we generally use MRI images to detect osteosarcoma.

In the current detection process of osteosarcoma MRI images, patients with osteosar-
coma will generate a large amount of image data, but the proportion of valuable images
is very low. According to incomplete statistics, each osteosarcoma patient will generate
600–700 pictures, but only 10–20 pictures are valuable for diagnosis [6–9]. Currently, screen-
ing and preliminary processing of raw images are still done manually by doctors. This
process consumes a lot of manpower and material resources. At the same time, there is no
standardized definition of the diagnostic characteristics of osteosarcoma. Therefore, the
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identification of osteosarcoma requires doctors to have solid professional knowledge [10].
The average hospital does not have a complete auxiliary segmentation system for osteosar-
coma, and it is difficult to diagnose patients efficiently, so the detection cost and difficulty
of osteosarcoma are very high [11–13].

Osteosarcoma detection is costly and difficult. The medical system in most developing
countries is not perfect, so there are great difficulties in the diagnosis, treatment and
prognosis of osteosarcoma. Taking China as an example, China’s per capita medical
resources are relatively low, professional talents are scarce, and medical resources are
relatively tight. The expensive and sophisticated testing equipment only exists in large
general hospitals. Rural people often delay what is the optimal time for treatment for
economic and geographical reasons. Secondly, the regional distribution of public medical
resources in China is uneven. 80% of medical resources are concentrated in developed areas
with only 10% of the population. The risk of death is greatly increased due to the rapid
diagnosis and treatment of osteosarcoma. These problems have brought a heavy burden to
societies and families in developing countries [14]. It is essential to have an efficient and
accurate assisted segmentation system for osteosarcoma.

With the emergence of medical intelligent image detection technology, the problem
of low medical diagnosis efficiency of osteosarcoma in developing countries has been
alleviated to a certain extent. This technology uses edge detection, template matching, deep
learning and other methods to segment key targets in MRI images and extracts features
from the segmented regions, thereby realizing the automatic segmentation of osteosarcoma
images and assisting in judging the presence and status of osteosarcoma [15–17]. However,
there will also be some local tissue formation on the edge of osteosarcoma, which leads to
uncertain and unclear tumor boundaries. At the same time, the anatomical structure and
shape of osteosarcoma images are usually complicated, and the imaging principles are also
different, in addition to the presence of noise in the image, so the effect of segmentation is
often unsatisfactory. In order to improve the accuracy of image segmentation and optimize
the segmentation effect, researchers perform a large number of artificial feature extractions
and consider the implicit features of medical images. However, the parameter size and
complexity of the segmentation model will be increased accordingly, and the inference
speed will be very slow. In the process of medical image processing, the inference speed of
the model will affect the time of diagnosis and even the treatment of patients. In order to
speed up the inference speed of the model, the principle of the current method is almost
sacrificing the underlying details, which will lead to a decrease in the accuracy of the
segmentation model. Therefore, it is very important to establish a segmentation model that
finds a balance between speed and accuracy.

Based on the above analysis, this paper proposes an osteosarcoma aided segmentation
method based on a guided aggregated bilateral network (OSGABN). In this system, we first
optimize the dataset and divide the dataset into useful slices (US) and difficult slices (NS)
according to availability. This method solves the overfitting caused by time scrambling
and fast deep learning models. Then we preprocess the MRI image, in which we add more
features to improve the median filter and generate a simple and effective noise reduction
method for medical images, which can significantly reduce various noise interference. At
the same time, we use curvelet transform for image enhancement to locally enhance the
tumor region to further reduce unwanted noise in the input image. We then used the
fast bilateral segmentation network (FaBiNet) for osteosarcoma MRI image segmentation.
This network structure is efficient and effective; there is a detail branch and a semantic
branch in this segmentation network, and the detail branch has wide channels and shallow
layers, which can capture low-levels and generate high-resolution feature representations.
The semantic branch channel is narrow but deep, and high-level semantic context can be
obtained. Because of the lightweight semantic branch, it can effectively reduce the channel
capacity and speed up the downsampling speed. On the basis of strong segmentation
performance, the reasoning cost is reduced, and it has great advantages, such as a fast
training speed and balance between speed and accuracy.
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The main contributions of this study are as follows:

(1) This paper uses the mean teacher model to optimize the classification of the data
set, divide the data set into US and NS, and input them into the network in different
orders for training, which further improves the training efficiency.

(2) We use the fusion noise reduction method to preprocess the image, which improves
the accuracy of model training and improves the robustness of the model.

(3) This paper adopts the image segmentation model based on the fast bilateral segmen-
tation network. While achieving high-precision segmentation, it uses an extremely
lightweight model which greatly improves the speed of segmentation, so it has great
significance in practical applications.

(4) We used more than 80,000 samples collected by the Second Xiangya Hospital of
Central South University for experimental analysis. The structure shows that our os-
teosarcoma segmentation method has a better segmentation effect than other methods,
and the model is highly lightweight, which is convenient for training and application.
This method is of great significance to the diagnosis, treatment and prognosis of
osteosarcoma. Doctors can use the diagnosis results as an auxiliary basis for diagnosis
and treatment, and greatly reduce the pressure of doctors and the time of diagnosis
without affecting the accuracy.

