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Abstract: In this article, we study the JF iterative algorithm to approximate the fixed points of a
non-linear operator that satisfies condition (E) in uniformly convex Banach spaces. Further, some
weak and strong convergence results are presented for the same operator using the JF iterative
algorithm. We also demonstrate that the JF iterative algorithm is weakly w2 G-stable with respect to
almost contractions. In connection with our results, we provide some illustrative numerical examples
to show that the JF iterative algorithm converges faster than some well-known iterative algorithms.
Finally, we apply the JF iterative algorithm to estimate the solution of a functional non-linear integral
equation. The results of the present manuscript generalize and extend the results in existing literature
and will draw the attention of researchers.
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1. Introduction

Fixed point theory has an eminent position in pure and applied mathematics because
it has a variety of applications in different fields within mathematics, such as differential
and integral equations, variational inequalities, approximation theory, etc. The application
of fixed point results is not merely confined to mathematics, but is also relevant in other
fields, such as statistics, computer sciences, chemical sciences, physical sciences, economics,
biological sciences, medical sciences, engineering, game theory, etc. (see, e.g., [1,2]). It is a
domain that is of great interest in two research directions: the first is to find progressively
wider classes of mappings and conditions under which the existence of fixed points can
be proved; the second is to define iterative algorithms for the approximation of the fixed
points of these mappings, as it is not always an easy task to approximate the fixed points
using direct methods.

The fundamental result in metric fixed point theory is the Banach contraction principle,
which was first introduced in the literature in 1922. This result provides the guarantee of the
existence and uniqueness of the fixed point of a contraction mapping in a complete metric
space. It not only demonstrates the existence and uniqueness of a fixed point, but also
allows the Picard iterative algorithm to converge to that fixed point. Further, on account
of its simplicity, utility and applicability, the Banach contraction principle has become
an extremely well-known tool in solving existence problems in numerous branches of
mathematical analysis. As such, several authors have improved, extended and generalized
the Banach contraction principle. One of the most important generalizations of the Banach
contraction principle was produced by Berinde [3] in 2003. He defined almost contraction
mapping as follows.
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A self-mapping G defined on a non-empty subset S of a Banach space B is called an
almost contraction when constants δ ∈ (0, 1) and L ≥ 0 exist in such a way that:

‖Gx− Gy‖ ≤ δ‖x− y‖+ L‖y− Gx‖, ∀x, y ∈ S . (1)

It is worth mentioning here that condition (1) only ensures the existence of a fixed point
of an almost contraction (see, [3]). For the uniqueness of the fixed point of an almost
contraction, he proved the following result.

Theorem 1 ([3]). Let (B, d) be a complete metric space and G : B → B be an almost contraction (1).
When constants δ ∈ (0, 1) and L ≥ 0 exist in such a way that:

d(Gx,Gy) ≤ δd(x, y) + Ld(x,Gx), ∀x, y ∈ S . (2)

Then G has a unique fixed point, i.e., t, in B.

Berinde has also shown that almost contractions include the classes of Kannan [4],
Chatterjea [5] and Zamfirescu [6] mappings.

A widely studied extension of contraction mappings is the class of non-expansive
mappings, which is natural and vast due to isometry and metric projections. A self-mapping
G defined on a non-empty subset S of a Banach space B is said to be non-expansive when:

‖Gx− Gy‖ ≤ ‖x− y‖, ∀x, y ∈ S .

The fixed point theory for non-expansive mappings has a variety of applications in convex
feasibility problems, convex optimization problems, monotone inequality problems, image
restorations, etc. Due to its applicability, a large number of eminent researchers have
generalized and extended this theory to the large classes of non-linear mappings. One of
the most important generalizations of non-expansive mappings was produced by Garcia-
Falset et al. [7] in 2011, which is defined as follows.

Definition 1 ([7]). Let S be a non-empty subset of a Banach space B and µ ≥ 1. An operator
G : S → B is said to satisfy condition (Eµ) when:

‖x− Gy‖ ≤ µ‖x− Gx‖+ ‖x− y‖, ∀x, y ∈ S . (3)

Moreover, G is said to satisfy condition (E) when G satisfies condition (Eµ) with µ ≥ 1.

It can be easily seen that when G : S → B is a non-expansive mapping, it satisfies
condition (Eµ) with µ = 1. It is worth mentioning here that the class of operators that satisfy
condition (E) properly includes the classes of Hardy and Rogers mappings [8], mappings
satisfying Suzuki’s condition (C) [9], generalized α non-expansive mappings [10] and
generalized α–Reich–Suzuki non-expansive mappings [11].

In many instances, it is not possible to find the exact solution of fixed point problems.
Therefore, iterative algorithms are used to approximate the solutions of the fixed point
problems. Thus, a large number of iterative algorithms have been introduced and studied
for the approximation of solutions to fixed point problems (see, e.g., [12–22], etc).

