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Abstract: An irregularity index IR(Γ) of a graph Γ is a nonnegative numeric quantity (i.e., IR(Γ) ≥ 0)
such that IR(Γ) = 0 iff Γ is a regular graph. In this paper, we show that IRC closely correlates with the
normal boiling point Tbp and the standard heat of formation ∆Ho

f of lower benzenoid hydrocarbons.
The correlation models that fit the data efficiently for both Tbp and ∆Ho

f are linear. We develop further
mathematical properties of IRC by calculating its exact expressions for the recently introduced
transformation graphs as well as certain derived graphs, such as the total graph, semi-total point
graph, subdivision graph, semi-total line graph, double, strong double, and extended double cover
graphs. Some open problems are proposed for further research on the IRC index of graphs.

Keywords: irregularity index; physicochemical property; QSAR model; benzenoid hydrocarbon;
transformation graph; derived graph
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1. Introduction

In modern chemistry, the dependence of the physicochemical properties of a com-
pound on its chemical structure is a cornerstone idea. Studying this dependence up to
its full potential is rather challenging [1]. Unavailability of experimental data is one of
the common challenges encountered in unveiling this dependence. A lot of research [2–6]
has been conducted so far to estimate the missing data. Modern tools such as machine
learning [7] and graph signal processing (GSP) [8] have recently been employed to ad-
dress this data retrieval. Molecular descriptors [9–11] are one of the contemporary tools
to predict diverse psychochemical features of a chemical compound. Graph-theoretic
descriptors are an important class of descriptors that transform a chemical compound into
a graph; diverse graph-theoretic tools are then employed to retrieve the dependence. A
lot of available research [12–14] shows that these graph-based invariants, which are easily
computable, efficiently encrypt a significantly higher level of structural information of
chemical compounds.

Diverse classes of topological indices include degree-based indices, which have sig-
nificantly better efficiency. An irregularity index IR(Γ) of a graph Γ is a nonnegative
numeric quantity (i.e., IR(Γ) ≥ 0), such that IR(Γ) = 0 iff Γ is a regular graph. Degree-
based irregularity indices have diverse application in QSPR/QSAR modeling [15]. Thus,
their mathematical properties have been studied extensively. For instance, Ascioglu and
Cangul [16] studied the σ irregularity index and the forgotten index of subdivision and
r-subdivision graphs. Réti [17] studied upper and lower bounds on various degree-based
irregularity indices, such as the sigma index, irregularity indices based on Zagreb, forgotten
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topological indices, and so on. In the same work, Réti [17] introduced the IRC index. This
paper presents its potential applicability in QSPR/QSAR modeling of compounds. We also
studied the IRC index for various transformation and derived graphs.

This paper is organized as follows: Section 2 presents definitions and preliminary
results required in later sections. Section 3 applies the IRC index in QSAR modeling of
physicochemical properties of chemical compounds. Sections 4 and 5 present results on the
IRC index of transformation graphs and derived graphs, respectively. Section 6 concludes
the paper and exhibits some open problems relating to the IRC index.

2. Preliminaries

A simple graph G is an ordered pair G = (V, E), where V is the set of points called
vertices and E ⊆ (V

2) is the set of lines called edges. The cardinality n =| V | (respectively,
e =| E |) of E is called the order (respective size) of G. Two vertices, u, v ∈ V(G), respec-
tively, (edges e, f ∈ E(G)) are said to be adjacent if uv ∈ E(G) (respectively, e and f share
a common end-vertex). In that case, we denote adjacency with y ∼ z or e ∼ f . A vertex
u ∈ V(G) and an edge e ∈ E(G) are called incident and written as u ∼ e if u is one of the
end-vertex of e. The number of vertices adjacent to a vertex u is known as the degree of u
and written as d(u). A graph is called bipartite if it contains no cycle of added length. We
refer the reader to a book on molecular topology by Diudea et al. [18].

A topological invariant IR(G) of graph G is said to have an irregularity index if
IR(G) ≥ 0 and IR(G) = 0 iff G is regular. Based on its defining structure, an irregularity
index could either be eigenvalues-based or degree-based.

The first ever proposed irregularity index is eigenvalues-based and known as the
Collatz–Sinogowitz irregularity index [19], which determines the irregularity of a graph.
For a n-vertex e-edge graph G(n, e), it is defined as follows:

CS(G) = λ(G)− 2e
n

,

where λ is the spectral radius of the adjacency matrix of G. Because of the lower com-
putational complexity, irregularity indices are mostly degree-based. In 1992, Bell [20]
introduced a degree-based irregularity index known as the variance of degree Var(G),
which has significant applications in chemistry. For a (n, e) graph G, it is defined as

Var(G) =
1
n ∑

u∈V(G)

(d(u))2 − 1
n2

(
∑

u∈V(G)

d(u)
)2

=
1
n ∑

u∈V(G)

(d(u))2 −
(

2e
n

)2

.

