
����������
�������

Citation: Ludkowski, S.V. Satellites

of Functors for Nonassociative

Algebras with Metagroup Relations.

Mathematics 2022, 10, 1169. https://

doi.org/10.3390/math10071169

Academic Editor: Alexander

Felshtyn

Received: 11 March 2022

Accepted: 1 April 2022

Published: 4 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Satellites of Functors for Nonassociative Algebras with
Metagroup Relations

Sergey Victor Ludkowski

Department of Applied Mathematics, MIREA—Russian Technological University, av. Vernadsky 78,
119454 Moscow, Russia; sludkowski@mail.ru

Abstract: The article is devoted to non-associative algebras with metagroup relations and modules
over them. Their functors are studied. Satellites of functors are scrutinized. An exactness of satellite
sequences and diagrams is investigated.

Keywords: non-associative algebra; satellites of functors; module; cohomology; metagroup

MSC: Primary 18E25; 18B40; Secondary 16D70; 18G60; 17A60; 03C90

1. Introduction

Structure and functors of associative algebras are very important and have found
wide-spread application (see, for example, Refs. [1–5] and references therein). This is
tightly related with their cohomology theory. Certainly, a great amount of attention is paid
to algebras with groups identities. It is worth mentioning that functors and satellites in
conjunction with cohomology theory of associative algebras were investigated by Cartan,
Eilenber, Hochschild, and other authors [6–9], but it is not applicable to non-associative
algebras.

On the other hand, non-associative algebras with some identities in them, such as
Cayley–Dickson algebras and their generalizations, compose a great part in algebra. More-
over, they obtained many-sided applications in physics, noncommutative geometry, quan-
tum field theory, PDEs, and other sciences (see [10–24] and references therein). Other actual
non-associative structures and their applications are described in [25–27]. For example, the
Klein–Gordon hyperbolic PDE of the second order with constant coefficients was solved
by Dirac with the help of complexified quaternions [28]. Cayley–Dickson algebras were
used for decompositions of higher order PDEs into lower order PDEs that permitted to
integrate and analyze them subsequently [18,29,30]. PDEs or their systems frequently
possess groups of their symmetries [9]. These gave rise to group algebras over the complex
field C in conjunction with Cayley–Dickson algebras leading to extensions that are more
general metagroup algebras. This leads to operator algebras over Cayley–Dickson algebras,
and they also induce the metagroup algebras. It is necessary to note that, besides algebras
over the real field R or the complex field C, there are such algebras over other fields. The
latter are important in non-Archimedean quantum mechanics and quantum field theory.
Then, analysis of PDEs and operators over Cayley–Dickson algebras induce generalized
Cayley–Dickson algebras or metagroup algebras, which act on function modules.

A remarkable fact was outlined in the 20th century that a noncommutative geometry
exists, if there exists a corresponding quasi-group [31–33]. On the other hand, metagroups
are quasigroups with weak relations.

Previously, examples of non-associative algebras, modules and homological complexes
with metagroup relations were given in [15,16,34,35]. Cohomology theory on them began
to be studied in [15]. These algebras also are related with Hopf and quasi-Hopf algebras.
For digital Hopf spaces, cohomologies were investigated in [36].

Smashed and twisted wreath products of metagroups or groups were studied in [17].
It allowed to construct ample families of metagroups even starting from groups. It also
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demonstrates that metagroups appear naturally in algebra. That is, metagroup algebras
compose an enormous class of non-associative algebras.

This article is devoted to functors and satellites for non-associative algebras. These non-
associative algebras are with mild relations induced from metagroup structures. Modules
over non-associative metagroup algebras are investigated in the framework of categories
and functors on them in Section 2. Necessary Definitions 1–5 and notations in Remark 1
are provided. Exactness and additivity of functors and their sequences are investigated in
Propositions 1–7. Their relations with structure of modules over non-associative algebras
with metagroup relations are studied. Examples 1–3 of categories and functors are given.
Satellites for modules over non-associative algebras with metagroup relations are investi-
gated in Section 3. Additivity of morphism related with functors is studied in Propositions
8 and 9. An exactness of satellite sequences and diagrams is scrutinized in Theorems 1–3
(see also formulas and diagrams (1)–(54)).

Auxiliary necessary definitions and notations are provided in Appendix A (A1)–(A21)
(they also are contained in [15,16,35]).

All main results of this paper are obtained for the first time. They can be used for
further studies of non-associative algebras and their modules, their categories and functors,
cohomologies, algebraic geometry, PDEs, their applications in the sciences, etc.

2. Functors for Categories with Metagroup Relations

Remark 1. Let T be an associative commutative unital ring, and let jG and j
rG be metagroups,

j A = T [jG] and j
r A = T [jrG] be metagroup algebras over T , jB be a unital smashly jG-graded j A-

algebra, jX be a left jG-graded jB-module (or right jB-module, or (jB, j
rB)-bimodule) j ∈ µΩ, where

µΩ is a class or a set, where i A is embedded into iB as i A1i B, and iG is embedded into i A as iG1i B.
For the sake of brevity, “smashly” may be omitted. For left modules jX, iX with wj,i = (s, γj,i),
γj,i = γ ∈ {(jG, iG), (j A, i A), (jB, iB)} by Homl,wj,i

(jX, iX) will be denoted the family of all
left T -linear homomorphisms, which are γ-epigeneric if s = eg, γ-exact if s = e, γ-generic if s = g,
where h(x + y) = h(x) + h(y), h(bx) = h′(b)h(x) for each h ∈ Homl,wj,i

(jX, iX), b ∈ jB, x
and y in jX, where h′ ∈ Homl(

jB, iB) is a left T -homomorphism associated with h, h′ : jB→ iB,
where, as usual, h′|j A1j B

: j A1jB → i A1i B, h′|jG1j B
: jG1jB → iG1i B. It is naturally assumed

that a (jB, iB)-epigeneric (or exact, or generic) homomorphism is also (j A, i A)-epigeneric (or exact,
or generic correspondingly); a (j A, i A)-epigeneric (or exact, or generic) homomorphism is also
(jG, iG)-epigeneric (or exact, or generic correspondingly).

For right modules Homr,wj,i (
jX, iX) will be used similarly. For (jG, j

rG)-graded (jB, j
rB)-

bimodules jX with wj,i = (v, β j,i), v = (s, rs), β j,i = β = (γj,i, rγj,i), γj,i ∈ {(jG, iG), (j A, i A),

(jB, iB)}, rγj,i ∈ {(
j
rG, i

rG), (j
r A, i

r A), (j
rB, i

rB)}, s and rs in {eg, e, g}, let Homwj,i (
jX, iX) =

{ f : jX → iX| f ∈ Homl,(s,γj,i)
(jX, iX)& f ∈ Homr,(rs,rγj,i)

(jX, iX)}.
By Ob(µM) = {j M = (jG, jB, jX) : j ∈ µΩ} (or Ob(Mν) or Ob(µMν)) will be denoted

a family of all jG-graded left jB-modules jX for µ = {(jG, T , jB) : j ∈ Ω} (or similarly for right
modules, or bimodules), where Ω = µΩ. Let

s,τ
µ M = (Ob(µM), Homl,wi,p

(i M, p M) : i ∈ µΩ, p ∈ µΩ, wi,p = (s, τγi,p))

denote a category over T , where j M ∈ Ob(µM) =: Ob(s,τ
µ M), j M = (jG, jB, jX), where

p
i f ∈ Homl,wi,p

(i M, p M) will also be written in place of p
i f ∈ Homl,wi,p

(iX, pX) due to embeddings

and Conditions (14)–(19) provided in Definition 2 in [35] and above, where p
i f is also used as a

shortening of (p
i f ′, p

i f ), where 1γj,i = (jG, iG), 2γj,i = (j A, i A), 3γj,i = (jB, iB), τ ∈ {1, 2, 3},
s ∈ {eg, e, g}; s and τ are fixed. This p

i f will also be called a left wi,p-homomorphism.
A sequence

· · · → i1 M−−−−−−−−−−→i
i1

f
i M−−−−−−−−−−→i2

i f

i2 M→ . . .

is exact by the definition if and only if a sequence
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· · · → i1 X−−−−−−−−−−−→i
i1

f
iX−−−−−−−−−−−→i2

i f

i2 X → . . .

is exact. If j M = (jG, jB, 0), then it will also be written shortly j M0. If p
i f = (

p
i f ′, 0), then it will

also be written for brevity p
i f0.

Definition 1. Let T = (T1, T2, T3, T4) be a functor such that T(j M) ∈ Ob(s,τ
ζ M) for each j M ∈

Ob(s,τ
µ M), where k = k(T, j) ∈ ζ Ω, ζ 3 (T1(

jG), T2(T ), T3(
jB)) for each j ∈ µΩ, T1(

jG) =
kG is a metagroup, T2(T ) = T1 is an associative commutative unital ring, T2 : T → T1 is a ring
homomorphism, T3(

jB) = kB, T4(
jX) = kX (see Remark 1). For each h ∈ Homl,wj,p

(jX, pX),
let T4(h) ∈ Homl,T(wj,p)

(T4(
jX), T4(

pX)), T4(h′) ∈ Homl,T(wj,p)
(T3(

jB), T3(
pB)), T(w) =

(s, T(γ)) for w = (s, γ), where T(γ) = (T1(
jG), T1(

pG)) if γj,p = γ = (jG, pG), T(γ) =

(T2(T )[T1(
jG)], T2(T )[T1(

pG)]) if γ = (j A, p A), T(γ) = (T3(
jB), T3(

pB)) if γ = (jB, pB),
where T1(h) : T1(

jG) → T1(
pG) is induced by the restriction of T3(h) on T1(

jG)1T3(
jB),

T4(h′) = T3(h) : T3(
jB) → T3(

pB) is a homomorphism of algebras, where T4(h(bx)) =
(T3(h)(T3(b)))(T4(h)(T4(x))), T1(h(c)) = T1(h)(T1(c)) for each c ∈ jG, T3(h(εa)) =
(T2(ε))(T3(h)(T3(a))) for each ε ∈ T and a ∈ j A, T3(h(ab)) = (T3(h)(T3(a)))(T3(h)(T3(b)))
for each a ∈ jB and b ∈ jB. Notice that, if h is an identity homomorphism, then T(h) is an identity
homomorphism, T(0) = 0. The functor T is called additive if it satisfies:

T4(
i1
i f + i1

i g) = T4(
i1
i f ) + T4(

i1
i g)

for each i1
i f and i1

i g in Homl,wi,i1
(i M, i1 M) with T3(

i1
i f ′) = T3(

i1
i g′).