Very recently, Ali et al. [23] introduced a new iterative algorithm called the JF iterative
algorithm, which is defined as follows.

Let S be a non-empty closed and convex subset of a Banach space B and let G : S → S
be the mapping. Then, the sequence {τn} is generated by an initial point τ0 and defined by:

τn+1 = G((1− µn)σn + µnGσn),
σn = Gξn,
ξn = G((1− θn)τn + θnGτn), n ∈ Z+,

(4)
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where {µn} and {θn} are control sequences in (0, 1) and Z+ denotes the set of non-negative
integers. They pointed that the JF iterative algorithm is independent from all other iterative
algorithms that have been previously defined in the literature. They have produced some
weak and strong convergence results for Hardy and Rogers generalized non-expansive
mappings using the JF iterative algorithm in uniformly convex Banach spaces. They have
also numerically shown that the JF iterative algorithm converges to the fixed point of
Hardy and Rogers generalized non-expansive mappings faster than some other remarkable
iterative algorithms.

On the other hand, many scientific and engineering problems are presented in the
form of non-linear integral equations. The class of initial and boundary value problems
can be transformed to Fredholm or Volterra non-linear integral equations. The solution
of non-linear integral equations exists locally and has blow-up phenomena (see, [24,25]).
In Section 5, we apply the JF iterative method to approximate the solution of a non-linear
integral equation in the setting of a Banach space.

Inspired by the above study, we aim to prove that the JF iterative algorithm is weakly
w2 G- stable with respect to almost contractions in the current manuscript. Further, we
present some weak and strong convergence results for the operators that satisfy condition
(E) using the JF iterative algorithm in uniformly convex Banach spaces. We numerically
show that the JF iterative algorithm converges to the fixed point of the operators that satisfy
condition (E) faster than Mann, Ishikawa, Noor, SP, S and Picard-S iterative algorithms.
Finally, we approximate the solution of a mixed Volterra–Fredholm functional non-linear
integral equation. The results of the present manuscript generalize and extend the results
in existing literature, particularly those of [20,23].

2. Preliminaries

The aim of this section is to set out some lemmas and definitions that are used in this
paper.

Lemma 1 ([26]). Let {un} and {εn} be sequences in R+ that satisfy the following inequality:

un+1 ≤ (1− vn)un + εn,

where vn ∈ (0, 1) for all n ∈ Z+ with ∑∞
n=0 vn = ∞. When lim

n→∞
εn
vn

= 0, then lim
n→∞

un = 0.

Definition 2 ([27]). Let B be a Banach space and {τn} be a weakly convergent sequence to x ∈ B,
then B satisfies Opial’s property when:

lim
n→∞

inf ‖τn − x‖ < lim
n→∞

inf ‖τn − y‖

holds for all y ∈ B with y 6= x.

Example 1. All Hilbert spaces and `p (1 < p < ∞) spaces satisfy Opial’s property, while
Lp[0, 2π] (1 < p 6= 2) spaces do not satisfy Opial’s property.

Definition 3 ([28]). An operator G : S → S satisfies condition (I) when a non-decreasing
function ψ : [0, ∞)→ [0, ∞) exists with ψ(0) = 0 and ψ(y) > 0, ∀y > 0, such that ‖y− Gy‖ ≥
ψ(d(y, F(G))) and ∀y ∈ S , where F(G) = {t ∈ S : Gt = t} and d(y, F(G)) = inf{‖y− t‖ :
t ∈ F(G)}.

Definition 4 ([29]). Let S be a non-empty subset of a Banach space B. The two sequences {τn}
and {tn} in S are said be equivalent when:

lim
n→∞

‖τn − tn‖ = 0.
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Definition 5 ([30]). Let S be a non-empty subset of a Banach space B, let G : S → S be a mapping
with at least one fixed point, i.e., t, and let {τn} be a sequence defined by:{

τ0 ∈ S ,
τn+1 = h(G, τn), n ∈ Z+,

where h is a function of G and τn. Assume that the sequence {τn} converges to a fixed point of G
and {tn} is an equivalent sequence of {τn} in S . When:

lim
n→∞

‖tn+1 − h(G, tn)‖ = 0 =⇒ lim
n→∞

tn = t,

then the iterative sequence {τn} is called weakly w2-stable with respect to G.

Definition 6. Let S be a non-empty, closed and convex subset of B. Let {τn} be a bounded sequence
in B and for x ∈ S :

r(x, {τn}) = lim
n→∞

sup ‖τn − x‖.

The asymptotic radius and asymptotic center of {τn} relative to S are defined, respectively, by:

r(S , {τn}) = inf{r(x, {τn}) : x ∈ S}.

A(S , {τn}) = {x ∈ S : r(x, {τn}) = r(S , {τn})}.

When B is a uniformly convex Banach space, then the set A(S , {τn}) is a singleton.