In 1997, Albertson introduced another degree-based irregularity index, known as
Albertson’s irregularity index. It is defined as

AL(G) = ∑
uv∈E(G)

| d(u)− d(v) | .

By extending Albertson’s irregularity index, Gutman et al. [21] introduced the
sigma index.

σ(G) = ∑
uv∈E(G)

(d(u)− d(v))2.

A topological index T is a map from the set of simple connected graph ∑ to the
real set (i.e., T : ∑ → R), and it has significant applications in chemistry. One of the
earliest degree-based topological indices are the Zagreb indices. Gutman and Trinajstić [22]
introduced the two Zagreb indices back in 1972 while working on the total π-electronic
energy of benzenoid hydrocarbons in theoretical chemistry. They have have been employed
in various chemical application since then (see for instance, Gutman and Das [23] and
Gutman [24]). For a graph G, the two Zagreb indices are defined as follows:
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M1(G) = ∑
uv∈E(G)

d(u) + d(v) = ∑
u∈V(G)

d2(u), M2(G) = ∑
uv∈E(G)

d(u)d(v).

Furtula and Gutman [25] proposed a degree-based structure descriptor, which they
called the forgotten topological index. It is defined as:

F(G) = ∑
u∈V(G)

d3(u).

In connection with the Zagreb indices, several new irregularity indices have been
established. Two of those Zagreb-related irregularity indices are the following [15,26]:

IRM1(G) =

√
M1(G)

n
− 2e

n
= Var(G)

(√
M1(G)

n
+

2e
n

)−1

.

IRM2(G) =

√
M2(G)

n
− 2e

n
.

Moreover, based on a degree-based quantity proposed in [27], Réti [17] introduced the
following irregularity index:

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u) = F(G)− 2e
n

M1(G) ≥ 0.

This paper focuses on this new irregularity index (i.e., IRC index) and presents its
potential applicability in modeling physico-chemical properties of benzenoid hydrocarbons.
Then, further mathematical properties of the IRC index are studied.

For an edge e = xy ∈ E(G), the degree of e is defined as d(e) = d(u) + d(v)− 2. Based
on degrees of edges, Ilić and Zhou [28] proposed the reformulated Zagreb indices. For a
graph G, the reformulated first Zagreb index is defined as follows:

EM1(G) = ∑
f∈E(G)

d2( f ).

The reformulated second Zagreb index is defined as follows:

EM2(G) = ∑
e, f∈E(G), e∼ f

d(e)d( f ).

Similarly, an edge version of the forgotten index, also called the reformulated forgotten
index, of G is defined as follows:

EF(G) = ∑
f∈E(G)

d3( f ).

Recently, Ranjini et al. [29] introduced certain redefined versions of the Zagreb indices.
The redefined first, second, and third Zagreb indices are defined as follows:

ReZG1(G) = ∑
uv∈E(G)

d(u) + d(v)
d(u)d(v)

, ReZG2(G) = ∑
uv∈E(G)

d(u)d(v)
d(u) + d(v)

,

ReZG3(G) = ∑
uv∈E(G)

d(u)d(v)[d(u) + d(v)].

Now we introduce some derived graphs based on different graph operations. The
total graph T (G) of a graph G was introduced by Behzad [30] in 1967, and it has the vertex
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set V
(
T (G)

)
= V(G) ∪ E(G), such that yz, ye, e f ∈ E

(
T (G)

)
iff y ∼ z, z ∼ e or e ∼ f are

adjacent/incident in G.
Sampathkumar and Chikkodimath [31] extended the concept of the total graph and

put forward two semi-total point and line graphs. The semi-total point graph T1(G) has the
vertex set V

(
T1(G)

)
= V(G) ∪ E(G), and any two vertices y, z ∈ V

(
T1(G)

)
are adjacent iff:

(i) u, v ∈ V(G) such that u ∼ v in G, or;
(ii) u ∈ V(G), e ∈ E(G) or vice versa such that u ∼ e in G.

Similarly, the semi-total line graph T2(G) has the vertex set V
(
T2(G)

)
= V(G)∪ E(G),

and any two vertices u, v ∈ V
(
T2(G)

)
are adjacent iff:

(i) u, v ∈ E(G) such that u ∼ v in G, or;
(ii) u ∈ V(G), e ∈ E(G) or vice vera such that u ∼ e in G.

Independently, similar concepts were studied by Akiyama et al. [32], where they
referred to these operations as “middled graphs”.

The subdivision S(G) of a graph G has the vertex set V
(
S(G)

)
= V(G) ∪ E(G) such

that uv ∈ E
(
S(G)

)
iff u ∈ V(G) and v ∈ E(G) and vice versa. Informally, S(G) is built by

adding a degree-two vertex on each edge of G.
The line graph L(G) of a graph G has the vertex set V

(
L(G)

)
= E(G) such that

f , g ∈ V
(

L(G)
)

are adjacent in G iff f ∼ g in E(G).
The double graph D(G) of G, having two copies G1 and G2, has its vertex set V

(
D(G)

)
=

V(G1) ∪ V(G1), preserving E(Gi) (1 ≤ i ≤ 2), and for any uv ∈ E(G), we add two
additional edges u1v2 and v1u2 in D(G). Similarly, the strong double SD(G) of G is
obtained from D(G) by additionally adding uivi for every uv ∈ E(G).

