Modeling of 2D Acoustic Radiation Patterns as a Control Problem
Abstract
:1. Introduction
2. Problem Formulation
3. Numerical Results
4. Concluding Remarks
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jirik, R.; Peterlik, I.; Ruiter, N.; Fousek, J.; Dapp, R.; Zapf, M.; Jan, J. Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Burov, V.A.; Voloshinov, V.B.; Dmitriev, K.V.; Polikarpova, N.V. Acoustic waves in metamaterials, crystals, and anomalously refracting structures. Adv. Phys. Sci. 2011, 54, 1165–1170. [Google Scholar]
- Duric, N.; Littrup, P.; Poulo, L.; Babkin, A.; Pevzner, R.; Holsapple, E.; Rama, O.; Glide, C. Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (CURE) prototype. Med. Phys. 2007, 34, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Wiskin, J.; Borup, D.; Andre, M.; Johnson, S.; Greenleaf, J.; Parisky, Y.; Klock, J. Three dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. Proc. Meet. Acoust. 2013, 19, 075001. [Google Scholar]
- Wiskin, J.; Borup, D.; Iuanow, E.; Klock, J.; Lenox, M. 3-D nonlinear acoustic inverse scattering: Algorithm and quantitative results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1161–1174. [Google Scholar] [CrossRef]
- Wiskin, J.; Malik, B.; Natesan, R.; Borup, D.; Pirshafiey, N.; Lenox, M.; Klock, J. Full Wave 3D Inverse Scattering Transmission Ultrasound Tomography: Breast and Whole Body Imaging. In Proceedings of the IUS—IEEE International Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 951–958. [Google Scholar] [CrossRef]
- Filatova, V.; Danilin, A.; Nosikova, V.; Pestov, L. Supercomputer Simulations of the Medical Ultrasound Tomography Problem. Commun. Comput. Inf. Sci. 2019, 1063, 297–308. [Google Scholar]
- Klibanov, M.V. Travel time tomography with formally determined incomplete data in 3D. Inverse Probl. Imaging 2019, 13, 1367–1393. [Google Scholar] [CrossRef] [Green Version]
- Klibanov, M.V. On the travel time tomography problem in 3D. J. Inverse Ill-Posed Probl. 2019, 27, 591–607. [Google Scholar] [CrossRef] [Green Version]
- Burov, V.A.; Zotov, D.I.; Rumyantseva, O.D. Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data. Acoust. Phys. 2015, 61, 231–248. [Google Scholar] [CrossRef]
- Duric, N.; Littrup, P.; Li, C.; Roy, O.; Schmidt, S.; Janer, R.; Cheng, X.; Goll, J.; Rama, O.; Bey-Knight, L.; et al. Breast ultrasound tomography: Bridging the gap to clinical practice. Proc. SPIE 2012, 8320, 832000. [Google Scholar]
- Wiskin, J.; Malik, B.; Natesan, R.; Lenox, M. Quantitative assessment of breast density using transmission ultrasound tomography. Med. Phys. 2019, 46, 2610–2620. [Google Scholar] [CrossRef] [Green Version]
- Beilina, L.; Klibanov, M.V. Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D. J. Inverse Ill-Posed Probl. 2010, 18, 85–132. [Google Scholar] [CrossRef]
- He, S.; Kabanikhin, S.I. An optimization approach to a three-dimensional acoustic inverse problem in the time domain. J. Math. Phys. 1995, 36, 4028–4043. [Google Scholar] [CrossRef]
- Beilina, L.; Hosseinzadegan, S. An adaptive finite element method in reconstruction of coefficients in Maxwell’s equations from limited observations. Appl. Math. 2016, 61, 253–286. [Google Scholar] [CrossRef] [Green Version]
- Beilina, L. Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell’s system. Appl. Anal. 2011, 90, 1461–1479. [Google Scholar] [CrossRef]
- Beilina, L.; Klibanov, M.V. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem. Inverse Probl. 2010, 26, 045012. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Beilina, L.; Klibanov, M. Globally convergent numerical methods for some coefficient inverse problems. Comput. Sci. Eng. 2010, 12, 64–76. [Google Scholar]
- Beilina, L.; Klibanov, M.V. Globally strongly convex cost functional for a coefficient inverse problem. Nonlinear Anal. Real World Appl. 2015, 22, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Klibanov, M.V. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 2013, 21, 477–560. [Google Scholar] [CrossRef] [Green Version]