Assume that, if h ∈ Homl,wi,p
(i M, p M), f ∈ Homl,wp,j

(p M, j M), then T(f ◦ h) = T(f) ◦
T(h). If these conditions are satisfied, then T is called a s-covariant functor from the category s,τ

µ M
over T into the category s,τ

ζ M over T1. If s is specified, it may be shortly called a covariant functor.
If T(f ◦h) = T(h) ◦T(f) for each f and h as above, then it is said that T is a contravariant functor.
Similarly, functors are defined for the categoryMs,τ

µ of right modules and for the category
v,ρ
µ Mν of bimodules, where v = (s, rs), ρ = (τ, rτ).

Let T , T1, T2 be commutative associative unital rings and s,τ
µ M, s,τ

µ1M, s,τ
µ2M be the categories

of iG-graded left iB-modules over the rings T , T1, T2 respectively, for i in µΩ, µ1 Ω, µ2 Ω, respec-
tively, where s ∈ {eg, e, g}, τ ∈ {1, 2, 3}, s and τ are fixed. Let for each i M ∈ Ob(s,τ

µ1M), j M ∈
Ob(s,τ

µ2M) there be posed T(i M, j M) ∈ Ob(s,τ
µ M), to each i1

i f = f ∈ Homl,wi,i1
(i M, i1 M), j

j1
h =

h ∈ Homl,wj1,j
(j1 M, j M), where i1 M ∈ Ob(s,τ

µ1M), j1 M ∈ Ob(s,τ
µ2M), T = (T1, T2, T3, T4),

T1(
iG, jG) = kG is a metagroup, T2(T1, T2) = T is the commutative associative unital ring,

T3(
iB, jB) = kB is a kG-graded k A-algebra, T4(

iX, jX) = kX is a kG-graded left kB-module, there
are posed homomorphisms T(f, j M) : T(i M, j M) → T(i1 M, j M) and T(i M, h) : T(i M, j M) →
T(i M, j1 M), such that

T(f, j M) ∈ Homl,T(wi,i1
,j M)(T(

i M, j M), T(i1 M, j M)),

T(i M, h) ∈ Homl,T(i M,wj1,j)
(T(i M, j M), T(i M, j1 M)),

where T(γ, j M) = (T1(
iG, jG), T1(

pG, jG)) if γi,p = γ = (iG, pG),

T(γ, j M) = (T2(T1, T2)[T1(
iG, jG)], T2(T1, T2)[T1(

pG, jG)])i f γ = (i A, p A),

T(γ, j M) = (T3(
iB, jB), T3(

pB, jB)) i f γ = (iB, pB), similarly

T(i M, γ) = (T1(
iG, pG), T1(

iG, jG)) i f γj,p = γ = (jG, pG),

T(i M, γ) = (T2(T1, T2)[T1(
iG, pG)], T2(T1, T2)[T1(

iG, jG)]) i f γ = (j A, p A),

T(i M, γ) = (T3(
iB, pB), T3(

iB, jB))i f γ = (jB, pB),
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T(w, j M) = (s, T(γ, j M)) and T(i M, γ) = (s, T(i M, γ)) f or w = (s, γ).

Note that, if f = idi M, h = idj M, then T(f, j M) = idT(i M,j M), T(i M, h) = idT(i M,j M).

Assume also that T(i2
i1

f ◦ i1
i f, j M) = T(i2

i1
f, j M) ◦T(i1

i f, j M) and T(i M, j
j1

h ◦ j1
j2

h) = T(i M, j1
j2

h)

◦T(i M, j
j1

h); there is the commutative diagram:

T(i M, j M)−−−−−−−−−−−−−−−→
T(

i1
i f,j M)

T(i1 M, j M)

T(i M, j
j1

h) ↓ ↓ T(i1 M, j
j1

h)
T(i M, j1 M)−−−−−−−−−−−−−−−−→

T(
i1
i f,j1 M)

T(i1 M, j1 M).

Then, it is said that T is a functor of two arguments covariant in the first and contravariant
in the second argument. If we fix j M, then T(·, j M) will be a covariant functor; if we fix i M, then
T(i M, ·) will be a contravariant functor. We shall consider additive functors:

T4(
i1
i f + i1

i g, jX) = T4(
i1
i f , jX) + T4(

i1
i g, jX) and

T4(
iX, j

j1
h +

j
j1

q) = T4(
iX, j

j1
h) + T4(

iX, j
j1

q)

for each i1
i f and i1

i g in Homl,wi,i1
(i M, i1 M) with T3(

i1
i f ′, jX) = T3(

i1
i g′, jX), j

j1
h and j

j1
q in

Homl,wj,j1
(j M, j1 M) with T3(

iX, j
j1

h′) = T3(
iX, j

j1
q′). In particular, if iX = 0 (or jX = 0),

then T4(
iX, jX) = 0. Notice that T4(

i1
i 0, jX) = 0, T(iX, j

j1
0) = 0, where i1

i 0 and j
j1

0 denote
zero homomorphisms.

Henceforward, additive functors are considered if some other is not specified.

Proposition 1. Assume that sequences of homomorphisms

i1 X−−−−−−−−−−−→i
i1

f
iX−−−−−−−−−−−→i1

i f

i1 X and

j1 X−−−−−−−−−−−→j
j1

h
jX−−−−−−−−−−−→j1

j h

j1 X

with i1 ∈ Λi, j1 ∈ Λj, card(Λi) < ℵ0, card(Λj) < ℵ0, induce representations of the left modules
iX and jX as direct sums, where i1 G = iG, i1 B = iB, i1T = iT for each i1 ∈ Λi, j1 G = jG,
j1 B = jB, j1T = jT for each j1 ∈ Λj. Then, sequences of homomorphisms

T4(
i1 X, j1 X)−−−−−−−−−−−−−−−−→

T4(
i
i1

f ,
j1
j h)

T4(
iX, jX)−−−−−−−−−−−−−−−−→

T4(
i1
i f ,jj1

h)
T4(

i1 X, j1 X)

induce a representation of T4(
iX, jX) as a direct sum.

Proof. Since T(i′1
i′ f, j′

j′1
h) ◦ T(i

i1
f, j1

j h) = T(i′1
i′ f ◦

i
i1

f, j1
j h ◦ j′

j′1
h), then the composition T(i′1

i f, j
j′1

h) ◦

T(i
i1

f, j1
j h) is the identity map if (i1, j1) = (i′1, j′1); otherwise, it is zero. The sum

∑
i1,j1

T4(
i
i1 f , j1

j h) ◦ T4(
i1
i f , j

j1
h) =

∑
i1,j1

T4(
i
i1 f ◦ i1

i f , j
j1

h ◦ j1
j h) = T4(∑

i1

i
i1 f ◦ i1

i f , ∑
j1

j
j1

h ◦ j1
j h)

is the identity map such that T3(∑i1
i
i1

f ′ ◦ i1
i f ′, ∑j1

j
j1

h′ ◦ j1
j h′) and T4(∑i1

i
i1

f ◦ i1
i f , ∑j1

j
j1

h ◦ j1
j h)

are the identity maps of the corresponding algebra T3(
iB, jB) and module T4(

iX, jX), respectively.
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This implies that the family of homomorphisms {T4(
i
i1

f , j1
j h), T4(

i1
i f , j

j1
h)} provides a

representation of the module T4(
iX, jX) as the direct sum.

Corollary 1. For each split, exact sequences

0→ i1 X → iX → i2 X → 0;
0→ j1 X → jX → j2 X → 0

the sequences
0→ T4(

i1 X, jX)→ T4(
iX, jX)→ T4(

i2 X, jX)→ 0;
0→ T4(

iX, j1 X)→ T4(
iX, jX)→ T4(

iX, j2 X)→ 0

are also split and exact.

Definition 2. Assume that 1T and 2T are two functors covariant in i M and contravariant in j M
with 1Tk = 2Tk for each k ∈ {1, 2, 3}. Assume also that there are homomorphisms p(i M, j M) ∈
Homl,1T(wi,j)

(1T(i M, j M), 2T(i M, j M)) such that, for each i1
i f ∈ Homl,wi,i1

(i M, i1 M) and j
j1

h ∈
Homl,wj1,j

(j1 M, j M), there exists the commutative diagram

1T(i M, j M)−−−−−−−−−−−−−−−−→
p(i M,j M)

2T(i M, j M)

1T(i1
i f, j

j1
h) ↓ ↓ 2T(i1

i f, j
j1

h)
1T(i1 M, j1 M)−−−−−−−−−−−−−−−−−→

p(i1 M,j1 M)

2T(i1 M, j1 M),

where wi,i1 = (v, γi,i1) for each i, i1, where v is fixed.
Then, p : 1T → 2T is called a natural v-map of the functor 1T into the functor 2T. Moreover,

if each map p(i M, j M) is an isomorphism of 1T(i M, j M) onto 2T(i M, j M), then p is called a
natural v-equivalence or v-isomorphism. If v is provided, it can be shortened to natural map (natural
equivalence, natural isomorphism, respectively).

Example 1. Let

Ob(µM̌) := {i M ∈ Ob(µM) : ∀i ∈ µΩ, i M = (G, B, iX)},

where G, T and B are fixed, with families of homomorphisms

Ȟoml,1(
iX, jX) = {π ∈ Homl,wi,j

(iX, jX) : π′ = idB}.

A category with these restrictions will be denoted by µM̌1. In this case, π′ = idB, so it
can be omitted for shortening the notation, while wi,j corresponds to s = e and τ = 3, since
G, T , B are fixed. Therefore, it is possible to consider Ȟoml,1(

iX, jX) as an additive group
such that

(π + ξ)(x + y) = (π(x) + ξ(x)) + (π(y) + ξ(y))

for each π and ξ in Ȟoml,1(
iX, jX), x and y in iX. Let ξ ∈ Ȟoml,1(

iX, jX), where i M and
j M belong to Ob(µM̌). For each i

i1
f ∈ Ȟoml,1(

i1 X, iX) and j1
j f ∈ Ȟoml,1(

jX, j1 X), let

Ȟoml,1(
i
i1

f , j1
j f ) : Ȟoml,1(

iX, jX)→ Ȟoml,1(
i1 X, j1 X) be such that

Ȟoml,1(
i
i1

f , j1
j f )ξ =

j1
j f ◦ ξ ◦ i

i1
f .

Therefore, the pair (Ȟoml,1(
iX, jX), Ȟoml,1(

i
i1

f , j1
j f )) composes an additive functor

contravariant in iX and covariant in jX on µM̌1.
If, for Ob(µM̌), families of homomorphisms Ȟoml,wi,j

(iX, jX) = {π ∈ Homl,wi,j

(iX, jX) : π′ : B → B} are considered, then it gives a category s,τ
µ M̌, where s ∈ {eg, e, g},



Mathematics 2022, 10, 1169 6 of 26

τ ∈ {1, 2, 3}. Evidently, µM̌1 is a subcategory in s,τ
µ M̌ and the latter is a subcategory in

s,τ
µ M.