The extended double cover G∗ of G was introduced by Alon [33]. If V(G) = {v1, . . . , vn},
then G∗ is a bipartite graph with partition (X, Y), where X = {x1 . . . , xn} and
Y = {y1, . . . , yn}, in which xi ∼ yj iff either i = j or xiyi ∈ E(G).

The definitions of some of the aforementioned derived graphs suggest the following
lemma.

Lemma 1. Let G be an (n, e)-graph. Let x ∈ V(G) and f = uv ∈ E(G). Then, the following
relations hold:

(i) dS(G)(x) = dG(x) and dS(G)( f ) = 2.
(ii) dL(G)( f ) = dG(u) + dG(v)− 2.
(iii) dT1(G)(x) = 2dG(x) and dT1(G)( f ) = 2.
(iv) dT2(G)(x) = dG(x) and dT2(G)( f ) = dL(G)( f ) + 2 = dG(u) + dG(v) + 2.
(v) dT (G)(x) = 2dG(x) and dT (G)( f ) = dL(G)( f ) + 2 = dG(u) + dG(v) + 2.

Next, we introduce some transformation operations on graphs put forward by Wu and
Meng [34] back in 2002. For a graph G and variables a, b, c ∈ {+,−}, the transformation
graph Gxyz has the vertex set V(Gxyz) = V(G) ∪ E(G), and for any uv ∈ V(Gxyz), we have
u ∼ v in Gxyz iff

(i) u, v ∈ V(G), uv ∈ E(G) if x = + and uv /∈ E(G) if x = −;
(ii) u, v ∈ E(G), u ∼ v in G if y = + and u � v in G if y = −;
(iii) u ∈ V(G), e ∈ E(G), u ∼ e in G if z = + and u � e in G if z = −.

Alternatively, the vertex set of Gxyz is partitioned into Vx and Vy, that is, V(Gxyz) =
Vx ∪Vy, where

Vx = {u | u ∈ V(G)} and Vy = {e | e ∈ E(G)}. (1)

Moreover, the edge set of Gxyz can be partitioned into Ex, Ey, and Ez, that is, E(Gxyz) =
Ex ∪ Ey ∪ Ez, where
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Ex = {uv | u, v ∈ V(G)}, Ey = {e f | e, f ∈ E(G)}, and Ez = {ue | u ∈ V(G), e ∈ E(G)}. (2)

Based on definitions of the transformation graphs, the following properties can be
deduced.

Lemma 2. Let G be an (n, e)-graph. Let x ∈ V(G) and f = uv ∈ E(G). Then, the following
relations hold:

(i) dG+++(x) = 2dG( f ) and dG+++( f ) = dG(u) + dG(v).
(ii) dG++−(x) = e and dG++−( f ) = dG(u) + dG(v) + n− 4.
(iii) dG+−+(x) = 2dG( f ) and dG+−+( f ) = e− dG(u)− dG(v) + 3.
(iv) dG−++(x) = n− 1 and dG−++( f ) = dG(u) + dG(v).
(v) dG−−−(x) = n + e− 2dG(x)− 1 and dG−−−( f ) = n + e− dG(u)− dG(v)− 1.
(vi) dG−−+(x) = n− 1 and dG−−+( f ) = e− dG(u)− dG(v) + 3.
(vii) dG−+−(x) = n + e− 1− 2dG(x) and dG−+−( f ) = n + dG(u) + dG(v)− 4.
(viii) dG+−−(x) = e and dG+−−( f ) = e + n− dG(u)− dG(v)− 1.

Further mathematical properties of transformation graphs have been studied by Xu
and Wu [35] and Yi and Wu [36].

3. Application of the IRC Index in QSAR Modeling

In order to investigate the potential applicability of the IRC irregularity index, we
would have to compute it for lower benzenoid hydrocarbons. The next subsection explains
the computational details, which will be carried out in subsequent subsections.

3.1. Computational Details

Although the defining structure of any degree-based irregularity index is simple
enough to compute it on paper, using the computer saves a lot of time.

Here, we have devised a simple way of calculating any irregularity index for an
arbitrary graph. Note that although we use this method only for computing the IRC index
of lower benzenoid hydrocarbons, the method can be employed for any irregularity index
and for any arbitrary graph.

Our simple two-step process employs newGraph [37] and MatLab [38] to compute an
irregularity index IR of a graph G.

Step 1: Draw G on newGraph and compute its adjacency matrix A.
Step 2: Input A into our program in MatLab to compute IR.

Although our MatLab program only computes the IRC index, it is easily modifiable
for any arbitrary irregularity index.