Lemma 2 ([31]). Assume B is a uniformly convex Banach space and 0 < a ≤ sn ≤ b < 1, ∀n ≥ 1.
Let {τn} and {σn} be two sequences in B that satisfy lim

n→∞
sup ‖τn‖ ≤ w, lim

n→∞
sup ‖σn‖ ≤ w

and lim
n→∞

‖snτn + (1− sn)σn‖ = w holds for w ≥ 0. Then, lim
n→∞

‖τn − σn‖ = 0.

Lemma 3 ([7]). Let S be a non-empty, closed and convex subset of a uniformly convex Banach
space B that satisfies Opial’s property. Let G : S → B be an operator that satisfies condition (E).
When the sequence {τn} converges weakly to t and lim

n→∞
‖τn − Gτn‖ = 0, then t ∈ F(G).

3. Weak w2-Stability of the JF Iterative Algorithm

The purpose of this section is to prove the convergence and stability results for the JF
iterative algorithm with respect to almost contractions in an arbitrary Banach space. The
following theorem shows the convergence and stability of the iterative algorithm (4) for
almost contractions.

Theorem 2. Let S be a non-empty, closed and convex subset of a Banach space B and let G : S → S
be an almost contraction that satisfies inequality (2). Then, the sequence {τn} defined by the iterative
algorithm (4) converges to a unique fixed point of G. Moreover, the iterative sequence {τn} is weakly
w2-stable with respect to the almost contraction.

Proof. Since G is an almost contraction that satisfies inequality (2), a constant β ∈ [0, 1)
exists in such a way that for all x ∈ S and t ∈ F(G) = {t ∈ S : Gt = t}:

‖Gx− Gt‖ = ‖Gx− t‖ ≤ β‖x− t‖.

Using iterative algorithm (4), we obtain:



Mathematics 2022, 10, 1132 5 of 16

‖ξn − t‖ = ‖G((1− θn)τn + θnGτn)− t‖
≤ β‖(1− θn)τn + θnGτn − t‖
≤ β((1− θn)‖τn − t‖+ θn‖Gτn − t‖)
≤ β((1− θn)‖τn − t‖+ βθn‖τn − t‖)
= β(1− (1− β)θn)‖τn − t‖.

Since 0 ≤ β < 1 and θn ∈ (0, 1) and using the fact that 0 < (1− (1− β)θn) ≤ 1, we obtain:

‖ξn − t‖ ≤ β‖τn − t‖. (5)

Using Equation (5), we obtain:

‖σn − t‖ = ‖Gξn − t‖
≤ β‖ξn − t‖
≤ β2‖τn − t‖. (6)

Using Equation (6), we obtain:

‖τn+1 − t‖ = ‖G((1− µn)σn + µnGσn)− t‖
≤ β‖(1− µn)σn + µnGσn − t‖
≤ β((1− µn)‖σn − t‖+ µn‖Gσn − t‖)
≤ β((1− µn)‖σn − t‖+ βµn‖σn − t‖)
≤ β(1− (1− β)µn)‖σn − t‖
≤ β3‖τn − t‖.

(7)

Inductively, we then obtain:

‖τn+1 − t‖ ≤ β3(n+1)‖τ0 − t‖. (8)

Since 0 ≤ β < 1, it can be concluded that {τn} converges to t.

Now, we aim to prove the stability of the iterative algorithm (4). Let {tn} be an
equivalent sequence of {τn} in S , let the sequence that is defined by the iterative algorithm
(4) be τn+1 = h(G, τn) and assume εn = ‖tn+1 − h(G, tn)‖, n ∈ Z+. Now, we can show that
lim

n→∞
εn = 0 =⇒ lim

n→∞
tn = t.

Let lim
n→∞

εn = 0. Then, using the iterative algorithm (4), we obtain:

‖tn+1 − t‖ ≤ ‖tn+1 − h(G, tn)‖+ ‖h(G, tn)− t‖
= εn + ‖h(G, tn)− t‖
≤ εn + β3(1− (1− β)µn)‖tn − t‖.

By defining un = ‖tn − t‖ and vn = (1− β)µn ∈ (0, 1), then:

un+1 ≤ β3(1− vn)un + εn.

Since lim
n→∞

εn = 0, then εn
vn
→ 0 as n → ∞. Thus, according to Lemma 1, lim

n→∞
un = 0, i.e.,

lim
n→∞

tn = t. Thus, the iterative sequence that is defined by the algorithm (4) is weakly

w2-stable with respect to the almost contraction.

4. Convergence Results for the Non-linear Operator (E)

The purpose of this section is to prove convergence results for the operator that satisfies
condition (E) in uniformly convex Banach spaces. First, we aim to prove the following
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fruitful lemmas that helped us to obtain the these results. Throughout this section, it is
assumed that S is a non-empty, closed and convex subset of a uniformly convex Banach
space B, G : S → S is an operator that satisfies condition (E) and F(G) = {t ∈ S : Gt = t}.