2. Related Works

In the current research, the use of advanced computer technology to process medical
images to complete the auxiliary diagnosis of diseases such as osteosarcoma has been called
a trend. Many people are already using technologies such as artificial intelligence and
image processing to achieve these goals. We will introduce some mainstream methods and
related systems in the following analysis.

Mohamed Nasor and Walid Obaid [18] combined morphological operations and object
technology to segment osteosarcoma MRI images utilizing K-means clustering and Chan-Vese,
and achieved good segmentation results. Limei Shuai, Xin Gao, and Jiajun Wang [19] et al.
proposed a novel W-net++ architecture based on two cascaded U-Nets and dense skip connec-
tions when studying the image segmentation of osteosarcoma, and introduced adaptive depth
supervision, which effectively improves performance. Rui Zhang, Huang Lin [20] and others
proposed an end-to-end network for osteosarcoma segmentation based on deep learning. This
network named MSRN added multiple supervised output modules to guide the learning of
shape features and semantic features. Harish Babu Arunachalamp [21] et al. used machine
learning and deep learning models to classify osteosarcoma WSI into non-tumors, necrotic
tumors, and viable area tumors. Rahad Arman Nabid [22] and others proposed a sequen-
tial recurrent convolutional neural network (RCNN) that combines convolutional neural
network and bidirectional gate recurrent units in order to evaluate the grading of patients
with osteosarcoma. The performance of this model is acceptable, but it has problems such
as overfitting. Yu Fu [23] et al. proposed a new model based on the Siamese model, named
DS-Net. It can be used to classify hematoxylin and eosin-stained histological images of
osteosarcoma, which can help pathologists improve the accuracy of diagnosis and even
achieve zero misclassifications.

In the field of tumor image segmentation, in addition to osteosarcoma segmentation,
there are many other types of tumor image segmentation, among which the related research
on brain tumor image segmentation is more in-depth, and many researchers have made
achievements in it. QIAO Ying-jing, GAO Bao-Iu [24] and others studied the texture features
of Tamura, and they proposed an image segmentation algorithm related to improved FCM
for brain MRI based on this which was linearly weighted with gray features to form fusion
features. Lei Hua, Yi Gu [25] and others found that the classical c-means algorithm is
very sensitive to noise and offset field, and they adopted an improved multi-view FCM
clustering algorithm (INV-FCM) which has a certain adaptive ability. In recent years,
multi-level thresholding has become a widely used segmentation method in medical image
analysis, but as the threshold increases, the efficiency of the algorithm will decrease. In
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order to solve this problem, Omid Tarkhaneh and Haifeng Shen [26] et al. proposed
adaptive differential evolution (ALDE) with Levy distribution to obtain optimal thresholds
at a reasonable cost. E. Sasikala, P. Kanmani [27] et al. used the fractional BAT algorithm
Fuzzy C to find disbelief regions from MRI images, and realized lesion identification for
MRI brain image segmentation using this hybrid algorithm.

There are many researchers who enhance the function of image segmentation by
optimizing the structure of the model and carrying out appropriate improvement measures.
In the research process, DM Anisuzzaman and Hosein Barzekar [28] and others fine-tuned
CNN and other tools to propose the VGG19 model, which has the highest recognition rate
of 96%. Haimei Chen, Xiao Zhang [29] et al. constructed a CE FS T1WI radiomic signature
in developing and validating a radiomic signature for MRI, which can provide a potential
tool to predict a pathological response to NAC in osteosarcoma patients. FCFDionsio
and LSOliveirpa [30] et al. evaluated intra- and inter-observer reproducibility of manual
segmentation of osteosarcoma in MRI, and then they compared manual versus semi-
segmented methods, and found that the degree of similarity between the two segmentation
methods to be very high and that using a semi-automatic method can greatly reduce
the time required. Esha Baidya Kayal, Devasenathipathy Kandasamy [31] and others
adjuvanted chemotherapy in osteosarcoma, and experiments proved that their SLICs+MTh
method can improve cancer treatment detection, plans and overall prognosis.

In the process of segmentation and identification of osteosarcoma images, many people
easily confuse osteosarcoma with Ewing sarcoma, which affects subsequent diagnosis and
treatment. So many researchers have made their contributions in identifying osteosarcoma
and Ewing sarcoma. In their study, Yi Dai, Ping Yin [32] et al. used radiological analysis of
T2-weighted images and enhanced T1-weighted images to differentiate them and achieved
good results. In their study, safak Parlak, F. Bilge Ergen [33] and others explored the
ability of the apparent diffusion coefficient to differentiate between Ewing sarcoma and
osteosarcoma, and obtained MW and ADC values that could be used to differentiate Ewing
sarcoma from bone flesh. James R Barnett, Panagiotis Gikas [34] and others, in the study
of MRI images of osteosarcoma and Ewing sarcoma, found that MRI images have high
sensitivity, specificity and diagnostic accuracy in identifying skip metastases in these two
tumors. Raquel Bezerra Guerra [35] et al. described early signs and symptoms of both
sarcomas and identified symptoms that could be used to help differentiate the two tumors,
providing subsequent researchers with valuable information and experience.