Our MatLab program with a README file is publicly available on GitHub. Access the
webpage https://github.com/Sakander/Irregulaity-Indices.git (accessed on 21 February
2022) in order to access the code.

3.2. QSAR Modeling of Physicochemical Properties

Following a seminal work by Gutman et al. [39], in order to assess the efficiency of
a topological descriptor, we choose two basic physicochemical properties known as the
standard enthalpy of formation ∆Ho

f and the normal boiling point Tbp. For the chemistry
of the underlying chemical compounds, the enthalpy of formation exhibits the behavior
of thermal properties, and the boiling point is supposed to constitute intermolecular and
van der Waals interactions. The criterion to determine the performance of an irregularity
index is simply the determination of the statistical correlation coefficient. The higher the
value of the correlation coefficient is (i.e., closer to zero), the better the efficiency of the
irregularity index.

https://github.com/Sakander/Irregulaity-Indices.git
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Following the standard choice of chemical compounds, we regard lower benzenoid
hydrocarbons, as they are supposed to represent both cyclic and acyclic chemical structures.
For the sake of authenticity and reliability of the statistical inference, we use 22 lower
benzenoid hydrocarbons. Public availability of experimental data is another considerable
reason for choosing lower benzenoid hydrocarbons. Figure 1 depicts the 22 lower benzenoid
hydrocarbons.

Experimental data of Tbp for the lower PAHs considered here have been provided by
the standard NIST databases [40]. On the other hand, the experimental data for ∆Ho

f have
been retrieved from Allison and Burgess [2]. For tallying the data, we confirmed it with
Nikolić et al. [41].

For the molecular graphs in Figure 1, we first employ the computational method in
Section 3.1 to compute their IRC indices. Then, we conduct a detailed statistical analysis
of the IRC index with the experimental data of Tbp and ∆Ho

f for the PAHs in Figure 1.
Corresponding statistical parameters, such as the correlation coefficient, the regression
model with confidence interval, the standard error of fit, the determination coefficient,
scatter plot, and so on, are computed to assess how closely the IRC index correlates with
the experimental data. Table 1 exhibits the values of Tbp, ∆Ho

f and the IRC indices of the
22 lower PAH graphs in Figure 1.

Figure 1. Cont.
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Figure 1. The 22 lower benzenoid hydrocarbon graphs.

Table 1. The experimental data of Tbp, ∆Ho
f , and the IRC index of the 22 lower PAHs.

Molecule Tbp in ◦C ∆Ho
f in kJ/mol IRC

Benzene 80.1 75.2 0
Naphthalene 218 141 9.3333
Phenanthrene 338 202.7 13.3333

Anthracene 340 222.6 13.3333
Chrysene 431 271.1 17.3333

Benzo[a]anthracene 425 277.1 17.3333
Triphenylene 429 275.1 17.3333

Tetracene 440 310.5 17.3333
Benzo[a]pyrene 496 296 19.3333
Benzo[e]pyrene 493 289.9 19.3333

Perylene 497 319.2 19.3333
Anthanthrene 547 323 21.3333

Benzo[ghi]perylene 542 301.2 21.3333
Dibenzo[a,c]anthracene 535 348 21.3333
Dibenzo[a,h]anthracene 535 335 21.3333
Dibenzo[a,j]anthracene 531 336.3 21.3333

Picene 519 336.9 21.3333
Coronene 590 296.7 23.3333

Dibenzo(a,h)pyrene 596 375.6 23.3333
Dibenzo(a,i)pyrene 594 366 23.3333
Dibenzo(a,l)pyrene 595 393.3 23.3333

Pyrene 393 221.3 15.3333

Let ρ be the correlation coefficient. Then, ρ(∆Ho
f ) and ρ(Tbp) are presented in the

following expression.
ρ(Tbp) = 0.9967, ρ(∆Ho

f ) = 0.9343.

The corresponding linear regression models with 95% confidence intervals for the
slope and intercepts of the models, the determination coefficients, and the standard error
of estimates are given as follows:

Tbp = 25.937±19.8399 IRC− 13.847±1.0223, r2 = 0.9933, s = 8.3218.

∆Ho
f = 15.003±53.3614 IRC + 11.309±2.7496, r2 = 0.8728, s = 22.3824.
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Moreover, Figure 2 shows the scatter plot of two selected properties, that is, Tbp and
∆Ho

f vs. IRC index.

(a) (b)

Figure 2. Scatter plots between the IRC index and the two selected properties (i.e., Tbp and ∆Ho
f ).

(a) A scatter plot between IRC and Tbp. (b) A scatter plot between IRC and ∆Ho
f .

The statistical analysis shows that the IRC index correlates well with the normal
boiling point and fairly well with the enthalpy of formation for lower PAHs. Thus, based
on the analysis in this section, we suggest that further applications of the IRC index in
quantitative structure activity/property relationship models are warranted. This also
suggests a window for exploring further mathematical properties of the IRC index.

Next, we derive some mathematical properties of the IRC index. First, we compute
the IRC index of various transformation graphs introduced by Wu and Meng [34].