Lemma 4. Assume that F(G) 6= ∅ and let {τn} be a sequence that is developed by the iterative
algorithm (4), then lim

n→∞
‖τn − t‖ exists for all t ∈ F(G).

Proof. As the operator G satisfies condition (E) and F(G) 6= ∅, for t ∈ F(G), we obtain:

‖Gτn − t‖ ≤ ‖τn − t‖,

for all τn ∈ S . Using the iterative algorithm (4), we obtain:

‖ξn − t‖ = ‖G((1− θn)τn + θnGτn)− t‖
≤ ‖(1− θn)τn + θnGτn − t‖
≤ (1− θn)‖τn − t‖+ θn‖Gτn − t‖
≤ (1− θn)‖τn − t‖+ θn‖τn − t‖
≤ ‖τn − t‖.

(9)

Using Equation (9), we obtain:

‖σn − t‖ = ‖Gξn − t‖
≤ ‖ξn − t‖
≤ ‖τn − t‖.

(10)

Using Equation (10), we obtain:

‖τn+1 − t‖ = ‖G((1− µn)σn + µnGσn)− t‖
≤ ‖(1− µn)σn + µnGσn − t‖
≤ (1− µn)‖σn − t‖+ µn‖Gσn − t‖
≤ (1− µn)‖σn − t‖+ µn‖σn − t‖
≤ (1− µn)‖τn − t‖+ µn‖τn − t‖
= ‖τn − t‖.

(11)

This shows that the sequence {‖τn − t‖} is non-increasing and bounded below ∀t ∈ F(G).
Thus, lim

n→∞
‖τn − t‖ exists.

Lemma 5. Let {τn} be a sequence that is developed by the iterative algorithm (4). Then, F(G) 6= ∅
when, and only when, {τn} is bounded and lim

n→∞
‖τn − Gτn‖ = 0.

Proof. Presume that F(G) 6= ∅ and t ∈ F(G). Then, lim
n→∞

‖τn − t‖ exists according to

Lemma 4 and {τn} is bounded. Presume that:

lim
n→∞

‖τn − t‖ = α. (12)

From Equations (9), (10) and (12), we obtain:

lim
n→∞

sup ‖ξn − t‖ ≤ lim
n→∞

sup ‖τn − t‖ ≤ α. (13)

lim
n→∞

sup ‖σn − t‖ ≤ lim
n→∞

sup ‖τn − t‖ ≤ α. (14)

Since G satisfies condition (E), we obtain:

‖Gτn − t‖ ≤ ‖τn − t‖

⇐⇒ lim
n→∞

sup ‖Gτn − t‖ ≤ lim
n→∞

sup ‖τn − t‖ ≤ α. (15)
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Now:

‖τn+1 − t‖ = ‖G((1− µn)σn + µnGσn)− t‖
≤ ‖(1− µn)σn + µnGσn − t‖
≤ (1− µn)‖σn − t‖+ µn‖Gσn − t‖
≤ (1− µn)‖σn − t‖+ µn‖σn − t‖
= ‖σn − t‖.

Taking lim
n→∞

on both sides, we obtain:

α = lim
n→∞

inf ‖τn+1 − t‖ ≤ lim
n→∞

inf ‖σn − t‖. (16)

So, it follows from (14) and (16) that:

α ≤ lim
n→∞

inf ‖σn − t‖ ≤ lim
n→∞

sup ‖σn − t‖ ≤ α

⇐⇒ lim
n→∞

‖σn − t‖ = α.
(17)

Additionally:

‖σn − t‖ = ‖Gξn − t‖
≤ ‖ξn − t‖.

Taking lim
n→∞

on both sides, we obtain:

α = lim
n→∞

inf ‖σn − t‖ ≤ lim
n→∞

inf ‖ξn − t‖. (18)

So, it follows from (13) and (18) that:

α ≤ lim
n→∞

inf ‖ξn − t‖ ≤ lim
n→∞

sup ‖ξn − t‖ ≤ α

⇐⇒ lim
n→∞

‖ξn − t‖ = α.
(19)

Thus:

α = lim
n→∞

‖ξn − t‖ = lim
n→∞

‖G((1− θn)τn + θnGτn)− t‖

≤ lim
n→∞

‖(1− θn)τn + θnGτn − t‖

= lim
n→∞

‖(1− θn)(τn − t) + θn(Gτn − t)‖

≤ lim
n→∞

((1− θn)‖τn − t‖+ θn‖Gτn − t‖)

≤ lim
n→∞

((1− θn)‖τn − t‖+ θn‖τn − t‖)
≤ α.