Example 2. On the category s,τ
µ M, let Hom(i

i1
f, j1

j f)h =
j1
j f ◦ h ◦ i

i1
f for each i

i1
f ∈ Homl,wi1,i

(i1 M, i M) and j1
j f ∈ Homl,wj,j1

(j M, j1 M) and h ∈ Homl,wi,j
(i M, j M), where i M and j M are in

Ob(s,τ
µ M), where

Hom(i
i1

f, j1
j f) : Homl,wi,j

(i M, j M) → Homl,wi1,j1
(i1 M, j1 M). Notice that (j1

j f ◦ h ◦ i
i1

f )′ =
j1
j f ′ ◦ h′ ◦ i

i1
f ′. Therefore, (Homl,wi,j

(i M, j M), Hom(i
i1

f, j1
j f)) provides an additive functor con-

travariant in i M and covariant in j M on s,τ
µ M.

Example 3. Let µM̌ν,1 be a subcategory of v,ρ
µ Mν for fixed G, T and B, that is, iG = G, iT = T ,

iB = B for each i ∈ µΩν, with homomorphisms Ȟom1(
iX, jX) = {π ∈ Homw(iX, jX) : π′ =

idB}. A G-smashed tensor product iX
⊗

B
jX is provided by Definition 7 in [35] for each i M

and j M in Ob(µM̌ν,1). For any i1
i f ∈ Ȟom1(

iX, i1 X) and j1
j h ∈ Ȟom1(

jX, j1 X), it will be put

(i1
i f ⊗ j1

j h)(x ⊗ y) = (i1
i f (x))⊗ (

j1
j h(y)) for each x ∈ iX and y ∈ jX. Therefore, there exists

a functor ⊗T defined by ⊗T(i M, j M) = (G, B, iX
⊗

B
jX) and ⊗T4(

i1
i f , j1

j h) = i1
i f ⊗ j1

j h with
T3(idB, idB) = idB. Hence, it satisfies

⊗T4(
i1
i f + i1

i g, jX) = ⊗T4(
i1
i f , jX) + ⊗T4(

i1
i g, jX) and

⊗T4(
iX, j1

j h +
j1
j q) = ⊗T4(

iX, j1
j h) + ⊗T4(

iX, j1
j q)

for each i1
i f and i1

i g in Ȟom1(
iX, i1 X), j1

j h and j1
j q in Ȟom1(

jX, j1 X). Thus, ⊗T is the covariant
functor in two arguments.

Definition 3. Assume that T(i M, j M) is a functor covariant in i M and contravariant in j M,
where i M and j M belong to Ob(s,τ

µ M). Assume that, for exact sequences,

i1 M→ i M→ i2 M and
j1 M→ j M→ j2 M

with left w-homomorphisms (i.e., p
k f ∈ Homl,wk,p

(k M, p M) for each p, k, where wk,p = (s, γk,p),
s ∈ {eg, e, g}), the sequences

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M) and
T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)

are also exact with left T(wk,p, j M)- and T(i M, wk,p)-homomorphisms, respectively, for each p and
k. Then, the functor T is called w-exact (or shortly exact).

Proposition 2. The functor T(i M, j M) covariant in i M and contravariant in j M is w-exact in
the category s,3

µ M with wk,p = (s, γk,p), s = eg for each corresponding k and p, if and only if, for
each exact sequences,

i′1 M0 → i1 M→ i M→ i2 M→ i′2 M0 and
j′1 M0 → j1 M→ j M→ j2 M→ j′2 M0

with left wk,p-homomorphisms for each corresponding k and p, the following sequences

T(i′1 M0, j M)→ T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M)→ T(i′2 M0, j M) and
T(i M, j′2 M0)→ T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)→ T(i M, j′1 M0)

are exact with left T(wk,p, j M)- and T(i M, wk,p)-homomorphisms, respectively, for each correspond-
ing p and k.
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Proof. From Definition 3, the necessity follows. For proving the sufficiency, we consider
any exact sequence

i1 M−−−−−−−−−−→i
i1

f
i M−−−−−−−−−−→i2

i f

i2 M.

We put i1 N = Ker(i
i1

f ), i N = Ker(i2
i f ), i2 N = i2

i f (iX), where i M = (iG, iB, iX),
iK = (iG, iB, i N). Since s = eg, they induce exact sequences with γk,p-epigeneric homomor-
phisms (for the corresponding k, p)

0→ i1 N → i1 X → i N → 0,
0→ i N → iX → i2 N → 0 and
0→ i2 N → i2 X → i2 X/i2 N → 0,

where the quotient i2 G-graded left i2 B-module i2 X/i2 N exists, since i2 X is the commutative
group relative to the addition operation, while the homomorphism i2

i f is γi,i2-epigeneric,
τ = 3, such that i2

i f ′(iB) = i2 B. By the conditions of this proposition, this implies the
exactness of the sequences

T(i1 M, j M)→ T(iK, j M)→ T(iK0, j M),
T(i′2 K0, j M)→ T(i2 K, j M)→ T(i2 M, j M) and
T(iK, j M)→ T(i M, j M)→ T(i2 K, j M)

with the T(γk,p, j M)-homomorphisms (for the corresponding k, p), since the functor T maps
γ into T(γ) by Definition 1.

From the exactness of these sequences, it follows that the sequence

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M)

is exact with the T(γk,p, j M)-homomorphisms (for the corresponding k, p). A similar proof
is in the second argument j M.

Definition 4. Let
i′1 M0 → i1 M→ i M→ i2 M→ i′2 M0 and
j′1 M0 → j1 M→ j M→ j2 M→ j′2 M0

be exact sequences with left wk,p-homomorphisms for each corresponding k and p, where s ∈
{eg, e, g}, wk,p = (s, γk,p), k M and p M belong to Ob(s,τ

µ M). A functor T will be called w-half
exact, if there are exact sequences

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M) and
T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)

with left (s, T(γk,p, j M))- and (s, T(i M, γk,p))-homomorphisms, respectively (for the corresponding k, p).
The functor T is called w-exact on the right if there exist exact sequences

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M)→ T(i′2 M0, j M) and
T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)→ T(i M, j′1 M0)

with left (s, T(γk,p, j M))- and (s, T(i M, γk,p))-homomorphisms, respectively (for the corresponding k,
p).

Symmetrically, the functor T is called w-exact on the left, if there exist exact sequences

T(i′1 M0, j M)→ T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M) and
T(i M, j′2 M0)→ T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)
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with left (s, T(γk,p, j M))- and (s, T(i M, γk,p))-homomorphisms, respectively (for the corresponding k,
p).

Similar definitions are for the categoriesMs,τ
ν and v,ρ

µ Mν.

Proposition 3. The following conditions are equivalent:

(i) the functor T is w-exact on the right, where w = (s, γ);
(ii) for each exact sequence,

i1 M→ i M→ i2 M→ i′2 M0 and
j′1 M0 → j1 M→ j M→ j2 M

with left wk,p-homomorphisms (for each corresponding k and p) in s,τ
µ M with s ∈ {eg, e}

there exist exact sequences

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M)→ T(i′2 M0, j M) and

T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)→ T(i M, j′1 M0)

with left T(wk,p, j M)- and T(i M, wk,p)-homomorphisms, respectively, for each corresponding
p and k;

(iii) moreover, in the subcategory µM̌1 (ii) is equivalent to: for each exact sequence

i1 X → iX → i2 X → 0 and

0→ j1 X → jX → j2 X

with left w-homomorphisms there exists the exact sequence

T4(
i1 X, jX)⊕ T4(

iX, j2 X)−−−−−−−−−→
h

T4(
iX, jX)→ T4(

i2 X, j1 X)→ 0 with

h = T4(
i
i1 f , jX)⊕ T4(

iX, j2
j f ).

Proof. (i) ⇒ (ii). Let i N = Ker(i
i1

f ), i1 N = Im(i
i1

f ), where i
i1

f ∈ Homl,wi1,i
(i1 M, i M),

i M = (iG, iB, iX), iK = (iG, iB, i N). Hence, there exist exact sequences

0→ i N → i1 X → i1 N → 0 and

0→ i1 N → iX → i2 X → 0

with wk,p-homomorphisms for the corresponding k, p. Therefore, there are exact sequences

T(i1 M, j M)→ T(i1 K, j M)→ T(i′1 K0, j M) and

T(i1 K, j M)→ T(i M, j M)→ T(i2 M, j M)→ T(i′2 M0, j M)

with left wk,p-homomorphisms for the corresponding k, p. This implies that the sequence

T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M)→ T(i′2 M0, j M)

is exact with left T(wk,p, j M)-homomorphisms for the corresponding k, p. A similar proof
is in the second argument.

(ii)⇒ (i). It is evident from Definition 4.
(ii) ⇒ (iii) in the subcategory µM̌1, where G, T , B are fixed. Since in this case

i M = (G, T , B, iX), we consider iX. At first, we take the following commutative diagram
with left w-homomorphisms and exact rows and columns:
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i1 X−−−−−−−−−−−−−→j3
i1

f

j3 X → 0

i
i1

f ↓ ↓ j2
j3

f
i2 X−−−−−−−−−−−−−→i

i2
f

iX−−−−−−−−−−−−−→j2
i f

j2 X → 0

j4
i2

f ↓ ↓ j1
i f ↓ j

j2
f

j4 X−−−−−−−−−−−−−→j1
j4

f

j1 X−−−−−−−−−−−−−→j
j1

f
jX → 0

↓ ↓ ↓
0 0 0.

This implies that the sequence

i1 X⊕ i2 X−−−−−−−−−−−−−−→i
i1

f⊕i
i2

f
iX−−−−−−−−−−→j

i f

jX → 0

is exact with left w-homomorphisms, since (i
i1

f ⊕ i
i2

f )(x1 + x2) =
i
i1

f (x1)⊕ i
i2

f (x2) for each

x1 ∈ i1 X and x2 ∈ i2 X, j
j1

f ◦ j1
i f =

j
j2

f ◦ j2
i f , where j

i f =
j
j1

f ◦ j1
i f . Note that Im(i

i1
f ⊕ i

i2
f )

⊂ Ker(j
i f ).

Let y ∈ Ker(j
i f ); then, j1

i f (y) ∈ Ker(j
j1

f ) = Im(
j1
j4

f ), hence there exists x4 ∈ j4 X such

that j
j4

f (x4) =
j1
i f (y). Notice that the w-homomorphism j4

i2
f is epimorphic; consequently,

there exists x2 ∈ i2 X such that j4
i2

f (x2) = x4, hence j1
i f (i

i2
f (x2)) =

j1
j4

f (j4
i2

f (x2)) =
j1
j4

f (x4).