4. The IRC Indices of Transformation Graphs

First, we define some terminologies required later in this section. For a graph G,
we define

ξ4(G) = ∑
uv∈E(G)

(
d3(u) + d3(v)

)
, χα(G) = ∑

uv∈E(G)

(
d(u) + d(v)

)α.

Next, we calculate the IRC indices of different transformation and total transformation
graphs. The next theorem calculates the IRC index of Gxyz, where x = y = z = +.

Theorem 1. Let G be an (n, e)-graph. Then, the IRC index of G+++ of G is

IRC(G+++) = 8F(G) + ξ4(G) + 3ReZG3(G)− M1(G) + 4e
e + n

(
4M1(G) + F(G) + 2M2(G)

)
.

Proof. By the definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

Following the definition of the G+++, we obtain

IRC(G+++) = ∑
u∈V(G+++)

d3(u)−
2(M1(G)

2 + 2e)
e + n ∑

u∈V(G+++)

d2(u).

By Lemma 2 and Equation (1), we obtain
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IRC(G+++) = ∑
u∈Vx(G+++)

d3(u) + ∑
u∈Vy(G+++)

d3(u)− M1(G) + 4e
e + n

(
∑

u∈Vx(G+++)

d2(u) + ∑
u∈Vy(G+++)

d2(u)
)

,

= ∑
u∈V(G)

(
2d(u)

)3
+ ∑

uv∈E(G)

(
d(u) + d(v)

)3

−M1(G) + 4e
e + n

(
4 ∑

u∈V(G)

(
2d(u)

)2
+ ∑

uv∈E(G)

(
d(u) + d(v)

)2
)

,

= 8F(G) + ∑
uv∈E(G)

(
d3(u) + d3(v)

)
+ 3 ∑

uv∈E(G)

d(u)d(v)
(
d(u) + d(v)

)
−M1(G) + 4e

e + n

(
4M1(G) + ∑

uv∈E(G)

(
d2(u) + d2(v)

)
+ 2 ∑

uv∈E(G)

(
d(u)d(v)

))
,

= 8F(G) + ξ4(G) + 3ReZG3(G)− M1(G) + 4e
e + n

(
4M1(G) + F(G) + 2M2(G)

)
.

This implies that we obtain

IRC(G+++) = 8F(G) + ξ4(G) + 3ReZG3(G)− M1(G) + 4e
e + n

(
4M1(G) + F(G) + 2M2(G)

)
.

This completes the proof.

The next theorem computes the IRC index of Gxyz, where x = y = +, z = −.

Theorem 2. Let G be an (n, e)-graph. Then, the IRC index of G++− of G is

IRC(G++−) = nm3 + EF(G) + e(n− 2)3 + 3(n− 2)EM1(G) + 3(n− 2)2(M1(G)− 2e)−
M1(G) + 2e(n− 2)

e + n

(
nm2 + EM1(G) + e(n− 2)2 + 2(n− 2)(M1(G)− 2e)

)
.

Proof. Applying the definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

Following the definition of the G++−, we obtain

IRC(G++−) = ∑
u∈V(G++−)

d3(u)−
2(M1(G)

2 + e(n− 2))
e + n ∑

u∈V(G++−)

d2(u).

By Lemma 2 and Equation (1), we obtain

IRC(G++−) = ∑
u∈Vx(G++−)

d3(u) + ∑
u∈Vy(G++−)

d3(u)

−M1(G) + 2e(n− 2)
e + n

(
∑

u∈Vx(G++−)

d2(u) + ∑
u∈Vy(G++−)

d2(u)
)

.
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IRC(G++−) = ∑
u∈V(G)

e3 + ∑
f∈E(G)

(
d( f ) + n− 2

)3

−M1(G) + 2e(n− 2)
e + n

(
∑

u∈V(G)

e2 + ∑
f∈E(G)

(
d( f ) + n− 2

)2
)

,

= nm3 + ∑
f∈E(G)

d3( f ) + ∑
f∈E(G)

(n− 2)3 + 3(n− 2) ∑
f∈E(G)

(
d( f )

)2
+ 3(n− 2)2 ∑

f∈E(G)

d( f )

−M1(G) + 2e(n− 2)
e + n

(
nm2 + ∑

f∈E(G)

(
d( f ) + n− 2

)2
)

,

= nm3 + EF(G) + e(n− 2)3 + 3(n− 2)EM1(G) + 3(n− 2)2(M1(G)− 2e)

−M1(G) + 2e(n− 2)
e + n

(
nm2 + ∑

f∈E(G)

(d( f ))2 + ∑
uv∈E(G)

(n− 2)2 + 2(n− 2) ∑
f∈E(G)

d( f )
)

,

= nm3 + EF(G) + e(n− 2)3 + 3(n− 2)EM1(G) + 3(n− 2)2(M1(G)− 2e)

−M1(G) + 2e(n− 2)
e + n

(
nm2 + EM1(G) + e(n− 2)2 + 2(n− 2)(M1(G)− 2e)

)
.