Hence:
lim

n→∞
‖(1− θn)(τn − t) + θn(Gτn − t)‖ = α. (20)

From (13), (15) and (20) and using Lemma 2, we obtain:

lim
n→∞

‖τn − Gτn‖ = 0.
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Conversely, assume that {τn} is bounded and lim
n→∞

‖τn − Gτn‖ = 0. Let t ∈ A(S , {τn}),
then we obtain:

r(Gt, {τn}) = lim
n→∞

sup ‖τn − Gt‖

≤ lim
n→∞

sup(‖τn − t‖+ µ‖Gτn − τn‖)

= lim
n→∞

sup ‖τn − t‖

= r(t, {τn}) = r(S , {τn}).

This implies that Gt ∈ A(S , {τn}). Since B is uniformly convex, A(S , {τn}) is a singleton,
which implies that Gt = t.

Now, we aim to prove the following weak convergence theorem for the operators that
satisfy condition (E) using the iterative algorithm (4).

Theorem 3. Presume that F(G) 6= ∅ and B satisfies Opial’s property, then the sequence {τn} that
is defined by the iterative algorithm (4) converges weakly to a fixed point of the operator G.

Proof. In Lemma 4, we demonstrated that lim
n→∞

‖τn − t‖ exists. Now, we have to show that

{τn} has a unique weak subsequential limit in F(G). Let t and q be two weak limits of
{τnj} and {τnk}, respectively, where {τnj} and {τnk} are subsequences of {τn}. According
to Lemma 5, lim

n→∞
‖τn − Gτn‖ = 0 and therefore, using Lemma 3, t ∈ F(G) and similarly,

q ∈ F(G).

Now, our aim is to show that t = q. When t 6= q, then using Opial’s property, we
obtain:

lim
n→∞

‖τn − t‖ = lim
j→∞
‖τnj − t‖

< lim
j→∞
‖τnj − q‖

= lim
n→∞

‖τn − q‖

= lim
k→∞
‖τnk − q‖

< lim
k→∞
‖τnk − t‖

= lim
n→∞

‖τn − t‖.

which is not possible and hence, t = q. It can be deduced that {τn} converges weakly to
t ∈ F(G).

Theorem 4. The sequence {τn} that is defined by the iterative algorithm (4) converges strongly to
t ∈ F(G) when, and only when, lim

n→∞
inf d(τn, F(G)) = 0, where d(τn, F(G)) = inf{‖τn − t‖ :

t ∈ F(G)}.

Proof. The first part is trivial. Now, we aim to prove the converse part. Presume that
lim

n→∞
inf d(τn, F(G)) = 0. According to Lemma 4, lim

n→∞
‖τn − t‖ exists for all t ∈ F(G);

therefore, it can be hypothesized that lim
n→∞

d(τn, F(G)) = 0.

Now, our claim is that {τn} is a Cauchy sequence in S . Since lim
n→∞

d(τn, F(G)) = 0 for

a given η > 0, M ∈ N exists in such a way that for all n ≥ M:

d(τn, F(G)) <
η

2

=⇒ inf{‖τn − t‖ : t ∈ F(G)} <
η

2
.
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In particular, inf{‖τM − t‖ : t ∈ F(G)} < η
2 . Therefore, t ∈ F(G) exists in such a way

that:
‖τM − t‖ < η

2
.

Now, for m, n ≥ M:

‖τn+m − τn‖ ≤ ‖τn+m − t‖+ ‖τn − t‖
≤ ‖τM − t‖+ ‖τM − t‖
= 2‖τM − t‖ < η.

This implies that {τn} is a Cauchy sequence in S , so there is an element ` ∈ S such that
lim

n→∞
τn = `. Since lim

n→∞
d(τn, F(G)) = 0, it follows that d(`, F(G)) = 0 and thus, we obtain

` ∈ F(G).

We now aim to prove the following strong convergence result by applying condi-
tion (I).

Theorem 5. Assume that F(G) 6= ∅ and the operator G satisfies condition (I). Then, the sequence
{τn} that is defined by the iterative algorithm (4) converges strongly to a fixed point of G.

Proof. We demonstrated in Lemma 5 that:

lim
n→∞

‖τn − Gτn‖ = 0. (21)

By applying condition (I) and Equation (21), we obtain:

0 ≤ lim
n→∞

ψ(d(τn, F(G))) ≤ lim
n→∞

‖τn − Gτn‖ = 0

=⇒ lim
n→∞

ψ(d(τn, F(G))) = 0.

It then follows that:
lim

n→∞
(d(τn, F(G))) = 0.

Hence, using Theorem 4, the sequence {τn} converges strongly to a fixed point of G.

Now, we present the following example to support Theorem 5.

Example 2. Let B = R be a Banach space with respect to the usual norm and S = [−2, ∞) be a
non-empty, closed and convex subset of B. Let G : S → S be an operator that is defined by:

G(x) =
{ x

4 , if x ∈ [−2, 1
2 ],

x
5 , if x ∈ ( 1

2 , ∞).