This implies that i
i2

f (x2)− y ∈ Ker(j1
i f ), where Ker(j1

i f ) = Im(i
i1

f ). Therefore, there exists
x1 ∈ i1 X such that i

i2
f (x2) − y = −i

i1
f (x1); consequently, y = i

i1
f (x1) +

i
i2

f (x2). Thus,

Ker(j
i f ) ⊂ Im(i

i1
f ⊕ i

i2
f ) and, consequently, Ker(j

i f ) = Im(i
i1

f ⊕ i
i2

f ).
On the other hand, there is the commutative diagram with exact rows and columns

and T4(w, pX) and T4(
kX, w) homomorphisms for the corresponding p and k:

T4(
i1 X, j2 X)−−−−−−−−−−−−−→

T4(
i
i1

f ,j2 X)
T4(

iX, j2 X)−−−−−−−−−−−−−→
T4(

i2
i f ,j2 X)

T4(
i2 X, j2 X)→ 0

T4(
i1 X, j2

j f ) ↓ T4(
iX, j2

j f ) ↓ T4(
i2 X, j2

j f ) ↓
T4(

i1 X, jX)−−−−−−−−−−−−−→
T4(

i
i1

f ,jX)
T4(

iX, jX)−−−−−−−−−−−−−→
T4(

i2
i f ,jX)

T4(
i2 X, jX)→ 0

T4(
i1 X, j

j1
f ) ↓ T4(

iX, j
j1

f ) ↓ T4(
i2 X, j

j1
f ) ↓

T4(
i1 X, j1 X)−−−−−−−−−−−−−→

T4(
i
i1

f ,j1 X)
T4(

iX, j1 X)−−−−−−−−−−−−−→
T4(

i2
i f ,j1 X)

T4(
i2 X, j1 X)→ 0

↓ ↓ ↓
0 0 0.

From the last three diagrams and the proof above, the implication (ii)⇒ (iii) in the
subcategory µM̌1 follows.

(iii)⇒ (ii) in the subcategory µM̌1. Applying (iii) in two cases j2 X = 0 and j1 X = jX,
i1 X = 0 and iX = i2 X, one gets (ii).

Symmetrically to Proposition 3, the following proposition for functors w-exact on the
left is formulated and proved.

Proposition 4. The following conditions are equivalent:

(i) the functor T is w-exact on the left, where w = (s, γ);
(ii) for each exact sequence

i′1 M0 → i1 M→ i M→ i2 M and j1 M→ j M→ j2 M→ j′2 M0
with left wk,p-homomorphisms (for each corresponding k and p) in s,τ

µ M with s ∈ {eg, e}
there exist exact sequences
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T(i′1 M0, j M)→ T(i1 M, j M)→ T(i M, j M)→ T(i2 M, j M) and

T(i M, j′2 M0)→ T(i M, j2 M)→ T(i M, j M)→ T(i M, j1 M)

with left T(wk,p, j M)- and T(i M, wk,p)-homomorphisms, respectively, for each corresponding
p and k;

(iii) moreover, in the subcategory µM̌1 (ii) is equivalent to: for each exact sequence

0→ i1 X → iX → i2 X and
j1 X → jX → j2 X → 0

with left w-homomorphisms, there exists the exact sequence

0→ T4(
i1 X, j2 X)→ T4(

iX, jX)−−−−−−−−−→g T4(
i2 X, jX)⊕ T4(

iX, j1 X)

with g = T4(
i2
i f , jX)⊕ T4(

iX, j1
j f ).

Proposition 5. On the category s,τ
µ M with s ∈ {eg, e}, the functor Homl,w is exact on the left.

Proof. Choose any exact sequence with left wk,p-homomorphisms for each corresponding
k and p:

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0,

where i1 M, i M and i2 M belong to
Ob(s,τ

µ M).

This induces the sequence

Homl,wi′2,j
(i′2 M0, j M)→ Homl,wi2,j

(i2 M, j M)−−−−−−−−−−−−−−→
Hom(

i2
i f,j M)

Homl,wi,j
(i M, j M)−−−−−−−−−−−−−−→

Hom(i
i1

f,j M)
Homl,wi1,j

(i1 M, j M)→ Homl,wi′1,j
(i′1 M0, j M)

for each j M ∈ Ob(s,τ
µ M) (see Example 2). Therefore, Hom(i

i1
f , jX) ◦ Hom(i2

i f , jX) = 0;

consequently, the homomorphism Hom(i2
i f, j M) induces a homomorphism q = (q′, q) with

q : Homl,wi2,j
(i2 X, jX)→ Ker(Hom(i

i1 f , jX)).

Let h = (h′, h) be a homomorphism such that h : Ker(Hom(i
i1

f , jX))→ Homl,wi2,j
(i2 X, jX)

with h(j
i f (x2)) =

j
i f (x) for each j

i f ∈ Homl,wi,j
(iX, jX) ∩ Ker(Hom(i

i1
f , jX)) and for each

x2 ∈ i2 X with x ∈ iX satisfying i2
i f (x) = x2, since j

i f ◦ i
i1

f = 0 and j
i f (x) only depends on

x2. This implies that q ◦ h = id and h ◦ q = id. Thus, q is the isomorphism. The exactness
on the left in the second argument is proved similarly.

Proposition 6. In the subcategory µM̌1, the functor
⊗

B of the smashed G-graded tensor product
over B is exact on the right.

Proof. Take any exact sequence

0→ i1 X−−−−−−−→i
i1

f
iX−−−−−−−→i2

i f

i2 X → 0

with w-homomorphisms i
i1

f and i2
i f , where i1 M, i M, j M and i2 M belong to Ob(µM̌1. We

consider the sequence
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i1 X
⊗

B

jX−−−−−−→
h

iX
⊗

B

jX−−−−−−→q
i2 X

⊗
B

jX → 0,

where h = i
i1

f
⊗

idjX, q = i2
i f

⊗
idjX. One gets that q ◦ h = 0. Therefore, the homomor-

phism q induces a homomorphism f : Coker(h) → i2 X
⊗

B
jX. For each x2 ∈ i2 X and

y ∈ jX, there exists x ∈ iX such that i2
i f (x) = x2. Let p(x2, y) denote an image in Coker(h)

of the element x⊗ y. Evidently, p(x2, y) has the same value for all x ∈ (i2
i f )−1(x2). This

map p(x2, y) satisfies the following conditions:

p(x2,g2 bg1 , yg) = t3(g2, g1, g)p(x2,g2 , bg1 yg),
p(cx2, y) = cp(x2, y) and p(x2, yc) = p(x2, y)c

for each c ∈ N(B), x2 ∈ i2 X, y ∈ jX, g, g1 and g2 in G (see also Definition 7 in [35]). Let z
be a homomorphism z : i2 X

⊗
B

jB→ Coker(h) such that z(x2 ⊗ y) = p(x2, y). This means
that z ◦ f and f ◦ z are identities; consequently, f is the isomorphism.

Definition 5. Assume that X is a G-graded left B-module and for each G-graded left B-modules
Y and 1Y and homomorphisms f : X → 1Y and g : Y → 1Y, where f and g are B-epigeneric,
g(Y) = 1Y, there exists a homomorphism h : X → Y with f = g ◦ h. Then, the module X is
called projective.

If, for the G-graded left B-module X, for each G-graded left B-modules Y and 1Y with an
injective B-epigeneric homomorphism g : 1Y → Y, for each B-epigeneric homomorphism f : 1Y →
X, there exists a B-epigeneric homomorphism h : Y → X such that g ◦ h = f ; then, the G-graded
left B-module X is called injective.

Proposition 7. The G-graded left B-module X is projective (or injective) if and only if the functor
T(j M) = Homl,w(M, j M) (or Q(j M) = Homl,w(

j M, M), respectively) is exact in the category
s,τ
µ M̌ with w = (s, γ), s = e, γ = (B, B), where M = (G, B, X), j M = (G, B, jX), τ = 3.

Proof. The functor T is exact on the left by Proposition 5. Therefore, it is exact, in the
category s,τ

µ M̌ with w = (s, γ), s = e, γ = (B, B), τ = 3, if and only if, for each B-

exact epimorphism j1
j f : jX → j1 X, the map Homl,w(X, jX) → Homl,w(X, j1 X) is also a

B-exact epimorphism.
In view of Proposition 3, the functor Q is exact on the right. Then, Q is exact if and only

if for each injective B-epigeneric homomorphism j
j1

f : j1 X → jX the map Homl,w(
jX, X)→

Homl,w(
j1 X, X) is an injective B-epigeneric homomorphism.

3. Satellites for Modules over Nonassociative Algebras with Metagroup Relations

Remark 2. In the category s,τ
µ M̌ with s ∈ {eg, e}, let a diagram

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0

j2
i2

f ↓
j′1 M0 → j1 M−−−−−−−→j

j1
f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0

be with exact rows in subcategories µ1M̌1 for the upper row and µ2M̌1 for the lower row with
µ1 ∪ µ2 ⊂ µ and a projective G-graded left B-module iX, where jm

im f ′ = j
i f ′ for each m. That is,

there is a diagram with exact rows
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0→ i1 X−−−−−−−→i
i1

f
iX−−−−−−−→i2

i f

i2 X → 0

j2
i2

f ↓
0→ j1 X−−−−−−−→j

j1
f

jX−−−−−−−→j2
j f

j2 X → 0.

This implies that there exists a homomorphism j
i f : iX → jX such that j2

j f ◦ j
i f =

j2
i2

f ◦ i2
i f .