Thus, we obtain

IRC(G++−) = nm3 + EF(G) + e(n− 2)3 + 3(n− 2)EM1(G) + 3(n− 2)2(M1(G)− 2e)−
M1(G) + 2e(n− 2)

e + n

(
nm2 + EM1(G) + e(n− 2)2 + 2(n− 2)(M1(G)− 2e)

)
.

This completes the proof.

The proofs of the remaining results in this section have structural similarities with
the proofs of Theorems 1 and 2; therefore, we omit the remaining proofs. The following
calculates the IRC index of Gxyz, where x = +, y = z = −.

Theorem 3. Let G be an (n, e)-graph. Then, the IRC index of G+−− of G is

IRC(G+−−) = nm3 − χ3(G) + e(e + n− 1)3 + 3(e + n− 1)χ2(G)− 3(e + n− 1)2M1(G)

− e2 + 2mn− e−M1(G)

e + n

(
nm2 + e(e + n− 1)2 + χ2(G)− 2(e + n− 1)M1(G)

)
.

Next we calculate the IRC index of Gxyz, where x = z = +, y = −.

Theorem 4. Let G be an (n, e)-graph. Then, the IRC index of G+−+ of G is

IRC(G+−+) = 8F(G)− χ3(G) + e(e + 3)3 + 3(e + 3)χ2(G)− 3(e + 3)2M1(G)

− e2 + 7e−M1(G)

e + n

(
4M1(G) + e(e + 3)2 + χ2(G)− 2(e + 3)M1(G)

)
.

Here, we calculate the IRC index of Gxyz, where x = −, y = z = +.

Theorem 5. Let G be an (n, e)-graph. Then, the IRC index of G−++ of G is

IRC(G−++) = n(n− 1)3 + χ3(G)− M1(G) + n(n− 1)
e + n

(
n(n− 1)2 + χ2(G)

)
.

The next theorem computes the IRC index of Gxyz, where x = y = −, z = +.

Theorem 6. Let G be an (n, e)-graph. Then, the IRC index of G−−+ of G is



Mathematics 2022, 10, 1111 11 of 18

IRC(G−−+) = n(n− 1)3 − χ3(G) + e(e + 3)3 + 3(e + 3)χ2(G)− 3(e + 3)2M1(G)

− e2 + n(n− 1) + 3e−M1(G)

e + n

(
n(n− 1)2 + e(e + 3)2 + χ2(G)− 2(e + 3)M1(G)

)
.

Next, we find the IRC index of Gxyz, where x = y = z = −.

Theorem 7. Let G be an (n, e)-graph. Then, the IRC index of G−−− of G is

IRC(G−−−) = n(e + n− 1)3 − 8F(G) + 12(e + n− 1)M1(G)− 12(e + n− 1)2e + e(e + n− 1)3

−χ3(G) + 3(e + n− 1)χ2(G)− 3(e + n− 1)2M1(G)− β(n(e + n− 1)2

−β
(

4M1(G)− 8e(e + n− 1) + e(e + n− 1)2 + χ2(G)− 2(e + n− 1)M1(G)
)

,

where β = (e+n)2−5e−n−M1(G)
e+n .

Finally, we calculate the IRC index of Gxyz, where x = z = −, y = +.

Theorem 8. Let G be an (n, e)-graph. Then, the IRC index of G−+− of G is

IRC(G−+−) = n(e + n− 1)3 − 8F(G) + 12(e + n− 1)M1(G)− 12(e + n− 1)2e + e(n− 1)3

+χ3(G) + 3(n− 1)χ2(G) + 3(n− 1)2M1(G)− β(n(e + n− 1)2

−β
(

4M1(G)− 8e(e + n− 1) + e(n− 1)2 + χ2(G) + 2(n− 1)M1(G)
)

,

where β = M1(G)+2e(n−4)+n(n−1)
e+n .

The next section calculates analytically closed formulas of the IRC for various derived
graphs introduced in Section 2.

5. The IRC Indices of Derived Graphs

This section calculates the IRC indices of various derived graphs, including the
subdivision graph, the line graph, the semi-total point graph, the semi-total line graph, the
total graph, the double graph, the strong double graph, and the extended double cover
graph.

Next, we calculate the IRC index of the subdivision graph.

Theorem 9. Let G be an (n, e)-graph. Then, the IRC index of the subdivision graph S(G) of G is

IRC
(
(S(G)

)
= F(G) + 8e− 4mM1(G)

e + n
− 8e2

e + n
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the subdivision graph, we have

| V
(

L(G)
)
|= n + e, | E

(
L(G)

)
|= 2e.

Employing this for IRC(G), we obtain

IRC(S(G)) = ∑
u∈V(S(G))

d3(u)− 2e
n ∑

u∈V(S(G))

d2(u).