Since G is discontinuous at x = 1
2 and we know that every non-expansive mapping is

continuous, it follows that G is not a non-expansive mapping. Now, we verify that G satisfies
condition (E). For this, the following cases arise:

Case-I. When x, y ∈ [−2, 1
2 ], then we obtain:

‖x− Gy‖ =

∥∥∥∥x− y
4

∥∥∥∥
=

∥∥∥∥x− x
4
+

x
4
− y

4

∥∥∥∥
≤

∥∥∥∥x− x
4

∥∥∥∥+ 1
4

∥∥∥∥x− y
∥∥∥∥
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≤ 16
15

∥∥∥∥x− Gx
∥∥∥∥+ ‖x− y‖.

Case-II. When x, y ∈ ( 1
2 , ∞), then we obtain:

‖x− Gy‖ =

∥∥∥∥x− y
5

∥∥∥∥
=

∥∥∥∥x− x
5
+

x
5
− y

5

∥∥∥∥
≤

∥∥∥∥x− x
5

∥∥∥∥+ 1
5

∥∥∥∥x− y
∥∥∥∥

≤ 16
15

∥∥∥∥x− Gx
∥∥∥∥+ ‖x− y‖.

Case-III. When x ∈ [−2, 1
2 ] and y ∈ ( 1

2 , ∞), then we obtain:

‖x− Gy‖ =

∥∥∥∥x− y
5

∥∥∥∥
=

∥∥∥∥x− x
5
+

x
5
− y

5

∥∥∥∥
≤

∥∥∥∥x− x
5

∥∥∥∥+ 1
5

∥∥∥∥x− y
∥∥∥∥

≤
∥∥∥∥x− x

4
+

x
4
− x

5

∥∥∥∥+ ‖x− y‖

=

∥∥∥∥(x− x
4

)
+

1
15

(
x− x

4

)∥∥∥∥+ ‖x− y‖

=
16
15

∥∥∥∥x− x
4

∥∥∥∥+ ‖x− y‖

=
16
15

∥∥∥∥x− Gx
∥∥∥∥+ ‖x− y‖.

Case-IV. When x ∈ ( 1
2 , ∞) and y ∈ [−2, 1

2 ], then we obtain:

‖x− Gy‖ =

∥∥∥∥x− y
4

∥∥∥∥
=

∥∥∥∥x− x
4
+

x
4
− y

4

∥∥∥∥
≤

∥∥∥∥x− x
4

∥∥∥∥+ 1
4

∥∥∥∥x− y
∥∥∥∥

≤
∥∥∥∥x− x

5
+

x
5
− x

4

∥∥∥∥+ ‖x− y‖

=

∥∥∥∥(x− x
5

)
− 1

16

(
x− x

5

)∥∥∥∥+ ‖x− y‖

=
15
16

∥∥∥∥x− x
5

∥∥∥∥+ ‖x− y‖

≤ 16
15

∥∥∥∥x− Gx
∥∥∥∥+ ‖x− y‖.

Hence, for all of the above cases, G satisfies condition (E) with µ = 16
15 and G has a

fixed point t = 0. Thus, F(G) = {0} 6= ∅. Now, we consider a function ψ(x) = x
3 , where
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x ∈ (0, ∞), which is non-decreasing and satisfies ψ(0) = 0 and ψ(x) > 0 for all x ∈ (0, ∞).
Now:

d(x, F(G)) = inf
t∈F(G)

‖x− t‖

= inf ‖x− 0‖
= inf ‖x‖

=

{
0, if x ∈ [−2, 1

2 ],
1
2 , if x ∈ ( 1

2 , ∞).

=⇒ ψ
(
d(x, F(G))

)
=

{
0, if x ∈ [−2, 1

2 ],
1
6 , if x ∈ ( 1

2 , ∞).

Now, we have the following cases:
Case-I. When x ∈ [−2, 1

2 ], then we obtain:

‖x− Gx‖ =
∥∥∥∥x− x

4

∥∥∥∥ =
3
4

∥∥x
∥∥ ≥ 0 = ψ

(
d(x, F(G))

)
.

Case-II. When x ∈ ( 1
2 , ∞), then we obtain:

‖x− Gx‖ =
∥∥∥∥x− x

5

∥∥∥∥ =
4
5

∥∥x
∥∥ ≥ 1

6
= ψ

(
d(x, F(G))

)
.

Hence, from both the cases, we obtain:

‖x− Gx‖ ≥ ψ
(
d(x, F(G))

)
.

Thus, the operator G satisfies condition (I). Now, all of the assumptions of Theorem 5 are
satisfied. Hence, using Theorem 5, the sequence that is defined by the JF iterative algorithm
converges strongly to the fixed point t = 0 of G.