- Shishlenin, M.A.; Novikov, N.S.; Klyuchinskiy, D.V. On the recovering of acoustic attenuation in 2D acoustic tomography. J. Phys. Conf. Ser. 2021, 2099, 012046. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics, 2nd ed.; Pearson: Boston, MA, USA, 1998. [Google Scholar]
- Isaev, A.E.; Nikolaenko, A.S.; Chernikov, I.V. Suppression of reverberation distortions of a receiver signal using the water tank transfer function. Acoust. Phys. 2017, 63, 175–184. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. Recovering Density and Speed of Sound Coefficients in the 2D Hyperbolic System of Acoustic Equations of the First Order by a Finite Number of Observations. Mathematics 2021, 9, 199. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. Numerics of acoustical 2D tomography based on the conservation laws. J. Inverse Ill-Posed Probl. 2020, 28, 287–297. [Google Scholar] [CrossRef]
- Bastin, G.; Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. In Progress in Nonlinear Differential Equations and Their Applications; Birkhauser: Boston, MA, USA, 2016. [Google Scholar]
- Blokhin, A.M.; Trakhinin, Y.L. Well-Posedness of Linear Hyperbolic Problems: Theory and Applications; Nova Publishers: Hauppauge, NY, USA, 2006. [Google Scholar]
- Romanov, V.G.; Kabanikhin, S.I. Inverse Problems for Maxwell’s Equations; VSP: Utrecht, The Netherlands, 1994. [Google Scholar]
- Butler, J.L.; Sherman, C.H. Transducers and Arrays for Underwater Sound; Springer: Berlin, Germany, 2016. [Google Scholar]
- Seo, H.-S.; Kim, Y.-H. Directional radiation pattern in structural–acoustic coupled system. J. Acoust. Soc. Am. 2005, 118, 92–103. [Google Scholar] [CrossRef]
- Friedrich, W.; Kaarmann, H.; Lerch, R. Finite element modeling of acoustic radiation from piezoelectric phased array antennas. IEEE Symp. Ultrason. 1990, 2, 763–767. [Google Scholar]
- Gori, P.; Iula, A.; Pappalardo, M.; Lamberti, N.; Montero de Espinosa, F. Influence of the inter-element coupling on ultrasound array radiation patterns. J. Comput. Acoust. 2001, 9, 773–788. [Google Scholar] [CrossRef]
- Caronti, A.; Carotenuto, R.; Caliano, G.; Pappalardo, M. Finite element study of cross coupling in 1-D capacitive micromachined ultrasonic transducer arrays. In Proceedings of the Ultrasonics Symposium 2002, Munich, Germany, 8–11 October 2002; Volume 2, pp. 1059–1062. [Google Scholar]
- Isaev, A.E.; Matveev, A.N. Calibration of hydrophones in a field with continuous radiation in a reverberating pool. Acoust. Phys. 2009, 55, 762. [Google Scholar] [CrossRef]
- Lin, C.; Qing, A.; Feng, Q. Synthesis of Unequally Spaced Antenna Arrays by Using Differential Evolution. IEEE Trans. Antennas Propag. 2010, 58, 2553–2561. [Google Scholar]
- Bradford, J.H. GPR prestack amplitude recovery for radiation patterns using a full wave-equation, reverse-time migration algorithm. In SEG Technical Program Expanded Abstracts; SEG: Houston, TX, USA, 2012; pp. 1–5. [Google Scholar]
- Dobrokhotov, S.Y.; Sekerzh-Zenkovich, S.Y. A class of exact algebraic localized solutions of the multidimensional wave equation. Math. Notes 2010, 88, 894–897. [Google Scholar] [CrossRef]
- Dobrokhotov, S.Y.; Sekerzh-Zenkovich, S.Y.; Tirozzi, B.; Volkov, B. Explicit asymptotics for tsunami waves in framework of the piston model. Russ. J. Earth. Sci. 2006, 8, ES4003. [Google Scholar] [CrossRef]
- Dobrokhotov, S.Y.; Nazaikinskii, V.E.; Shafarevich, A.I. Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold. Dokl. Math. 2016, 93, 99–102. [Google Scholar] [CrossRef]
- Sekerzh-Zenkovich, S.Y. Analytical Study of the Tsunami Potential Model with a Simple Piston-Like Source. 2. Asymptotic Formula for the Height of Tsunami in the Far Field. Russ. J. Math. Phys. 2013, 20, 342–346. [Google Scholar]