Mathematics 2022, 10, 1111 12 of 18

By Lemma 1, we obtain

IRC(S(G)) = ∑
u∈V(G)

d3(u) + ∑
u∈E(G)

23 − 2e
n

(
∑

u∈V(G)

d2(u) + ∑
u∈E(G)

22
)

,

= F(G) + 8e− 2e
n
(

M1(G) + 4e
)
,

= F(G) + 8e− 2e
n

M1(G)− 8e2

n
.

Thus, we have

IRC(S(G)) = F(G) + 8e− 2e
n

M1(G)− 8e2

n
.

This completes the proof.

The following theorem computes the IRC index of the line graph.

Theorem 10. Let G be an (n, e)-graph. Then, the IRC index of the line graph L(G) of G is

IRC(L(G)) = EF(G)− M1(G)− 2e
e

EM1(G).

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the line graph, we have

| V
(

L(G)
)
|= e, | E

(
L(G)

)
|= M1(G)

2
− e.

Using this information for IRC(G), we obtain

IRC(L(G)) = ∑
u∈V(L(G))

d3(u)−
2(M1(G)

2 − e)
e ∑

u∈V(L(G))

d2(u).

By Lemma 1, we obtain

IRC(L(G)) = ∑
f∈E(G)

d3( f )− M1(G)− 2e
e ∑

f∈E(G)

d2( f ),

= EF(G)− M1(G)− 2e
e

EM1(G).

Therefore, we obtain

IRC(S(G)) = EF(G)− M1(G)− 2e
e

EM1(G).

This completes the proof.

Next, we calculate the exact expression of the the IRC index of the semi-total point
graph.
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Theorem 11. Let G be an (n, e)-graph. Then, the IRC index of the semi-total point graph T1(G)
of G is

IRC
(
T1(G)

)
= 8F(G) + 8e− 24e

n + e
(

M1(G)− e
)
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the semi-total point graph, we have

| V
(
T1(G)

)
|= n + e, | E

(
T1(G)

)
|= 3e.

Using this information for IRC(G), we obtain

IRC
(
T1(G)

)
= ∑

u∈V(S(G))

d3(u)− 2 · 3e
n + e ∑

u∈V(S(G))

d2(u).

By Lemma 1, we obtain

IRC
(
T1(G)

)
= ∑

u∈V(G)

(2d(u))3 + ∑
u∈E(G)

23 − 6e
n + e

( ∑
u∈V(G)

(2d(u))2 + ∑
u∈E(G)

22),

= 8F(G) + 8e− 6e
n + e

(4M1(G) + 4e),

= 8F(G) + 8e− 24e
n + e

M1(G)− 24e2

n + e
.

This shows that

IRC(G1(G)) = 8F(G) + 8e− 24e
n + e

(
M1(G)− e

)
.

This completes the proof.

The next theorem calculates the the IRC index of the semi-total line graph.

Theorem 12. Let G be an (n, e)-graph. Then, the IRC index of the semi-total line graph T2(G) of G is

IRC
(
T2(G)

)
= F(G) + χ3(G)− 2e + M1(G)

n + e

(
M1(G) + F(G) + 2M2(G)

)
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the semi-total line graph, we have

| V
(
T2(G)

)
|= n + e, | E

(
T2(G)

)
|= e +

M1(G)

2
.

Using this information for IRC(G), we obtain

IRC
(
T2(G)

)
= ∑

u∈V
(
T2(G)

) d3(u)−
2(e + M1(G)

2 )

n + e ∑
u∈V
(
T2(G)

) d2(u).
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By Lemma 1, we obtain

IRC
(
T2(G)

)
= ∑

u∈V(G)

(d3(u)) + ∑
v=v1v2∈E(G)

(
d(v1) + d(v2)

)3 − 2e + M1(G)

n + e ∑
u∈V
(
T2(G)

) d2(u),

= F(G) + χ3(G)− 2e + M1(G)

n + e

(
∑

u∈V(G)

(
d2(u)

)
+ ∑

v=v1v2∈E(G)

(
d(v1) + d(v2)

)2
)

,

= F(G) + χ3(G)− 2e + M1(G)

n + e

(
M1(G) + F(G) + 2M2(G)

)
.

Thus, we have

IRC(G2(G)) = 3F(G) + 3M1(G)M2(G)− 2e + M1(G)

n + e
(M1(G) + F(G) + 2M2(G)).

This completes the proof.

The following theorem calculates the the IRC index of the total graph.

Theorem 13. Let G be an (n, e)-graph. Then, the IRC index of the total graph T (G) of G is

IRC
(
T (G)

)
= 8F(G) + χ3(G)− 4e + M1(G)

n + e
(
4M1(G) + F(G) + 2M2(G)

)
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the total graph, we have

| V
(
T (G)

)
|= n + e, | E

(
T (G)

)
|= 2e +

M1(G)

2
.

Using this information for IRC(G), we obtain

IRC
(
T (G)

)
= ∑

u∈V
(
T (G)

) d3(u)−
2
(
2e + M1(G)

2
)

n + e ∑
u∈V
(
T (G)

) d2(u).