Now, we extend the following example to compare the rate of convergence of the JF
iterative algorithm to some other well-known iterative algorithms for operators that satisfy
condition (E).

Example 3. Let B = R be a Banach space with respect to the usual norm and let S = [−1, 1] be a
subset of B. Let G : S → S be defined by:

G(x) =


−x, if x ∈ [0, 3

4 )
⋃
( 3

4 , 1],
1
2 sin x, if x ∈ [−1, 0),
0, if x = 3

4 .

It can easily be seen that the operator G satisfies condition (E) with µ = 4.

Now, we choose control sequences µn = 0.22, θn = 0.65 and ηn = 0.95 for all n ∈ Z+

with the initial estimate of τ0 = 0.5 to numerically compare the rate of convergence of
remarkable iterative algorithms.

Using MATLAB 2015a, we demonstrate that the proposed iterative algorithm (4)
converges to the fixed point t = 0 of the operator G faster than Mann, Ishikawa, S, Picard-S,
Noor and SP iterative algorithms, which can easily be seen in Table 1 and Figure 1.



Mathematics 2022, 10, 1132 12 of 16

Table 1. A comparison of the rate of convergence of well-known iterative algorithms.

Iter. Mann Ishikawa S Picard-S Noor SP JF

1 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000

2 0.280000 0.423000 –
0.357000 0.357000 0.287150 0.110880 0.084000

...
...

...
...

...
...

...
...

9 0.004836 0.131200 0.033772 0.033772 0.005917 0.000003 0.000000

10 0.002708 0.110995 –
0.024113 0.024113 0.003398 0.000001 0.000000

11 0.001517 0.093902 0.017217 0.017217 0.001951 0.000000 0.000000
...

...
...

...
...

...
...

...

25 0.000000 0.009034 0.000154 0.000154 0.000001 0.000000 0.000000

26 0.000000 0.007642 –
0.000110 0.000110 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

41 0.000000 0.000622 0.000001 0.000001 0.000000 0.000000 0.000000

42 0.000000 0.000526 –
0.000001 0.000001 0.000000 0.000000 0.000000

43 0.000000 0.000445 0.000000 0.000000 0.000000 0.000000 0.000000
...

...
...

...
...

...
...

...

84 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

(Number of iterations)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 45

(
V

a
lu

e
 o

f 
τ

n
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Mann

Ishikawa

S

Picard-S

Noor

SP

JF

Figure 1. Graphical representation of the rate of convergence of well known iterative algorithms.

5. Application

The purpose of this section is to estimate the solution of a mixed Volterra–Fredholm
functional non-linear integral equation using the iterative algorithm (4).

We considered the following non-linear integral equation (see [32]):

x(z) = T
(

z, x(z),
∫ z1

c1

...
∫ zn

cn
K(z, s, x(s))ds,

∫ d1

c1

...
∫ dn

cn
H(z, s, x(s))ds

)
, (22)
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where [c1, d1] × ... × [cn, dn] is an interval in Rn, z = (z1, z2...zn), s = (s1, s2, ...sn) ∈
[c1, d1] × ... × [cn, dn], K, H : [c1, d1] × ... × [cn, dn] × [c1, d1] × ... × [cn, dn] × R → R are
continuous functions and T : [c1, d1]× ...× [cn, dn]×R3 → R.

Assume that the following prerequisites are satisfied:
(D1) K, H ∈ C([c1, d1]× ...× [cn, dn]× [c1, d1]× ...× [cn, dn]×R);
(D2) T ∈ C([c1, d1]× ...× [cn, dn]×R3);
(D3) constants α, β, γ ≥ 0 exist in such a way that:

|T(z, u1, u2, u3)− T(z, v1, v2, v3)| ≤ α|u1 − v1|+ β|u2 − v2|+ γ|u3 − v3|,

for all z ∈ [c1, d1]× ...× [cn, dn], ui, vi ∈ R, i = 1, 2, 3;
(D4) constants LK ≥ 0 and LH ≥ 0 exist in such a way that:

|K(z, s, u)− K(z, s, v)| ≤ LK|u− v|,

|H(z, s, u)− H(z, s, v)| ≤ LH |u− v|,

for all z, s ∈ [c1, d1]× ...× [cn, dn], and u, v ∈ R;
(D5) α + (βLK + γLH)(d1 − c1)...(dn − cn) < 1.

Using the solution to problem (22), we obtain a function x∗ ∈ C([c1, d1]× ...× [cn, dn]).
The following existence result for problem (22) was proved by Crăciun and Şerban [32].

Theorem 6. Assume that prerequisites (D1)− (D5) are satisfied. Then, problem (22) has a unique
solution of x∗ ∈ C([c1, d1]× ...× [cn, dn]).

We now demonstrate the main result of this section using the iterative algorithm (4).