The homomorphism j
i f induces a homomorphism j1

i1
f : i1 M → j1 M satisfying j

j1
f ◦ j1

i1
f =

j
if ◦

i
i1

f,
where m

n f is the shortening of (m
n f ′, m

n f ) for each m, n.
Let T be a covariant additive functor on s,τ

µ M̌. Then, the diagram

T(i1 M)−−−−−−−−−→
T(i

i1
f)

T(i M)

T(j1
i1

f) ↓ T(j
if) ↓

T(j1 M)−−−−−−−−−→
T(j

j1
f)

T(j M)

is commutative. That is, the diagrams

T4(
i1 X)−−−−−−−−−−→

T4(
i
i1

f )
T4(

iX)

T4(
j1
i1

f ) ↓ T4(
j
i f ) ↓

T4(
j1 X)−−−−−−−−−−→

T4(
j
j1

f )
T4(

jX) and

T3(
iB)−−−−−−−−−−→

idT3(
i B)

T3(
iB)

T3(
j
i f ′) ↓ T3(

j
i f ′) ↓

T3(
jB)−−−−−−−−−−→

id
T3(

j B)
T3(

jB)

are commutative. Therefore, the homomorphism T(j1
i1

f) induces a homomorphism denoted by θ1(
j2
i2

f)

from i1 N := (T1(G), T3(B), Ker(T4(
i
i1

f ))) into j1 N := (T1(G), T3(B), Ker(T4(
j
j1

f ))) such that

θ1(
j2
i2

f ) : Ker(T4(
i
i1

f ))→ Ker(T4(
j
j1

f )), where (θ1(
j2
i2

f))′ = θ1(
j2
i2

f ′).
If a functor T is contravariant, then directions of all arrows change on inverse arrows in the latter dia-

gram and there exists a homomorphism denoted by θ1(
j2
i2

f) from j1 K := (T1(G), T3(B), Coker(T4(
j
j1

f )))

into i1 K := (T1(G), T3(B), Coker (T4(
i
i1

f ))) such that θ1(
j2
i2

f ) : Coker(T4(
j
j1

f ))→ Coker(T4(
i
i1

f )),

where (θ1(
j2
i2

f))′ = θ1(
j2
i2

f ′).

Proposition 8. Assume that the conditions of Remark 2 are satisfied. Then, the homomorphisms
θ1(

j2
i2

f) and θ1(
j2
i2

f) for the category s,τ
µ M̌ are independent of a choice of j

if satisfying

j2
j f ◦ j

if =
j2
i2

f ◦ i2
i f such that (1)

θ1(
j2
i2

f + j2
i2

f̃ ) = θ1(
j2
i2

f ) + θ1(
j2
i2

f̃ ), (2)

θ1(
j2
i2

f + j2
i2

f̃ ) = θ1(
j2
i2

f ) + θ1(
j2
i2

f̃ ) (3)
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are additive for homomorphisms of the corresponding modules kX, nX for each n
k f and n

k f̃ in
Homl,w(

k M, n M) for the corresponding n, k. Moreover, for the following diagram:

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0

j2
i2

f ↓
j′1 M0 → j1 M−−−−−−−→j

j1
f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0

p2
j2

f ↓
p′1 M0 → p1 M−−−−−−−→p

p1 f
p M−−−−−−−→p2

p f
p2 M→ p′2 M0

(4)

with exact rows in the subcategories µkM̌1 with µ1 ∪ µ2 ∪ µ3 ⊂ µ, k ∈ {1, 2, 3} correspondingly,
with jm

im f ′ = j
i f ′ and pm

jm f ′ = p
j f ′ for each m and projective G-graded left B-modules iX and jX, θ1

and θ1 are transitive:
θ1(

j3
j2

f ◦ j2
i2

f) = θ1(
j3
j2

f) ◦ θ1(
j2
i2

f), (5)

θ1(
j3
j2

f ◦ j2
i2

f) = θ1(
j2
i2

f) ◦ θ1(
j3
j2

f). (6)

Proof. The first diagram in Remark 2 has the exact lower row. Therefore, for j
if and j

ih

in Homl,w(
i M, j M) such that j2

j f ◦ j
ih =

j2
i2

f ◦ i2
i f and j

if, satisfying the conditions of this

proposition, one gets j
ih =

j
i f + j

j1
f ◦ j1

i g, where j1
i g ∈ Homl,w(

i M, j1 M). For j1
i1

f and j1
i1

h in

Homl,w(
i1 M, j1 M) such that j

j1
f ◦ j1

i1
f = j

if ◦
i
i1

f and j
j1

f ◦ j1
i1

h =
j
ih ◦

i
i1

f, we infer that j1
i1

h =
j1
i1

f +
j1
i g ◦ i

i1
f . Therefore, T4(

j1
i1

h) = T4(
j1
i1

f ) + T4(
j1
i g) ◦ T4(

i
i1

f ); consequently, T4(
j1
i1

h)x = T4(
j1
i1

f )x

for each x ∈ Ker(i
i1

f ). This implies that the homomorphism θ1(
j2
i2

f) is the same for all j
if

satisfying Condition (1).
If the functor T is contravariant, then T4(

j1
i1

h) = T4(
j1
i1

f ) + T4(
i
i1

f ) ◦ T4(
j1
i g); conse-

quently, Im(T4(
j1
i1

h)− T4(
j1
i1

f )) ⊂ Im(T4(
i
i1

f )). Thus, the homomorphism θ1(
j2
i2

f) is the same

for all j
if satisfying Condition (1).

Similarly for j2
i2

f and j
i f̃ satisfying the condition similar to (1)

j2
j f ◦ j

i f̃ =
j2
i2

f̃ ◦ i2
i f, (7)

where n
k f̃ ∈ Homl,w(

k M, n M) for the corresponding n, k, we deduce that, for each j
i h̃ ∈

Homl,w(
i M, j M) such that

j2
j f ◦ j

i h̃ =
j2
i2

f̃ ◦ i2
i f, (8)

there exists j1
i g̃ ∈ Homl,w(

i M, j1 M) such that j
i h̃ =

j
if +

j
j1

f ◦ j1
i g̃. From the proof above,

it follows that the homomorphism θ1(
j2
i2

f̃) exists, and it is the same for all j
if satisfying

Condition (7). From j
j1

f ◦ (j1
i g + j1

i g̃) = j
j1

f ◦ j1
i g + j

j1
f ◦ j1

i g̃ and (
j1
i g + j1

i g̃) ◦ i
i1

f =
j1
i g ◦ i

i1
f +

j1
i g̃ ◦ i

i1
f Formulas (2) and (3) follow.

Formulas (5) and (6) are obtained by the iteration of the proof above for j3
j2

f and
j3
j2

f ◦ j2
i2

f.

Remark 3. Take now the following diagram for the category s,τ
µ M̌ with s ∈ {eg, e}
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j′1 M0 → j1 M−−−−−−−→j
j1

f
j M−−−−−−−→j2

j f

j2 M→ j′2 M0

i1
j1

f ↓
i′1 M0 → i1 M−−−−−−−→i

i1
f

i M−−−−−−−→i2
i f

i2 M→ i′2 M0

(9)

with exact rows in the subcategories µ1M̌1 for the upper row and µ2M̌1 for the lower row with
µ1 ∪ µ2 ⊂ µ and an injective G-graded left B-module iX, where im

jm f ′ = i
j f ′ for each m. Therefore, a

homomorphism i
jf ∈ Homl,w(

j M, i M) exists such that

i
jf ◦

j
j1

f = i
i1 f ◦ i1

j1
f. (10)

This induces a homomorphism i2
j2

f ∈ Homl,w(
j M, i M) such that

i2
j2

f ◦ j2
j f = j2

i f ◦ i
jf. (11)

For a covariant functor T on s,τ
µ M̌ the diagram

T(j M)−−−−−−−−−→
T(j2

j f)
T(j2 M)

T(i
jf) ↓ T(i2

j2
f) ↓

T(i M)−−−−−−−−−→
T(i2

i f)
T(i2 M)

(12)

is commutative and implies an existence of a homomorphism

θ1(i1
j1

f ) : Coker(T4(
j2
j f ))→ Coker(T4(

i2
i f )) and (θ1(i1

j1
f))′ = θ1(i1

j1
f ′), (13)

Since T3(
j2
j f ′) = idT3(

jB), T3(
i2
i f ′) = idT3(i B), T3(

i
j f ′) = T3(

i2
j2

f ′).
For a contravariant functor T, directions of all arrows in the latter diagram are inverse, and it

induces a homomorphism

θ1(
i1
j1

f ) : Ker(T4(
i2
i f ))→ Ker(T4(

j2
j f )) and (θ1(

i1
j1

f))′ = θ1(
i1
j1

f ′). (14)

Symmetrically to Proposition 8, one gets the following:

Proposition 9. Let the conditions of Remark 3 be satisfied. Then, the homomorphisms θ1(i1
j1

f) and

θ1(
i1
j1

f) for the category s,τ
µ M̌ are independent of a choice of i

jf satisfying Conditions (10) and (11)

in Remark 3 such that θ1 and θ1 are additive:

θ1(i1
j1

f + i1
j1

f̃ ) = θ1(i1
j1

f ) + θ1(i1
j1

f̃ ), (15)

θ1(
i1
j1

f + i1
j1

f̃ ) = θ1(
i1
j1

f ) + θ1(
i1
j1

f̃ ) (16)

for G-graded left B-modules kX, nX for each n
k f and n

k f̃ in Homl,w(
k M, n M) for the corresponding

n, k. Moreover, for the following diagram:
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p′1 M0 → p1 M−−−−−−−→p
p1 f

p M−−−−−−−→p2
p f

p2 M→ p′2 M0

j1
p1 f ↓

j′1 M0 → j1 M−−−−−−−→j
j1

f
j M−−−−−−−→j2

j f

j2 M→ j′2 M0

i1
j1

f ↓
i′1 M0 → i1 M−−−−−−−→i

i1
f

i M−−−−−−−→i2
i f

i2 M→ i′2 M0

(17)

with exact rows in the subcategories µkM̌1 with µ1 ∪ µ2 ∪ µ3 ⊂ µ, k ∈ {1, 2, 3} correspondingly,
with jm

pm f ′ = j
p f ′ and im

jm f ′ = i
j f ′ for each m and injective G-graded left B-modules jX and iX, θ1

and θ1 are transitive:
θ1(i1

j1
f ◦ j1

p1 f) = θ1(i1
j1

f) ◦ θ1(
j1
p1 f), (18)

θ1(
i1
j1

f ◦ j1
p1 f) = θ1(

j1
p1 f) ◦ θ1(

i1
j1

f). (19)

Definition 6. Let

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0 and (20)

j′1 M0 → j1 M−−−−−−−→j
j1

f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0 (21)

be two exact sequences in the subcategory µM̌1, where iX is the projective G-graded left B-module,
and jX is the injective G-graded left B-module (see also Remarks 2 and 3). For a covariant additive
functor T, let

S1T(i2 M) = (T1(G), T3(B), Ker(T4(
i
i1 f ))) and (22)

S1T(j1 M) = (T1(G), T3(B), Coker(T4(
j2
j f ))) with the ring T2(T ). (23)

Lemma 1. If there are exact sequences (20) and (21) as in Definition 6 and

l′1 M0 → l1 M−−−−−−−→
l
l1

f
l M−−−−−−−→i2

l f

i2 M→ i′2 M0 and (24)

j′1 M0 → j1 M−−−−−−−→n
j1

f
n M−−−−−−−→n2

n f
n2 M→ n′2 M0 (25)

in the category µM̌1, where lX is the projective G-graded left B-module, n M is the injective G-
graded left B-module, then Ker(T4(

i
i1

f )) and Ker(T4(
l
l1

f )) are isomorphic, also Coker(T4(
j2
j f ))

and Coker(T4(
n2
n f )) are isomorphic.