3. Methods

Osteosarcoma is a malignant tumor that occurs frequently in children and adolescents,
and its prognosis is generally poor [36]. Manual screening and detection by doctors alone
is inefficient, and the workload of doctors is obviously significant. Therefore, automatic
image processing by computer is used in order to run the segmentation model on low-cost
hardware. This paper develops an osteosarcoma aided segmentation method based on
guided aggregated bilateral network-based network (OSGABN), which is used to help
doctors initially identify MRI images of osteosarcoma so as to achieve the efficient and
rapid identification and diagnosis of osteosarcoma. The overall design of this system is
shown in Figure 1.

This model is documented in two parts; the first part is the preprocessing before
segmentation of osteosarcoma MRI images, and the second part is the segmentation part of
the system. In the first part, the patient’s MRI image is input into the segmentation system,
the data is processed and enhanced before segmentation, the data set is segmented, the
noise level of the image is reduced, and then it is inputted into the segmentation network
for training. The second part is the assisted segmentation of osteosarcoma MRI images
using a guided aggregated bilateral network. After segmentation, it can provide a valuable
reference for the doctor’s follow-up diagnosis and judgment of the degree of soft tissue
invasion and play a role in auxiliary diagnosis. We list some symbols used in this paper
in Table 1.
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Figure 1. Overall architecture diagram of OSNDCN.

Table 1. Symbol description.

Symbol Represented Meaning

φs Parameter group for the student model in formula φ∗t = αφt + (1− αφ∗s )
φt Parameter group for the teacher model in the above formula
Y1 Randomly assign dataset 1
Y2 Randomly assign dataset 2
La1 Labels for dataset Y1
Ps1 Represent student model output probability in formula L2 = 1

2 KL(Ps2||Pt2) +
1
2 KL(Pt2||Ps2)

Ps2 Represent teacher model output probability in the above formula
l1 one of the loss values of the student function
l2 one of the loss values of the teacher function

φ∗s , φ∗t Updated student and teacher model parameter Set
ltotal Loss value of the student model
Sxy Represent subimage window in formula Md = md(s,t)∈Sxy{g(s, t)}

g(s, t) each pixel of the subimage window in the above formula
T detected target
G Multistage filter
ct Channel size

The overall architecture of (OSNDCN) is reflected in Figure 1, and in the first part,
the MRI image is divided. This part mainly includes three structures which use the mean-
teacher model to divide the original data set, preprocess the data set for noise reduction
and data enhancement, and divide the bilateral network.

To further improve the detection accuracy, we set the following three strategies:

(1) Data set optimization. We use the mean-teacher model to first divide the dataset
into useful-slices (US) and Normal-Slices (NS), and then input them to the next step
of processing.
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(2) Preprocessing. In the denoising process, we improve the median filter by adding more
features, which results in a simple and effective denoising method for osteosarcoma
MRI images and significantly reduces various noise interference. At the same time,
we use curvelet transform for image enhancement to locally enhance the tumor region
to further reduce unwanted noise in the inputted image.

(3) Guided aggregation bilateral network segmentation algorithm. In this algorithm, we
deal with the low-level details and high-level semantics separately to achieve high-
precision and high-efficiency real-time semantic segmentation. In addition, we design
a guided aggregation layer to enhance the interconnection and fusion of two types of
feature representations, with good segmentation performance.

3.1. Dataset Optimization

The amount of data in the initial dataset is large, but not every image is suitable for
input into the model for training. In some MRI images, the tumor location is not clearly
visible or even visible to the naked eye. These MRI images contain noise, but they can still
help with model training. Using these data directly will greatly affect the training effect,
so we need to classify the original data set, divide the MRI images into US and NS, first
input the US into the network for training, and then input the MRI images in the NS for
training, and then the newly added slice collection can be processed continuously. We
use the mean-teacher semi-supervised algorithm, and the partition network population is
divided into a student model and a teacher model. The network parameters of the student
model are obtained by learning and gradient descent, and the loss function includes two
parts: one is the supervised loss function, which is used to ensure the fitting of the labeled
training data; the other is the unlabeled loss function, which is used to make sure that the
predictions of the student model are as similar as possible to those of the teacher model.
The network parameters of the teacher model are obtained by moving the average of the
network parameters of the student model.

To accomplish this task, we set up a ResNet-7 network to partition the dataset, as
shown in Figure 2. ResNet-7 is composed of six layers of residual modules and one layer of
fully connected modules. The residual module uses the idea of a residual to avoid vanishing
gradients. A 3 × 3 max pooling layer is set between each connected layer to reduce the size
of the feature map, and the last fully connected layer performs the final classification. The
parameter groups of the student model and the teacher model are φs and φt. We randomly
divide the original dataset into Y1(70%) and Y2(30%), where Y1 has the label La1, and Y2
has no label. The training process of this algorithm is as follows:

(1) Input Y1 and Y2 into the student model, and the output is the predicted probability
Ps1, Ps2; input Y2 into the teacher model, and output the predicted probability Pt2;

(2) Calculate the loss value l1 according to Ps1 and Ps2, and the calculation equation of L1 is:

L1 = − 1
M ∑M

i=0 lai ∗ log(pi) + (1− lai) ∗ log(1− pi), lai ∈ La1, pi ∈ Ps1 (1)

(3) Calculate the loss value l2 and the loss equation L2 according to Ps2 and Pt2;
(4) The loss value of the student model is ltotal = l1 + l2, the update parameter using this

gradient descent is φ∗s , and the teacher network updates the parameter by moving
average to φ∗t , and the update process is expressed by the Equation (2).