By Lemma 1, we obtain

IRC
(
T (G)

)
= ∑

u∈V(G)

(
2d(u)

)3
+ ∑

v=v1v2∈E(G)

(
d(v1) + d(v2)

)3 − 4e + M1(G)

n + e ∑
u∈V
(
T (G)

) d2(u),

= 8F(G) + χ3(G)− 4e + M1(G)

n + e

(
∑

u∈V(G)

(
2d(u)

)2
+ ∑

v=v1v2∈E(G)

(
d(v1) + d(v2)

)2
)

,

= 8F(G) + χ3(G)− 4e + M1(G)

n + e

(
∑

u∈V(G)

(
2d(u)

)2
+ ∑

v=v1v2∈E(G)

(
d(v1) + d(v2)

)2
)

,

= 8F(G) + χ3(G)− 4e + M1(G)

n + e
(
4M1(G) + F(G) + 2M2(G)

)
.

Thus, we obtain

IRC(T (G)) = 10F(G) + 3M1(G)M2(G)− 4e + M1(G)

n + e
(4M1(G) + F(G) + 2M2(G)).
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This completes the proof.

Next, we calculate the exact expression of the the IRC index of the double graph.

Theorem 14. Let G be an (n, e)-graph. Then, the IRC index of the double graph D(G) of G is

IRC
(

D(G)
)
= 16F(G)− 32mM1(G)

n
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the double graph, we have

IRC
(

D(G)
)

= ∑
u∈V
(

D(G)
) d3(u)− 2× 4e

2n ∑
u∈V
(

D(G)
) d2(u)

= 2 ∑
u∈V(G)

(
2d(u)

)3 − 4e
n

(
2 ∑

u∈V(G)

(
2d(u)

)2
)

,

= 16F(G)− 4e
n
(
8M1(G)

)
,

= 16F(G)− 32e
n
(

M1(G)
)
.

Thus, we obtain

IRC(D(G)) = 16F(G)− 32e
n

M1(G).

This completes the proof.

The following theorem computes the IRC index of the strong double graph.

Theorem 15. Let G be an (n, e)-graph. Then, the IRC index of the strong double graph SD(G) of
G is

IRC
(
SD(G)

)
= 16F(G) + 2n + 24M1(G)M2(G) + 24e− 5e

n
(
8M1(G) + 2n + 16e

)
.

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u).

By definition of the strong double graph, we have

IRC(SD(G)) = ∑
u∈V
(

SD(G)
) d3(u)− 2× 5e

2n ∑
u∈V
(

SD(G)
) d2(u)

= 2 ∑
u∈V(G)

(
2d(u) + 1

)3 − 5e
n
(
2 ∑

u∈V(G)

(
2d(u) + 1

)2

= 2
(
8F(G) + n + 12M1(G) + 12e

)
− 5e

n

(
2
(
4M1(G) + n + 8e

))
= 16F(G) + 2n + 24M1(G) + 24e− 5e

n
(
8M1(G) + 2n + 16e

)
.
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Thus, we have

IRC
(
SD(G)

)
= 16F(G) + 2n + 24M1(G) + 24e− 5e

n
(8M1(G) + 2n + 16e).

This completes the proof.

The next theorem calculates the IRC index of the extended double cover graph.

Theorem 16. Let G be an (n, e)-graph. Then, the IRC index of the extended double cover graph
G∗ of G is

IRC(G∗) = 2F(G) + 2n + 6M1(G)M2(G) + 12e− 3e
n
(2M1(G) + 2n + 8e).

Proof. By definition of the IRC index, we have

IRC(G) = ∑
u∈V(G)

d3(u)− 2e
n ∑

u∈V(G)

d2(u)

By definition of the extended double cover graph, we have

IRC(G∗) = ∑
u∈V(G∗)

d3(u)− 2 · 3e
2n ∑

u∈V(G∗)
d2(u)

= 2 ∑
u∈V(G)

(d(u) + 1)3 − 3e
n
(2 ∑

u∈V(G)

(d(u) + 1)2

= 2
(

F(G) + n + 3M1(G) + 6e
)
− 3e

n

(
2
(

M1(G) + n + 4e
))

= 2F(G) + 2n + 6M1(G) + 12e− 3e
n

(
2M1(G) + 2n + 8e

)
.

Thus, we have

IRC(G?) = 2F(G) + 2n + 6M1(G) + 12e− 3e
n
(2M1(G) + 2n + 8e).

This completes the proof.

6. Conclusions

This paper employs a recently introduced irregularity index (i.e., the IRC index) in
QSAR modeling of physicochemical properties of chemical compounds. The results show
that the IRC index correlates closely with certain physicochemical properties of benzenoid
hydrocarbons. A detailed statistical analysis has been conducted to propose appropriate
regression models, which in our case are linear. Considering this as a motivation to study
the IRC index further, we calculate the IRC indices for various transformation and derived
graphs. Moreover, further mathematical investigation of this IRC index is proposed herein.
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