Proof. Definition 6 implies that there are exact sequences

S1T(i′2 M0)→ S1T(i2 M)→ T(i1 M)→ T(i M) and (26)

T(j M)→ T(j2 M)→ S1T(j1 M)→ S1T(j′1 M0) and (27)

S̄1T(i′2 M0)→ S̄1T(i2 M)→ T(l1 M)→ T(l M) and (28)

T(n M)→ T(n2 M)→ S̄1T(j1 M)→ S̄1T(j′1 M0), (29)

where S̄1T(i2 M) = (T1(G), T3(B), T4(
l
l1

f ))), S̄1T(j1 M) = (T1(G), T3(B), Coker(T4(
n2
n f )))

with the ring T2(T ). Therefore, (26)–(29) induce homomorphisms θ1(idi2 M) : S1T(i2 M)→
S̄1T(i2 M) and θ1(idi2 M) : S̄1T(i2 M) → S1T(i2 M), also θ1(idj1 M) : S1T(j1 M) → S̄1T(j1 M)

and θ1(idj1 M) : S̄1T(j1 M) → S1T(j1 M). In view of Propositions 8 and 9, the G-graded
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left B-modules Ker(T4(
i
i1

f )) and Ker(T4(
l
l1

f )) are isomorphic; also, Coker(T4(
j2
j f )) and

Coker(T4(
n2
n f )) are isomorphic.

Definition 7. Let i2 M and l2 M belong to the category s,τ
µ M̌with s ∈ {eg, e}, l2

i2
f ∈ Homl,w(

i2 M, l2 M)

and let T be a covariant additive functor, where s ∈ {eg, e}. The homomorphisms θ1(
l2
i2

f) and θ1(l2
i2

f)
define homomorphisms

S1T(l2
i2

f) : S1T(i2 M)→ S1T(l2 M) and (30)

S1T(l2
i2

f) : S1T(i2 M)→ S1T(l2 M). (31)

The functor S1T (or S1T) is called a left (right correspondingly) satellite of the functor T.
Then, by induction, the satellites of higher order are defined:

Sn+1T = S1(SnT), S0T = T, (32)

Sn+1T = S1(SnT), S0T = T. (33)

It is put that SnT = S−nT for each n ∈ Z.

Remark 4. In view of Propositions 7 and 8, the left and right satellites SnT and SnT are covariant
additive functors on the category s,τ

µ M̌. For the contravariant additive functor T, we get that

S1T(i2 M) = (T1(G), T3(B), Ker(T4(
l2
l f ))), (34)

S1T(i2 M) = (T1(G), T3(B), Coker(T4(
i
i1 f ))), (35)

S1T(i′2 M0)→ S1T(i2 M)→ T(l2 M)→ T(l M), (36)

T(i M)→ T(i1 M)→ S1T(i2 M)→ S1T(i′2 M0), (37)

S1T(j2
i2

f) : S1T(j2 M)→ S1T(i2 M), (38)

S1T(j2
i2

f) : S1T(j2 M)→ S1T(i2 M) (39)

analogous to Remarks 2 and 3 and Lemma 1 with the ring T2(T ). Therefore, SnT and SnT also are
contravariant additive functors.

Corollary 2. If the additive functor T is exact on the right, then SnT4 = 0 for each n > 0. If the
additive functor T is exact on the left, then SnT4 = 0 for each n < 0. If the additive functor T is
exact, then SnT4 = 0 for each n 6= 0.

Proposition 10. Assume that the functor T is additive and covariant (or contravariant). If the
G-graded left B-module i2 X is projective (or injective correspondingly), then SnT4(

i2 X) = 0 for
each n < 0. If i2 X is injective (or projective correspondingly), then SnT4(

i2 X) = 0 for each n > 0.

Proof. If the G-graded left B-module i2 X is projective, then we put i M = i2 M and i1 X = 0
in the exact sequence

i′1 M0 → i1 M0 → i M→ i2 M→ i′2 M0

in the subcategory µ1M̌1 with µ1 ⊂ µ and i2 ∈ µ1 Ω. If the G-graded left B-module i2 X is
injective, then we put j M = i2 M and j2 X = 0 in the exact sequence

i′2 M0 → i2 M→ j M→ j2 M0 → j′2 M0

in the subcategory µ1M̌1 with µ1 ⊂ µ.
Then, the assertions of this proposition follow from Proposition 9 and Lemma 1.
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Proposition 11. Let
i′1 M0 → i1 M→ i M→ i2 M→ i′2 M0 and

i′2 M0 → i2 M→ j M→ j2 M→ j′2 M0

be exact sequences in the category µM̌1 with a projective G-graded left B-module iX and an injective
left B-module jX. If the functor T is covariant (or contravariant), then

Sn+1T(i2 M) = SnT(i1 M),

Sn+1T(i2 M) = SnT(j2 M),

(or Sn+1T(i2 M) = SnT(j2 M),

Sn+1T(i2 M) = SnT(i1 M) correspondingly).

Proof. This follows from Proposition 10 using exact sequences (36) and (37) in Remark 4,
(26) and (27) in Lemma 1.

Theorem 1. Assume that a diagram

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0 (40)

j1
i1

f ↓ j
if ↓

j2
i2

f ↓

j′1 M0 → j1 M−−−−−−−→j
j1

f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0

is commutative with exact rows in the category s,τ
µ M̌, where s ∈ {eg, e}. If a functor T is additive

and covariant (or contravariant), then there exists a commutative diagram

→ Sn−1T(i2 M)−−→SnT(i1 M)−−→SnT(i M)−−→SnT(i2 M)−−→Sn+1T(i1 M)→ (41)

↓ Sn−1T(j2
i2

f) ↓ SnT(j1
i1

f) ↓ SnT(j
if) ↓ SnT(j2

i2
f) ↓ Sn+1T(j1

i1
f)

→ Sn−1T(j2 M)−−−→SnT(j1 M)−−−→SnT(j M)−−−→SnT(j2 M)−−−→Sn+1T(j1 M)→ (or

← Sn−1T(i2 M)←−−SnT(i1 M)←−−SnT(i M)←−−SnT(i2 M)←−−Sn+1T(i1 M)← (42)

↑ Sn−1T(j2
i2

f) ↑ SnT(j1
i1

f) ↑ SnT(j
if) ↑ SnT(j2

i2
f) ↑ Sn+1T(j1

i1
f)

← Sn−1T(j2 M)←−−SnT(j1 M)←−−SnT(j M)←−−SnT(j2 M)←−−Sn+1T(j1 M)←

correspondingly).

Proof. We consider an exact sequence

l′1 M0 → l1 M→ l M→ i2 M→ i′2 M0 (43)

with a projective G-graded left B-module lX in the subcategory µ1M̌1 with µ1 ⊂ µ and
i2 ∈ µ1. Therefore, there exists a diagram

l′1 M0 → l1 M−−−−−−−→
l
l1

f
l M−−−−−−−→i2

l f

i2 M→ i′2 M0 (44)

i2
i2

f ↓

i′1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i′2 M0,
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where i2
i2

f = idi2 M. Note that, if j
if ∈ Homl,wi,j

(i M, j M), then Ker(j
i f ) = {x ∈ iX : j

i f (x) = 0};
consequently, j

i f (x + y) = j
i f (x) + j

i f (y) = 0 and j
i f (bx) = j

i f ′(b)j
i f (x) = 0 for each x and y

in Ker(j
i f ), b ∈ iB, hence Ker(j

i f ) is a iG-graded left iB submodule in iX. On the other hand,

Definitions 6, 7, and Lemma 1 imply that SnT3(
j
i f ′) = T3(

j
i f ′) and SnT3(

j
i f ′) = T3(

j
i f ′) for

each n ∈ Z, where SnT3(
j
i f ′) = (SnT(j

if))
′. In view of Proposition 8, the homomorphism ex-

ists as follows:
θ1(

i2
i2

f ) : Ker(T4(
l
l1 f ))→ Ker(T4(

i
i1 f )).

The latter homomorphism induces a homomorphism
i1
i2

p1 : S1T(i2 M) → T(i1 M) such that T4(
i
i1

f ) ◦ i1
i2

p1 = 0, where i1
i2

p1 = (i1
i2

p′1, i1
i2

p1),
i1
i2

p′1 = T(i1
i2

f ′), i1
i2

p′1 : T3(
i2 B)→ T3(

i1 B), i1
i2

p1 : i2 P1 → i1Y, S1T(i2 M) = (T1(
i2 G), T3(

i2 B), i2 P1);
i1Y = T4(

i1 X) for the ring T2(T ). Then, we consider an exact sequence

0→ i1 X−−−−−−−−−−−→
k
i1

f
kX−−−−−−−−−−−→

k2
k f

k2 X → 0, (45)

where kX and k2 X are i1 G-graded left i1 B-modules, where kX is injective. Therefore, θ1(i1
i1

f)

with i1
i1

f = idi1 M induces a homomorphism
i1
i2

p1 : T(i2 M) → S1T(i1 M) such that i1
i2

p1 ◦ T4(
i2
i f ) = 0, where i1

i2
p1 = (i1

i2
p′1, i1

i2
p1),

i1
i2

p1 : i2Y → i1 Q, i1
i2

p′1 : T3(
i2 B)→ T3(

i1 B), where S1T(i1 M) = (T1(
i1 G), T3(

i1 B), i1 Q), i2Y =

T4(
i2 X). By virtue of Propositions 8 and 9, the homomorphisms p1 and p1 are independent

of choices of auxiliary sequences (43), (45) satisfying the conditions imposed above.
Iterating this procedure in n, we infer that there exists an infinite exact sequence

· · · → Sn−1T(i2 M)−−−−−−−−−−−−→i1
i2

pn
SnT(i1 M)−−−−−−−−−−−−−−−→

SnT(i
i1

f)
SnT(i M)

−−−−−−−−−−−−−−−→
SnT(i2

i f)
SnT(i2 M)−−−−−−−−−−−−−→i1

i2
pn+1

Sn+1T(i1 M)→ . . . ,

where n ∈ Z. It remains to prove that diagram (41) is commutative in squares containing
pn. Take any exact sequence

p′1 M0 → p1 M→ p M→ j2 M→ j′2 M0 (46)

with a projective j2 G-graded left j2 B-module pX, in the subcategory µ2M̌1 with µ2 ⊂ µ and
j2 ∈ µ2, where kG = j2 G and kB = j2 B for each k ∈ {p′1, p1, p, j′2}. Using (40), (43), we
choose a diagram

l′1 M0 → l1 M−−−−−−−→
l
l1

f
l M−−−−−−−→i2

l f

i2 M→ i′2 M0 (47)

j2
i2

f ↓

j′1 M0 → j1 M−−−−−−−→j
j1

f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0,

where kG = i2 G and kB = i2 B for each k ∈ {l′1, l1, l, i′2}. To diagram (47), there corresponds
a homomorphism from S1T(i2 M) to T(j1 M) such that it is the composition of homomor-
phisms from S1T(i2 M) into T(i1 M) and from T(i1 M) into T(j1 M). From (40), (43), and
(46), it follows that there exists a diagram

l′1 M0 → l1 M−−−−−−−→
l
l1

f
l M−−−−−−−→i2

l f

i2 M→ i′2 M0 (48)

j1
i2

f ↓
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p′1 M0 → p1 M−−−−−−−→p
p1 f

p M−−−−−−−→j1
p f

j1 M→ j′1 M0

j2
j1

f ↓

j′1 M0 → j1 M−−−−−−−→j
j1

f

j M−−−−−−−→j2
j f

j2 M→ j′2 M0.