φ∗t = αφt + (1− αφ∗s ) (2)
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Figure 2. Dataset optimization network architecture diagram.

For dataset Y1, due to the existence of labels, the loss function L1 is a cross-entropy loss
function, and the dataset Y2 has no labels, so the loss function L1 needs to use the Kullbac-
Leibler (KL) divergence relative entropy loss function; relative entropy is generally used to
describe the degree of overlap between two distributions. If they overlap completely, its
value is 0. If they do not overlap, its value is 1. KL is generally shown in the Equation (3):

KL(R||S) = ∑ s(x)· log(
s(x)
r(x)

) (3)

However, the KL function will always have asymmetric problems. We hope that the
prediction distributions of the teacher model and the student model are as consistent as
possible, but it is impossible to judge which party has a more accurate prediction result, so
we use the Jenson-Shannon (JS) algorithm to compensate for the asymmetry problem, and
the calculation of L2 can be expressed as follows:

L2 =
1
2

KL(Ps2||Pt2) +
1
2

KL(Pt2||Ps2) (4)
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After the above process, we successfully divided the dataset into two parts, in which
US accounted for 54.6% and NS accounted for 45.4%, and then input them into the segmen-
tation network in turn. In this way, the deep network will first learn simple samples and
train a model with good performance.

3.2. Preprocessing
3.2.1. Noise Reduction Process

First, we can denoise osteosarcoma MRI images using traditional median filtering,
but the median value found in existing median filtering is not always the actual value
of the composite original image. This value is always the median of the sorted results of
all pixels for each odd-sized rectangular subimage window in the noisy image. We use a
combination of median and mean filtering to determine more precise values for each pixel
in the noisy image. The principle of this method is as follows.

Firstly, we need to calculate the median, and we consider any odd-sized rectangular
subimage window or mask (e.g., 3× 3) in the osteosarcoma MRI image, which will facilitate
the determination of the median of the window. It is very convenient to use odd list sizes
to find the median, and the median filter goes through the magnitudes of all vectors within
the mask and sorts the magnitudes, and then replaces the pixel of interest with the pixel of
the median magnitude. This median is found by filtering the existing medians.

Md = md(s,t)∈Sxy{g(s, t)} (5)

where Sxy represents the coordinate set of the rectangular sub-window, centered at the
point (x, y), and the median represents the median of the window.

After completing the above work, we start to calculate the average value of each pixel.
From the above introduction, we can know that the process of calculating the average value
can obtain more accurate pixel values and maximize the use of domain pixels, so each
pixel in the new window we calculate will have a more accurate value. This process can be
described as:

Average valuei = average(s,t)∈Sxy{gi(s, t), Md} (6)

After completing the above work, we can calculate the value of the center pixel. We
perform arithmetic mean filtering on all the averages of the subimage windows, computing
a more precise value to replace each pixel in the noisy image. The calculation method is
as follows:

Center pixel value = ∑N
i=1 Average valuei

N
(7)

In Equation (7), N is the product of ROW and COLUMN of the sub-image window,
that is, N = ROW × COLUMN. Through such a noise reduction process, a more accurate
value of each pixel point of the noise image in the osteosarcoma MRI image is determined,
so that the noise is obviously reduced, which is convenient for subsequent training.

3.2.2. Data Augmentation Process

We utilize the curvelet transform to enhance the trained images to reduce unwanted
noise in osteosarcoma MRI images by enhancing the tumor region. This enhancement
technique is relatively simple to implement, with high stability and short processing time.
On this basis, we use curvelet transform to achieve the maximum recovery of edge and
fuzzy linear features as well as curve features, which makes the boundaries of tissues such
as tumor edges in MRI images clearer. In the ridgelet transform, the anisotropic scale
relationship is used to realize the support interval and scale, the multi-scale ridgelet is
used to decompose the osteosarcoma edge or curve into blocks and sub-blocks, and these
sub-blocks are roughly regarded as straight lines, so as to be used for the realization of
ridge wave analysis, and its mathematical description is as follows:

T → (G0T, ∆1T, ∆2T, . . .) (8)
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In the above formula, the G0 region represents the multi-level filter, ∆ represents
the subband information, and T represents the detected target, which is the tumor in the
osteosarcoma MRI image. These smooth windows are represented by binary squares,
represented as Ψq(γ1, γ2), γ1, γ2, which will be initialized according to the image size, and
the mathematical relationship is shown in Equation (9).

q =

[
Y1

2b ,
Y1 + 1

2b

]
× [

Y2

2b ,
Y2 + 1

2b ] (9)

Then, the resulting squares are re-normalized and returned to the unit scale, and then
the renormalization operator is performed. The mathematical expression of this process is:

Hq = G−1
q
(
Vq∆bT

)
, q ∈ qb (10)

GqT(x1, x2) = 2bT(2bx1 −Y1, 2bx2 −Y2) (11)

In this way, the two dyadic sub-bands are integrated before the ridgelet transform is
implemented, and the ridgelet transform is performed after the renormalization step, as
shown in Equation (12).