- Dobrokhotov, S.Y.; Nazaikinskii, V.E. Asymptotic localized solutions of the shallow water equations over a nonuniform bottom. AIP Conf. Proc. 2018, 2048, 040026. [Google Scholar]
- Brutti, A.; Omologo, M.; Svaizer, P. An environment aware ML estimation of acoustic radiation pattern with distributed microphone pairs. Signal Process. 2013, 93, 784–796. [Google Scholar] [CrossRef]
- Khodier, M. Optimisation of antenna arrays using the cuckoo search algorithm. IET Microw. Antennas Propag. 2013, 7, 458–464. [Google Scholar]
- Quan, L.; Zhong, X.; Liu, X.; Gong, X.; Johnson, P.A. Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control. Nat. Commun. 2014, 5, 3188. [Google Scholar] [CrossRef] [Green Version]
- Young, A.; Maaskant, R.; Ivashina, M. Radiation Pattern Modeling with Characteristic Basis Function Patterns. FERMAT J. 2014, 2, 1–12. [Google Scholar]
- Shabtai, N.R.; Vorländer, M. Acoustic centering of sources with high-order radiation patterns. J. Acoust. Soc. Am. 2015, 137, 1947–1961. [Google Scholar] [CrossRef]
- Guney, K.; Durmus, A. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm. Int. J. Antennas Propag. 2015, 2015, 713080. [Google Scholar] [CrossRef] [Green Version]
- Jankowski-Mihulowicz, P.; Lichon, W.; Weglarski, M. Numerical Model of Directional Radiation Pattern Based on Primary Antenna Parameters. Int. J. Electron. Telecommun. 2015, 61, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Stytsenko, E.; Scott, N.L.; Meijer, M. Acoustic coupling in linear arrays. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–7. [Google Scholar]
- Shabtai, N.R.; Behler, G.; Vorländer, M.; Weinzierl, S. Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments. J. Acoust. Soc. Am. 2017, 141, 1246–1256. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Review: The Use of Equivalent Source Method in Computational Acoustics. J. Comput. Acoust. 2017, 25, 1630001. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.P.; Hayman, G.; Harris, P.M.; Beamiss, G.A. Signal-modelling methods applied to the free-field calibration of hydrophones and projectors in laboratory test tanks. Sci. Technol. 2018, 29, 085001. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.; Salgotra, R. Synthesis of linear antenna array using flower pollination algorithm. Neural Comput. Appl. 2018, 29, 435–448. [Google Scholar] [CrossRef]
- Bybi, A.; Mouhat, O.; Garoum, M.; Drissi, H.; Grondel, S. One-dimensional equivalent circuit for ultrasonic transducer arrays. Appl. Acoust. 2019, 156, 246–257. [Google Scholar] [CrossRef]
- Canclini, A.; Antonacci, F.; Tubaro, S.; Sarti, A. A Methodology for the Robust Estimation of the Radiation Pattern of Acoustic Sources. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 211–224. [Google Scholar] [CrossRef]
- Virovlyansky, A.L.; Deryabin, M.S. On the use of the equivalent source method for free-field calibration of an acoustic radiator in a reverberant tank. J. Sound Vib. 2019, 455, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Virovlyansky, A.L.; Kazarova, A.Y.; Lyubavin, L.Y. Reconstructing the directivity pattern of a sound source in free space by measuring its field in a tank. Acoust. Phys. 2020, 66, 501–507. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1715, p. 012038. [Google Scholar]
- Bellassoued, M.; Cristofol, M.; Soccorsi, E. Inverse boundary value problem for the dynamical heterogeneous Maxwell’s system. Inverse Probl. 2012, 28, 095009. [Google Scholar] [CrossRef] [Green Version]
- Godunov, S.K.; Zabrodin, A.V.; Ivanov, M.Y.; Kraikov, A.N.; Prokopov, G.P. Numerical Solution for Multidimensional Problems of Gas Mechanics; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Isakov, V.; Yamamoto, M. Stability in a wave source problem by Dirichlet data on subboundary. J. Inverse Ill-Posed Probl. 2003, 11, 399–409. [Google Scholar] [CrossRef]
- Imanuvilov, O.Y.; Yamamoto, M. Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial. Differ. Equ. 2001, 26, 1409–1425. [Google Scholar] [CrossRef]