Applying Proposition 8, we infer that the homomorphism from S1T(i2 M) to T(j1 M)
is the composition of homomorphisms from S1T(i2 M) into S1T(j2 M) and from S1T(j2 M)
into T(j1 M).

For the contravariant functor, we deduce that homomorphisms i2
i1

q1 : S1T(i1 M) →
T(i2 M) and i2

i1
q1 : T(i1 M)→ S1T(i2 M) exist. The rest of the proof is similar.

Theorem 2. Assume that a sequence

i1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i2 M0 (49)

is exact in the category s,τ
µ M̌, where s ∈ {eg, e}. Assume also that the additive functor T is

covariant. Then, there exists an infinite sequence

· · · → Sn−1T(i2 M)−−−−−−−−→i1
i2

pn
SnT(i1 M)−−−−−−−−−−−→

SnT(i
i1

f)
SnT(i M) (50)

→ SnT(i2 M)→ Sn+1T(i1 M)→ . . . ,

where n ∈ Z, such that SnT4(
i
i1

f ) ◦ i1
i2

pn = 0 and SnT4(
i2
i f ) ◦ SnT4(

i
i1

f ) = 0 and i1
i2

pn+1 ◦
SnT4(

i2
i f ) = 0.

Proof. For the sequence
i1 X−−−−−−−→i

i1
f

iX−−−−−−−→i2
i f

i2 X,

the equation i2
i f ◦ i

i1
f = 0 is satisfied; consequently, for the sequence

SnT(i1 M)→ SnT(i M)→ SnT(i2 M),

one gets that SnT4(
i2
i f ) ◦ SnT4(

i
i1

f ) = 0. For the sequence

SnT(i M)−−−−−−−−−−−→
SnT(i2

i f)
SnT(i2 M)−−−−−−−−−−→i1

i2
pn+1

Sn+1T(i1 M),

we get that i1
i2

pn+1 ◦ SnT4(
i2
i f ) = 0 for each n ≥ 0, where i1

i2
pn+1 = (i1

i2
p′n+1, i1

i2
pn+1). Con-

sider now the case n < 0. This variant using iterations with S1, Sn can be reduced to

S1T(i M)−−−−−−−−−−−→
S1T(i2

i f)
S1T(i2 M)−−−−−−−−→i1

i2
p1

T(i1 M).

The homomorphism i1
i2

p1 ◦ S1T(i2
i f) is induced from the diagram

l2 M0 → l2 M−−−−−−−→
l1
l2

f

l1 M−−−−−−−→i
l1

f
i M→ i M0

i2
i f ↓

j2 M0 → j2 M−−−−−−−→j1
j2

f

j1 M−−−−−−−→i2
j1

f

i2 M→ i2 M0

i2
i2

f ↓
i1 M0 → i1 M−−−−−−−→i

i1
f

i M−−−−−−−→i2
i f

i2 M→ i2 M0
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with the exact upper and middle rows (horizontal lines) in the subcategories µkM̌1 such that
µ1 ∪ µ2 ⊂ µ, k ∈ {1, 2} correspondingly, with a projective iG-graded left iB-module l1 X and
a projective i2 G-graded left i2 B-module j1 X, where l2 X is a iG-graded left iB-module, j2 X is
a i2 G-graded left i2 B-module. Therefore, for the homomorphism θ1(

i2
i f) corresponding to

the diagram
l2 M0 → l2 M−−−−−−−→

l1
l2

f

l1 M−−−−−−−→i
l1

f
i M→ i M0

i
l1

f ↓ i2
i f ↓

i1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i2 M0

we infer that (θ1(
i2
i f))4 = 0, since the induced homomorphism i1

l2
f : l2 M→ i1 M is such that

i1
l2

f = 0. Similarly for the sequence

SnT(i2 M)−−−−−−−−−−→i1
i2

pn+1
Sn+1T(i1 M)−−−−−−−−−−−−−→

Sn+1T(i
i1

f)
Sn+1T(i M),

the equality is satisfied Sn+1T4(
i
i1

f ) ◦ i1
i2

pn+1 = 0.

Theorem 3. Assume that there exists an exact sequence

i1 M0 → i1 M−−−−−−−→i
i1

f
i M−−−−−−−→i2

i f

i2 M→ i2 M0 (51)

in the category s,τ
µ M̌ with s ∈ {eg, e}. If T is an additive covariant (or contravariant) half-exact

functor, then there exists an exact sequence

· · · → Sn−1T(i2 M)−−−−−−−−→i1
i2

pn
SnT(i1 M)−−−−−−−−−−−→

SnT(i
i1

f)
SnT(i M) (52)

→ SnT(i2 M)→ Sn+1T(i1 M)→ . . . , (or

· · · → Sn−1T(i1 M)−−−−−−−−→i1
i2

pn
SnT(i2 M)−−−−−−−−−−−→

SnT(i2
i f)

SnT(i M) (53)

→ SnT(i1 M)→ Sn+1T(i2 M)→ . . .

correspondingly).

Proof. In view of Proposition A2 in [34] and the conditions of this theorem, we infer that
there exists a commutative diagram

T(i1 M)−−−−−−−−−→
T(i

i1
f)

T(i M)−−−−−−−−−→
T(i2

i f)
T(i2 M)

T(l1
i1

f) ↓ T(l
if) ↓ T(l2

i2
f) ↓

(T(l1 M))0 → T(l1 M)−−−−−−−−−→
T(l

l1
f)

T(l M)−−−−−−−−−→
T(l2

l f)
T(l2 M)

with exact rows, since the functor T is half-exact. By virtue of Lemma A1 in [34], the se-
quence

Ker(T4(
l1
i1

f ))→ Ker(T4(
l
i f ))→ Ker(T4(

l2
i2

f ))

is exact. That is, the sequence

S1T(i1 M)→ S1T(i M)→ S1T(i2 M)

is exact. Consider now an exact sequence

l1 M0 → l1 M→ l M→ i M→ i M0
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in the subcategory µ1M̌1 with µ1 ⊂ µ and i ∈ µ1, so that kG = iG and kB = iB for each
k ∈ {l, l1}, where the iG-graded left iB-module lX is projective. Put Y = Ker(i2

i f ◦ i
l f );

hence, there exist exact sequences

0→ Y → lX → i2 X → 0 and
0→ iX → Y → i1 X → 0

and the commutative diagram

T(i M)−−−−−−−−−−−−−−→
l
i h

T(K)−−−−−−−−−−−−−−−−→i1
l g

T(i1 M)

T(l
if) ↓ l

lg ↓ ↓
(T(l M))0 → T(l M)−−−−−−−−→

T(l
l f)

T(l M)−−−−−−−−−−−−−→
(T3(

i1
l f ′),0)

(T(i1 M))0

with K = (iG, iB, Y) and exact rows, iK = K, iY = Y. Therefore, there exists the exact sequence

Ker(T4(
l
i f ))→ Ker(l

l g)→ T4(
i1 X)

by Lemma A1 in [34]. On the other hand, the homomorphism from Ker(l
l g) into T4(

i1 X)

coincides with the homomorphism from S1T4(
i2 X) into T4(

i1 X). Therefore, the sequence

S1T(i M)→ S1T(i2 M)→ T(i1 M)

is exact.
We consider an exact sequence

l1 M0 → l1 M→ l M→ i2 M→ i2 M0, (54)

where lX is the projective iG-graded left iB-module. Consider a iG-graded left iB-submodule
Y of iX ⊕ lX such that, for each (xi, xl) ∈ Y with xi ∈ iX and xl ∈ lX, the equality
i2
l f (xl) = i2

i f (xi) is satisfied. Certainly, there are homomorphisms iπ : Y → iX and

lπ : Y → lX induced by the maps (xi, xl) 7→ xi and (xi, xl) 7→ xl . Note that there
are else homomorphisms: i1 ρ : i1 X → Y and l1 ρ : l1 X → Y induced by the maps
xi1 7→ (i

i1
f (xi1), 0) and xl1 7→ (0, l

l1
f (xl1)) for each xi1 ∈

i1 X and xl1 ∈
l1 X. Therefore,

there exists a commutative diagram:
0 0
↓ ↓

0−−−→l1 X−−−−−−→l1 X → 0
↓ ↓ ↓

0→ i1 X−−−→iY−−−−−−→lX → 0
↓ ↓ ↓

0→ i1 X−−−→iX−−−−−→i2 X → 0
↓ ↓ ↓
0 0 0

with exact rows and columns, and with iK = (iG, iB, iY), where the sequence

0→ i1 X → Y → lX → 0

splits, since the iG-graded left iB-module lX is projective. Therefore, there exists a commu-
tative diagram

(T(l1 M))0 → T(l1 M)−−−−−−−−−→
T(

l1
l1

f)
T(l1 M)→ (T(l1 M))0

↓ ↓ ↓
(T(i1 M))0 → T(i1 M)−−−→T(iK)−−−−−−−−→T(l M)
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with exact rows. From Proposition A2 in [34], it follows that the sequence

Ker(T4(
l
l1 f ))−−−−−−→

ξ
T4(

i1 X)−−−−−−→η Coker(T4(l1 ρ))

is exact. Then, we infer that Ker(η) = Ker(T4(
i
i1

f )), since the sequence T4(
l1 X)→ T4(Y)→

T4(
iX) is exact. Thus, the sequence

Ker(T4(
l
l1 f ))−−−−−−→

ξ
T4(

i1 X)→ T4(
iX)

is exact. Then, we prove that ξ = i1
i2

q. Assume that sequences (51) and (53) are identical. In
this case, there exists an embedding homomorphism

ξ̃ : Ker(T4(
l
l1 f ))→ T4(

l1 X).