ηυ = < hq, Pλ > (12)

After the above noise reduction process, the tumor boundary in the osteosarcoma MRI
image can be made clearer, the influence of image noise can be reduced, and the training
effect can be further improved.

3.3. Detailed Design of Bilateral Networks

Our guided aggregation bilateral network osteosarcoma image segmentation model
mainly consists of two parts, a detail branch and a semantic branch. They are finally merged
by an aggregation layer, and our network concept is very general. Different convolutional
models can implement it. The specific design mainly includes three key contents:

(1) The channel capacity of the detail branch used to process the underlying details of the
osteosarcoma image is high and shallow, and the receptive field for spatial details is
relatively small. The feature representation of this branch has a large spatial size and
a wide channel, so it is best not to use residual connections, otherwise, it may increase
the cost and reduce the speed.

(2) The semantic branch is used to capture the high-level semantics in osteosarcoma MRI
images, and its channel capacity is small, the level is relatively deep, and the receptive
field for categorical semantics is relatively large. This branch has a lower channel
capacity than the detail branch because spatial details can be provided by the detail
branch. Compared to the channel with ω (ω < 1) detail branches in our experiments,
such branches are lightweight.

(3) The features of the above two branches are complementary, and one of them does
not know the information of the other, so we design an aggregation layer to combine
these two types of feature representations. Because of the fast downsampling strategy,
the spatial dimension of the output of the semantic branch is smaller than that of the
detail branch. Therefore, we need to upsample the output feature map of the semantic
branch to match the output of the detail branch.

3.3.1. Detailed Design of Detail Branches

The detail branch is mainly responsible for processing the spatial details of osteosar-
coma MRI images, which belong to low-level information, so this branch requires rich
channel capacity to encode rich spatial information. At the same time, the detail branch is
only concerned with the low-level details, so we will design a shallow structure for this
branch. The instantiation of the detail branch consists of three stages, and each layer is a
convolutional layer, followed by batch normalization and activation functions, the stride
s = 2 of the first layer of each stage, and the layers in the same stage have the same number
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of filters and output feature map size. In this case, the output feature map extracted by
this branch is one-eighth of the original inputted osteosarcoma MRI image. The channel
capacity of the minutiae branch is large, which enables the minutiae branch to encode
rich spatial details. However, due to the large channel capacity, high spatial dimension,
and residual structure of this branch, the memory access cost is also increased accordingly.
In order to alleviate this problem, this branch mainly follows the stacking idea of the
VGG network.

3.3.2. Detailed Design of Semantic Branches

Considering the large receptive field and higher computational efficiency, after refer-
ring to the characteristics of other lightweight MRI image segmentation models, we design
a semantic branch. The semantic branch model adopts a fast downsampling strategy to
improve the feature representation level, rapidly expands the acceptable field for MRI
image segmentation, and the lesion area can be determined quickly. High-level semantics
require large receptive fields, so the semantic branch adopts methods such as global average
pooling, embedding global contextual responses, etc. It mainly includes the stem block
structure. We use stem as the first stage of the semantic branch. This process uses two dif-
ferent downsampling methods to reduce the feature representation and then concatenates
the output features of the two branches as the output. It has low computational cost and
effective feature expression ability, and its design structure is shown in Figure 3.

Figure 3. Illustration of Stem Block.

Context Embedding Block. As described above, the semantic branch requires large
receptive fields to capture high-level semantics, so we design the context embedding block,
which uses global average pooling and residual connection methods to efficiently embed
global context information. The schematic diagram of its architecture is shown in Figure 4,
where Conv represents convolution operation, BN represents batch normalization, ReLu
represents relu activation function, Mp refers to max pooling, and Gp refers to global
average pooling. C represents the connection, 1 × 1 and 3 × 3 represent the size of the
nucleus, and H × W × C represents the shape of the tensor during the segmentation
of the osteosarcoma MRI image. The three parameters represent Height, Weight, and
Channel, respectively.

Figure 4. Illustration of Context Embedding Block.
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Gather-and-Expansion Layer. Taking advantage of deep convolutional networks, we
propose a gather-expansion layer, as shown in Figure 5. The collection-expansion layer
includes the following:

(1) 3 × 3 convolution. Feature responses can be efficiently aggregated and scaled to
higher dimensional spaces.

(2) A 3 × 3 depthwise convolution can be performed independently on each output
channel of the expansion layer.

(3) The 1 × 1 network can be used as a projection layer to project the output of the
depth-wise convolution to the space with low channel capacity. When stride = 2, we
will use two 3 × 3 depth convolutions to further expand the receptive field, and a
3 × 3 separable convolution is used as a shortcut. Many people use a 5 × 5 separable
convolution to expand the receptive field. Under certain conditions, its FLOPS will
be better than two. There are fewer 3 × 3 separable convolutions. But in this layer,
we use two 3 × 3 depthwise convolutions instead of 5 × 5 depthwise convolutions.
Because this structure has fewer FLOPS and the same receptive field in our model,
the model becomes more lightweight.

Figure 5. Illustration of Inverted Bottleneck and Gather-and-Expansion Layer.