Theorem 7. Let B = C([c1, d1]× ...× [cn, dn], ‖.‖) be a Banach space with Chebyshev’s norm.
Let {τn} be a sequence that is defined by the iterative algorithm (4) for the operator G : B → B,
which is defined as:

Gx(z) = T
(

z, x(z),
∫ z1

c1

...
∫ zn

cn
K(z, s, x(s))ds,

∫ d1

c1

...
∫ dn

cn
H(z, s, x(s))ds

)
, (23)

where T, K and H are defined as above. Assume that prerequisites (D1)− (D5) are satisfied. Then,
the iterative algorithm (4) converges to the unique solution, i.e., x∗ ∈ C([c1, d1]× ...× [cn, dn]) of
problem (22).

Proof. In Theorem 6, we saw that problem (22) has a unique solution, so let us assume that
x∗ is the fixed point of G. Now, we aim to show that the sequence {τn} that is defined by
the JF iterative algorithm (4) converges to the solution of problem (22), i.e., x∗. First, we
need to show that the operator G that is defined in (23) is an almost contraction.
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Presume that the prerequisites (D1)− (D4) are satisfied. Then:

‖Gx− Gx∗‖ = ‖Gx− x∗‖ = |Gx(z)− Gx∗(z)|

=

∣∣∣∣∣T
(

z, x(z),
∫ z1

c1

...
∫ zn

cn
K(z, s, x(s))ds,

∫ d1

c1

...
∫ dn

cn
H(z, s, x(s))ds

)

− T
(

z, x∗(z),
∫ z1

c1

...
∫ zn

cn
K(z, s, x∗(s))ds,

∫ d1

c1

...
∫ dn

cn
H(z, s, x∗(s))ds

)∣∣∣∣∣
≤ α

∣∣x(z)− x∗(z)
∣∣

+ β

∣∣∣∣∣
∫ z1

c1

...
∫ zn

cn
K(z, s, x(s))ds−

∫ z1

c1

...
∫ zn

cn
K(z, s, x∗(s))ds

∣∣∣∣∣
+ γ

∣∣∣∣∣
∫ d1

c1

...
∫ dn

cn
H(z, s, x(s))ds−

∫ d1

c1

...
∫ dn

cn
H(z, s, x∗(s))ds

∣∣∣∣∣
≤ α

∣∣x(z)− x∗(z)
∣∣

+ β
∫ z1

c1

...
∫ zn

cn

∣∣∣K(z, s, x(s))− K(z, s, x∗(s))
∣∣∣ds

+ γ
∫ d1

c1

...
∫ dn

cn

∣∣∣H(z, s, x(s))− H(z, s, x∗(s))
∣∣∣ds

≤ α
∣∣x(z)− x∗(z)

∣∣+ β
∫ z1

c1

...
∫ zn

cn
LK

∣∣∣x(s)− x∗(s)
∣∣∣ds

+ γ
∫ d1

c1

...
∫ dn

cn
LH

∣∣∣x(s)− x∗(s)
∣∣∣ds

≤ α
∥∥x− x∗

∥∥+ β
∫ z1

c1

...
∫ zn

cn
LK
∥∥x− x∗

∥∥ds

+ γ
∫ d1

c1

...
∫ dn

cn
LH
∥∥x− x∗

∥∥ds

= α‖x− x∗‖+ βLK(z1 − c1)...(zn − cn)‖x− x∗‖
+ γLH(d1 − c1)...(dn − an)‖x− x∗‖.

=⇒ ‖Gx− Gx∗‖ ≤ [α + (βLK + γLH)(d1 − c1)...(dn − cn)]‖x− x∗‖. (24)

By using condition (D5) and defining δ := α + (βLK + γLH)(d1 − c1)...(dn − cn) < 1,
then for any L ≥ 0 Equation (24) becomes:

‖Gx− Gx∗‖ ≤ δ‖x− x∗‖+ L‖x− Gx‖.

This shows that G is an almost contraction. Hence, using Theorem 2, the sequence {τn}
that is defined by the JF iterative algorithm (4) converges to the solution of problem (22).
This completes the proof.

6. Conclusions

The purpose of this manuscript was to study a well-known and effective iterative
algorithm to approximate the fixed points of non-linear operators that satisfy condition
(E) within the contest of Banach spaces. It is well known that the class of operators that
satisfy condition (E) includes the classes of mappings that satisfy Suzuki’s condition (C), Hardy
and Rogers mappings, generalized α non-expansive mappings, Reich–Suzuki generalized non-
expansive mappings, etc. Therefore, the results of the present manuscript generalize and extend
the relevant results in existing literature (see, for example, [8,9,18,20,23]). It is also shown here
that the JF iterative algorithm is weakly w2-stable with respect to almost contractions. The
JF iterative algorithm can be successfully implemented to approximate the solutions of
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non-linear integral equations. Thus, the results of the current manuscript are very useful
and interesting.
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