- Bruckner, G.; Yamamoto, M. Determination of point wave sources by pointwise observations: Stability and reconstruction. Inverse Probl. 2000, 16, 723–748. [Google Scholar] [CrossRef]
- Yamamoto, M.; Zhang, X. Global uniqueness and stability for an inverse wave source problem for less regular data. J. Math. Anal. Appl. 2001, 263, 479–500. [Google Scholar] [CrossRef] [Green Version]
- Delillo, T.; Isakov, V.; Valdivia, N.; Wang, L. The detection of the source of acoustical noise in two dimensions. SIAM J. Appl. Math. 2001, 61, 2104–2121. [Google Scholar] [CrossRef]
- DeLillo, T.; Isakov, V.; Valdivia, N.; Wang, L. The detection of surface vibrations from interior acoustical pressure. Inverse Problem. 2003, 19, 507–524. [Google Scholar] [CrossRef]
- Alberti, G.S.; Santacesaria, M. Infinite-Dimensional Inverse Problems with Finite Measurements. Arch. Ration. Mech. Anal. 2022, 243, 1–31. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. A Modification of gradient descent method for solving coefficient inverse problem for acoustics equations. Computation 2020, 8, 73. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach. J. Comput. Phys. 2021, 439, 110374. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Scherzer, O.; Shishlenin, M.A. Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation. J. Inverse Ill-Posed Probl. 2003, 11, 87–109. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Shishlenin, M.A. Quasi-solution in inverse coefficient problems. J. Inverse Ill-Posed Probl. 2008, 16, 705–713. [Google Scholar] [CrossRef]
- Wang, Y.; Lukyanenko, D.V.; Yagola, A.G. Regularized Inversion of Full Tensor Magnetic Gradient Data. Numer. Methods Program. (Vychislitel’Nye Metod. Program.) 2016, 17, 13–20. [Google Scholar]
- van Leer, B. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comput. 1984, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Khobalatte, B.; Perthame, B. Maximum principle on the entropy and second-order kinetic schemes. Math. Comput. 1994, 62, 119–131. [Google Scholar] [CrossRef]
- Perthame, B.; Qiu, Y. A variant of Van Leer’s method for multidimensional systems of conservation laws. J. Comput. Phys. 1994, 112, 370–381. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Nessyahu, H.; Tadmor, E. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 1990, 87, 408–463. [Google Scholar] [CrossRef] [Green Version]
- Bianco, F.; Puppo, G.; Russo, G. High-order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 1999, 21, 294–322. [Google Scholar] [CrossRef] [Green Version]
- Berthon, C. Why the MUSCL-Hancock scheme is L1-stable. Numer. Math. 2006, 104, 27–46. [Google Scholar] [CrossRef]
- Novikov, N.S.; Klyuchinskiy, D.V.; Shishlenin, M.A.; Kabanikhin, S.I. On the modeling of ultrasound wave propagation in the frame of inverse problem solution. J. Phys. Conf. Ser. 2021, 2099, 012044. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Krutyakova, O.L.; Kurulin, V.V.; Strelets, D.Y.; Shishlenin, M.A. The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations. Sib. Electron. Math. Rep. 2021, 18, 1238–1250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishlenin, M.; Savchenko, N.; Novikov, N.; Klyuchinskiy, D. Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics 2022, 10, 1116. https://doi.org/10.3390/math10071116
Shishlenin M, Savchenko N, Novikov N, Klyuchinskiy D. Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics. 2022; 10(7):1116. https://doi.org/10.3390/math10071116
Chicago/Turabian StyleShishlenin, Maxim, Nikita Savchenko, Nikita Novikov, and Dmitriy Klyuchinskiy. 2022. "Modeling of 2D Acoustic Radiation Patterns as a Control Problem" Mathematics 10, no. 7: 1116. https://doi.org/10.3390/math10071116
APA StyleShishlenin, M., Savchenko, N., Novikov, N., & Klyuchinskiy, D. (2022). Modeling of 2D Acoustic Radiation Patterns as a Control Problem. Mathematics, 10(7), 1116. https://doi.org/10.3390/math10071116