Compared with the inverted bottleneck in MobileNetv2, the gather-and-expansion
layer has one more 3 × 3 convolutions, but the computational cost and memory access
cost of this layer is relatively low. This is because the 3 × 3 convolution has been specially
optimized in the CUDNN library, and with this layer, the feature expression ability of the
GE layer is significantly better than the inverted bottleneck.

3.3.3. Bilateral Guided Aggregation

In order to merge the feature responses of the above two branches, researchers will
adopt many methods, including a summation of elements, connection, etc. However, the
outputs of the two branches have different levels of feature representation. Therefore,
using a simple combination method will ignore the diversity of the two kinds of informa-
tion, which will make the performance worse and the optimization difficulty will become
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higher. Based on our observations and experiments, we finally propose a bilateral guided
aggregation layer, which uses this novel hierarchical structure to fuse the complementary
information of the two branches above, as shown in Figure 6. This layer utilizes the context
information of the semantic branch to guide the feature response of the detail branch. With
different scale guidance, we capture different scale feature representations to inherently
encode multi-scale information, while compared with the simple combination method,
this bootstrapping method can make the communication between the two branches more
efficient. In Figure 6, Conv is the convolution operation, DW-Conv refers to the convolution
in the depth direction, aPooling refers to average pooling, BN refers to batch normaliza-
tion, US refers to bilinear interpolation, and Sig refers to the sigmoid activation function.
Sum refers to summation, 1 × 1, 3 × 3 represents the size of the kernel, H ×W × C rep-
resents the shape of the tensor, and the three parameters represent Height, Weight, and
Channel, respectively.

Figure 6. Detailed design of Bilateral Guided Aggregation Layer.

3.3.4. Booster Training Strategy

After performing the main work of segmentation, we have initially separated the
osteosarcoma features from the whole image. To further improve the segmentation accuracy,
we propose a booster training strategy. It is a booster similar to a rocket launcher, boosting
feature representations during the training phase and discarding them during the inference
phase. Therefore, the computational complexity brought by it in the inference stage is
very small, and we can insert auxiliary segmentation heads into different positions of
the semantic segmentation model to achieve different effects. We can also adjust the
computational complexity of the auxiliary split head and the main split head by controlling
the channel size ct.

The above is the basic structure of our OSNDCN. Before segmentation, we performed
dataset optimization and denoising operations on the original MRI osteosarcoma images.
The influence of noise is reduced and the segmentation effect of the model is improved. Due
to the unique dual-channel segmentation module, OSNDCN greatly reduces the parameter
scale of the model while ensuring segmentation efficiency. The lightweight model makes
the inference speed very fast. It can refer to the auxiliary diagnosis results given by the
system in real-time, and at the same time obtain the image information screened and
processed by the system in time, which greatly reduces the workload of doctors. The
light weight of the model enables the system to run on a lower hardware level, which can
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effectively alleviate the problems of low primary medical levels and unbalanced medical
resources in developing countries.

4. Data Collection, Analysis and Discussion
4.1. Data Collection

The data in this paper [3] were provided by the Ministry of Education Mobile Health
Information-China Mobile Joint Laboratory and the Second Xiangya Hospital of Central
South University. We collected data on metrics such as more than 80,000 MRI osteosarcoma
images from 204 osteosarcoma patients. The specific information of the patients is shown
in Table 2. Among the patients, we selected 80% of the patient cases as the training set and
20% of the data as the test set. A total of 164 of the 204 cases were used as the training set
and 40 as the test set.

Table 2. Baseline patient characteristics.

Characteristics Total Training Set Test Set

Age
<15 48 (23.5%) 38 (23.2%) 10 (25%)

15~25 131 (64.2%) 107 (65.2%) 24 (60.0%)
>25 25 (12.3%) 19 (11.6%) 6 (15.0%)

Sex
Female 92 (45.1%) 69 (42.1%) 23 (57.5%)
Male 112 (54.9%) 95 (57.9%) 17 (42.5%)

Marital status
Married 32 (15.7%) 19 (11.6%) 13 (32.5%)

Unmarried 172 (84.3%) 145 (88.4%) 27 (67.5%)

Surgery Yes 181 (88.8%) 146 (89.0%) 35 (87.5%)
No 23 (11.2%) 18 (11.0%) 5 (12.5%)

SES
Low SES 78 (38.2%) 66 (40.2%) 12 (30.0%)
High SES 126 (61.8%) 98 (59.8%) 28 (70.0%)

Grade
Low grade 41 (20.1%) 15 (9.1%) 26 (65%)
High grade 163 (79.9%) 149 (90.9%) 14 (35%)

Location
Axial 29 (14.2%) 21 (12.8%) 8 (20%)

Extremity 138 (67.7%) 109 (66.5%) 29 (72.5%)
Other 37 (18.1%) 34 (20.7%) 3 (7.5%)

4.2. Evaluation Indexes

In order to evaluate the performance of the model, we use accuracy, precision, recall,
F1-score, Intersection of Union (IoU), and Dice Similarity Coefficient (DSC) as evaluation
indicators, and use true positive (TP), true negative (TN), false positive (FP), and false nega-
tive (FN) metrics to explain the performance of the network. Among them, TP indicates the
area that is judged to be osteosarcoma, which is actually an osteosarcoma area; TN indicates
that the area is judged to be a normal area, which is actually a normal area; FP means that the
area is judged to be osteosarcoma area, but it is actually a normal area; FN indicates that the
area is judged to be a normal area, but is actually a tumor area [37]. We introduce the relevant
indicators defined in the experiment as follows:

Accuracy (Acc) refers to the proportion of all samples that are correctly judged:

Acc =
TP + TN

TP + TN + FP + FN
(13)

Recall refers to the ratio of correctly predicted positive samples to actual positive samples:

Re =
TP

TP + FN
(14)

IoU is a measure of the accuracy of detecting relevant objects in a particular dataset,
which represents the similarity between the predicted region and the actual tumor region
of the object present in the set of images. The dice similarity coefficient (DSC) can be
used to represent the similarity between samples. It is a measure function of set similarity,
ranging from 0 to 1. When DSC equals 1, it means that the predicted tumor area completely
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coincides with the actual tumor area. We set I1 as the actual tumor area and I2 as the
predicted tumor area. The above parameters can be expressed as:

IoU =
I1 ∩ I2

I1 ∪ I2
(15)

DSC =
2·|I1 ∩ I2|
|I1|+|I2|

(16)

We define params as the total number of parameters in the model, which is used to
measure the complexity of the algorithm and model. During the experiment, we try to
increase the value of the Re parameter to prevent missed diagnoses.

4.3. Contrast Algorithm

In order to explore the performance of the OSGABN model and the complexity of
its structure, we selected some segmentation algorithms for comparative experimental
analysis. Below, we briefly introduce some of the algorithms we compared with our
OSGABN algorithm.

(1) The core module of the pyramid scene parsing network (PSPNet) [38] is the pyramid
pooling module, which is used to aggregate the context information of different
regions in order to obtain global information. The size of the pooling kernel at the
pyramid level can be set.

(2) The multi-scale fully convolutional network (MSFCN) [39] is a fully convolutional
network based on multi-supervised output layers which can be used for the automatic
segmentation of tumors. It uses multiple feature channels in the up-sampling part.

(3) U-net [40] is a segmentation network that adopts a u-shaped structure. It uses convo-
lution to first encode and then decode. It includes two parts: feature extraction and
upper sampling. This model is relatively simple, but the effect is better.

(4) Feature pyramid networks (FPN) [41] utilize high-resolution images of low-level
features and semantic information of high-level features to fuse features of different
layers to achieve prediction.

(5) The multi-scale residual network (MSRN) [20] is based on residual blocks, and in-
troduces convolution kernels of different sizes, so that the features of images of
different scales can be adaptively detected, and the most effective image information
can be obtained at the same time. This method is a state-of-the-art osteosarcoma
MRI image segmentation model which can effectively utilize the characteristics of
low-resolution images.

(6) A fully convolutional network (FCN) [37] is a tumor detection method that uses a
skip structure to achieve fine segmentation to perform the pixel-level classification
of images. We select FCN-8s and FCN-16s, two networks with 8 and 16 upsampling,
respectively, for comparative experiments.

4.4. Training Strategy

To increase the robustness of model training, we process the dataset and perform
data augmentation before formally training the segmentation model. Our network was
trained for a total of 1000 epochs. During training, we set the division learning rate to 0.01
and use PolynomiaDecay to dynamically adjust the learning rate. SGD is chosen as the
trained optimizer.

4.5. Segmentation Effect Evaluation

In our segmentation system, before the dataset is trained, we divide the dataset into
useful slices (US) and normal slices (NS), as shown in the Figure 7; the tumor location is
obvious in the left image, and the boundary between the tumor tissue and the normal area
is also very clear. Such pictures will reduce the training burden during the training process,
and speed up the training and enhance the accuracy of the model so that it is suitable
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for input as a training set. As shown in the picture on the right, below, the segmentation
boundary between the tumor and other tissues is not obvious. If the input training may
make the training process time-consuming and laborious, we divide it into the NS dataset.

Figure 7. US (the left) and NS (the right) example images.

After classifying the dataset, we proceeded with data enhancement processing. The
effect of data enhancement processing is shown in Figure 8, where the left column is the
original label, the middle column is the segmentation rendering without optimization
processing, and the right column is the optimized segmentation renderings. We can see
that there is an incomplete and inaccurate segmentation in the middle column, and after
optimization, the segmentation can obtain a relatively complete and accurate tumor region
prediction. From here we can see that after the data optimization, the performance of the
model has been significantly improved.

Figure 8. The renderings before and after preprocessing.

Figure 9 shows the effect of each model on the segmentation of osteosarcoma MRI
images. Among them, from left to right are the segmentation renderings of the label image,
our model, FCN16, FCN8, FPN, MSFCN, MSRN, and U-net. We can visually compare the
performance differences of the models through the segmentation effects of each model.
According to the comparison of the selected six osteosarcoma segmentation instances, it
can be seen that our model has a good segmentation effect and can more accurately divide
the lesion area, while other models may have insufficient segmentation (such as MSFCN)
and excessive segmentation, partitioning (such as FPN) and other issues.

In order to evaluate the performance of each model in more detail, we quantitatively
compare the parameters of the segmentation methods and analyze the models from dif-
ferent evaluation indicators. Table 3 lists the parameters of different methods on the
osteosarcoma dataset in detail to reflect the performance difference of different segmenta-
tion methods. From the table, we can see that our FaBiNet segmentation model performs
very well in the task of segmenting osteosarcoma, and its DSC, IoU, Recall and other
indicators are at the forefront, with excellent performance. While achieving such accuracy,
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the parameter scale of the model is far smaller than other models, so the performance
requirements for hardware are very low, and there is no need for grassroots hospitals and
other organizations to be equipped with expensive computing equipment, which further
saves costs and is conducive to the popularization of the system.

Figure 9. The effects of different segmentation models for osteosarcoma MRI images.

Table 3. Index parameter values of different methods.

Model Pr Re F1 IoU DSC Params

FCN-16s 0.922 0.882 0.900 0.824 0.859 134.3 M

FCN-8s 0.941 0.873 0.901 0.830 0.876 134.3 M

PSPNet 0.856 0.888 0.872 0.772 0.870 46.70 M

MSFCN 0.881 0.936 0.906 0.841 0.874 23.8 M

MSRN 0.893 0.945 0.918 0.853 0.887 14.27 M

FPN 0.914 0.924 0.919 0.852 0.888 48.20 M

UNet 0.922 0.924 0.923 0.867 0.892 17.26 M

Ours 0.915 0.923 0.919 0.853 0.915 2.33 M

Figure 10 below is a comparison chart of the DSC of different segmentation models
and the number of parameters of this model. From the results, we can see that the DSC
of our proposed osteosarcoma segmentation method is the highest, reaching 0.915, which
is higher than the second-place UNet; this reflects the high segmentation accuracy of our
model, and the segmentation accuracy is guaranteed. At the same time, the number of
parameters of our model is far more effective than other models. The params is only 2.33 M,
while ensuring accuracy, and the degree of lightweight is also very high. It greatly reduces
the difficulty of training, so that our osteosarcoma auxiliary recognition system can run
smoothly on low-cost hardware.
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Figure 10. The DSC for different models and parameter scale for this model.

Figure 11 depicts a legend for the comparison of the IoU and the parameter scale for
different models. From the figure, we can see that the IoU of each segmentation model
is relatively high. Except for PSPNet, the IoU of other models is above 0.8. And the IoU
of our FaBiNet is second only to Unet; the former is 0.853, and the latter is 0.867. The
difference between the two is also very small. However, we can see from the figure that
under the premise that the IoU gap is not large, the params gap of each model is more
obvious. Among them, our model param is only 2.33 M, and the parameter value of Unet
whose IoU is slightly higher than that of FaBiNet is 17.26 M. For example, with FCN, when
it reaches an IoU of about 0.83, the parameter scale reaches an astonishing 134.3 M, which
means that the model is too complicated, so it is not conducive to practical use.

Figure 11. Comparison of IoU and parameter scale of different models.

Figure 12 below shows how the accuracy of each model’s changes as training progresses.
We trained a total of 1000 epochs, and randomly selected 50 epochs (20 random epochs to choose
one epoch) for comparison and analysis. It can be seen from the line chart that after 200 rounds
of training, the accuracy of each model tends to be stable; numerically, the accuracy rate of our
FaBiNet is the highest, reaching 96% in steady state, and the highest accuracy is more than 98%.
The accuracy rate and stability are both at an excellent level. In terms of accuracy, the ranking of
each model is: FaBiNet (Ours) > UNet > FPN > FCN-8s≈ FCN-16s > MSRN > MSFCN.
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Figure 12. Accuracy changes of each model.

Recall is an important evaluation index in tumor image recognition. If the recall
fluctuation of a model is relatively small and the value is high when it is stable, then
this model not only has a high recognition rate, but also avoids the occurrence of missed
diagnosis as much as possible. From Figure 13, we can observe the recall trends and
values of various models. We can see that in the first 220 epochs of training, the recall
fluctuations of the Unet, FPN, and MSFCN models are relatively large. After that, most
of the models have stabilized. Generally speaking, the recall of our model is relatively
high and relatively stable, and there will be no big fluctuations in the early stage, so the
performance is excellent. Subsequently, we selected the same four models to compare with
our model and study their F1-score relationship. From Figure 14 of epoch—F1-score, we
can see that the F1-score of our model is always kept at a high level, and the stability is also
better, which indicates that our model has better robustness.

Figure 13. Recall changes of each model.
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Figure 14. F1-score changes of each model.

5. Conclusions

Using more than 80,000 MRI images of osteosarcoma from three hospitals in China as
a dataset, this paper proposes an osteosarcoma-assisted segmentation method based on
guided aggregation bilateral networks. In this method, we first optimized the dataset, then
preprocessed the images, and finally performed image segmentation. Due to the unique
architecture of our segmentation model, it can achieve high recognition rates with a low
parameter scale. Comparing our method with other image segmentation algorithms, the
experimental results show that our method has better segmentation performance. At the
same time, our model is highly lightweight and can be easily deployed on low-cost devices.
This reduces the cost of hardware facilities.

With the rapid development of information technology, we can further expand our
data set, make certain improvements to the model, design a more scientific and effective
training process, and optimize the segmentation edges to further improve the effect of
segmentation. We are committed to improving our model and making it more mature so
as to reduce the burden on front-line clinicians around the world and to contribute to the
auxiliary diagnosis of osteosarcoma.
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