In general, we consider the following commutative diagram:

l1 M0 → l1 M−−−−−−−→
l
l1

f
l M−−−−−−−→i2

l f

i2 M→ i2 M0

i1
l1

f ↓ i
lf ↓

i2
i2

f ↓
i1 M0 → i1 M−−−−−−−→i

i1
f

i M−−−−−−−→i2
i f

i2 M→ i2 M0

with i2
i2

f = idi2 M. This induces the commutative diagram:

Ker(T4(
l
l1

f ))−−−−−−→
ξ̃

T4(
l1 X)

id ↓ T4(
i1
l1

f ) ↓
Ker(T4(

l1
l1

f ))−−−−−−→
ξ

T(i1 M).

This implies that ξ = T4(
i1
l1

f ) ◦ ξ̃ = i1
i2

q1, hence the sequence

S1T(i2 M)→ T(i1 M)→ T(i M)

is exact, where, as usual, ◦ denotes the composition of maps. This implies that the sequence

S1T(i1 M)→ S1T(i M)→ S1T(i2 M)→ T(i1 M)→ T(i M)→ T(i2 M)

is exact. By the dual proof to the above, one gets that the sequence

T(i1 M)→ T(i M)→ T(i2 M)→ S1T(i1 M)→ S1T(i M)→ S1T(i2 M)

is also exact. Thus, the functors S1T and S1T are half-exact. Proceeding this proof by
induction, one gets that the sequence (52) is exact.

4. Conclusions

In this article, new satellites of functors for non-associative algebras and modules over
non-associative algebras with metagroup relations are investigated.

The results presented above can be used for subsequent studies of structure of non-
associative algebras, modules and homological complexes over them and their homo-
morphisms. In particular, it also is possible to continue investigations of non-associative
generalized Cayley–Dickson algebras, related with their cohomologies, noncommutative
geometry, algebraic geometry, operator theory, spectral theory, PDEs, their applications
in the sciences, etc. [6,9,12,14,18,21,23,31,33,36,37]. It can also be applied in information
technologies for an antinoise coding in radio communication systems and classification
of flows of information [38–40].
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Appendix A

For the convenience of readers, necessary definitions from the book [31] and previous
articles [15,16,35] are recalled. However, a reader familiar with them may skip these
definitions.

Definition A1. Let G be a set with a single-valued binary operation (multiplication) G2 3
(a, b) 7→ ab ∈ G defined on G satisfying the conditions:

f or each a and b in G, there is a unique x ∈ G with ax = b and (A1)

a unique y ∈ G exists satis f ying ya = b, which are denoted by
x = a \ b = Divl(a, b) and y = b/a = Divr(a, b);

(A2)

correspondingly,

there exists a neutral (i.e., unit) element eG = e ∈ G : (A3)

eg = ge = g f or each g ∈ G.

The set of all elements h ∈ G commuting and associating with G:

Com(G) := {a ∈ G : ∀ b ∈ G, ab = ba}, (A4)

Nl(G) := {a ∈ G : ∀ b ∈ G, ∀ c ∈ G, (ab)c = a(bc)}, (A5)

Nm(G) := {a ∈ G : ∀ b ∈ G, ∀ c ∈ G, (ba)c = b(ac)}, (A6)

Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)}, (A7)

N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G); (A8)

C(G) := Com(G) ∩ N(G)

is called the center C(G) of G.
We call G a metagroup if a set G possesses a single-valued binary operation and satisfies

Conditions (A1)–(A3) and
(ab)c = t3(a, b, c)a(bc) (A9)

for each a, b and c in G, where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G); where t3 shortens a notation t3,G, where
Ψ denotes a (proper or improper) subgroup of C(G).

In view of the nonassociativity of G in general, a product of several elements of G is specified
as usual by opening “(” and closing “)” parentheses. For elements a1,. . . ,an in G, we shall
denote shortly by {a1, . . . , an}q(n) the product, where a vector q(n) indicates an order of pairwise
multiplications of elements in the row a1, . . . , an in braces in the following manner. Enumerate
positions: before a1 by 1, between a1 and a2 by 2,. . . , by n between an−1 and an, by n + 1 after
an. Then, put qj(n) = (k, m) if there are k opening “(” and m closing “)” parentheses in the
ordered product at the j-th position of the type ) . . . )(. . . (, where k and m are nonnegative integers,
q(n) = (q1(n), . . . ., qn+1(n)) with q1(n) = (k, 0) and qn+1(n) = (0, m).

Definition A2. Let A be an algebra over an associative unital ring T such that A has a natural
structure of a (T , T )-bimodule with a multiplication map A× A → A, which is right and left
distributive a(b + c) = ab + ac, (b + c)a = ba + ca, also satisfying the following identities
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r(ab) = (ra)b, (ar)b = a(rb), (ab)r = a(br), s(ra) = (sr)a and (ar)s = a(rs) for any a, b
and c in A, r and s in T . Let G be a metagroup and T be an associative unital ring.

Henceforth, the ring T will be supposed commutative, if something else will not be specified.
Then, by , T [G] is denoted a metagroup algebra over T of all formal sums s1a1 + . . . + snan

satisfying Conditions (A10)–(A12) below, where n is a positive integer, s1,. . . ,sn are in T and
a1,. . . ,an belong to G:

sa = as f or each s in T and a in G, (A10)

s(ra) = (sr)a f or each s and r in T , and a ∈ G, (A11)

r(ab) = (ra)b, (ar)b = a(rb), (ab)r = a(br) (A12)

for each a and b in G, r ∈ T .

Definition A3. LetR be a ring, which may be non-associative relative to the multiplication. If there
exists a mapping R×M → M, R×M 3 (a, m) 7→ am ∈ M such that a(m + k) = am + ak
and (a + b)m = am + bm for each a and b inR, m and k in M, then M will be called a generalized
leftR-module or shortly: leftR-module or left module overR.

IfR is a unital ring and 1m = m for each m ∈ M, then, M is called a left unital module over
R, where 1 denotes the unit element in the ringR. A rightR-module is defined symmetrically.

If M is a left and rightR-module, then it is called a two-sidedR-module or a (R,R)-bimodule.
If M is a leftR-module and a right S-module, then it is called a (R,S)-bimodule.

Let G be a metagroup. Take a metagroup algebra A = T [G] and a two-sided A-module M,
where T is an associative unital ring (see Definition A2). Let Mg be a two-sided T -module for each
g ∈ G, where G is the metagroup. Let M have the decomposition M = ∑g∈G Mg as a two-sided
T -module. Let M also satisfy the following conditions:

hMg = Mhg and Mgh = Mgh, (A13)

(bh)xg = b(hxg) and xg(bh) = (xgh)b and bxg = xgb, (A14)

(hs)xg = t3(h, s, g)h(sxg) and (hxg)s = t3(h, g, s)h(xgs) (A15)

and (xgh)s = t3(g, h, s)xg(hs)

for every h, g, s in G and b ∈ T and xg ∈ Mg. Then, a two-sided A-module M satisfying
Conditions (A13)–(A15) will be called smashly G-graded. For short, it also will be called “G-
graded” instead of “smashly G-graded”. In particular, if the module M is G-graded and splits into
a direct sum M =

⊕
g∈G Mg of two-sided T -submodules Mg, then we will say that M is directly

G-graded. For a nontrivial (nonzero) G-graded module X with the nontrivial metagroup G, it will
be supposed that there exists g ∈ G such that Xg 6= Xe, if something else will not be outlined.

G-graded left and right A-modules are similarly defined. Henceforward, speaking about A-
modules (left, right or two-sided), it will be supposed that they are G-graded, and it will be written
for short “an A-module” instead of “a G-graded A-module”, unless otherwise specified.

If P and N are left A-modules and a homomorphism γ : P→ N is such that γ(ax) = aγ(x)
for each a ∈ A and x ∈ P, then γ is called a left A-homomorphism. Right A-homomorphisms
for right A-modules are analogously defined. For two-sided A modules, a left and right A-
homomorphism is called an A-homomorphism.

For left T -modules M and N by HomT (M, N), a family of all left T -homomorphisms from
M into N is denoted. A similar notation is used for a a family of all T -homomorphisms (or right
T -homomorphisms) of two-sided T -modules (or right T -modules correspondingly). If an algebra A
is specified, a homomorphism may be written shortly instead of an A-homomorphism.

Definition A4. Let M and P and N be two-sided A-modules, where A is a non-associative meta-
group algebra over a commutative associative unital ring T . An A-homomorphism (isomorphism)
f : M→ P is called a right (operator) A-homomorphism (isomorphism) if it is such for M and N
as right A-modules, which is f (x + y) = f (x) + f (y) and f (xa) = f (x)a for each x and y in M
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and a ∈ A (see also Definition A3). If an algebra A is specified, a homomorphism (isomorphism)
may be written shortly instead of an A-homomorphism (an A-isomorphism respectively).

Definition A5. Assuming that G is a metagroup, A = T [G] is a metagroup algebra A = T [G]
and X is a two-sided A-module, where T is an associative unital ring. We denote by Gn the n-fold
direct product of G with itself such that Gn is a metagroup, where n ≥ 2 is a natural number. We
consider a two-sided T -module X{g1,...,gn}q(n)

for each g1,. . . ,gn in G and a vector q(n) indicating
an order of pairwise multiplications in the braces {g1, . . . , gn} (see Definition 1 in [15]). Suppose
that X has the following decomposition:

X = ∑
g1∈G,...,gn∈G

X{g1,...,gn}l(n)
(A16)

as the two-sided T -module, where {g1}l(1) = g1, {g1, g2}l(2) = g1g2 and by induction
{g1, . . . , gn, gn+1}l(n+1) = {g1, . . . , gn}l(n)gn+1 for each n ≥ 2. Assume also that X satisfies the
following conditions:

there exists a T − linear isomorphism

θ(g1, . . . , gn; q(n), v(n)) : X{g1,...,gn}v(n)
→ X{g1,...,gn}q(n)

(A17)

such that θ(g1, . . . , gn; q(n), v(n))(x{g1,...,gn}v(n)
) = tn(g1, . . . , gn; q(n), v(n))x{g1,...,gn}v(n)

for each x{g1,...,gn}v(n)
∈ X{g1,...,gn}v(n)

, where tn(g1, . . . , gn; q(n), v(n)) ∈ Ψ is such that
{g1, . . . , gn}q(n) = tn(g1, . . . , gn; q(n), v(n)){g1, . . . , gn}v(n),
tn(g1, . . . , gn; q(n), v(n)) = tn(g1, . . . , gn; q(n), v(n)|id)

(see also Lemma 1 and Example 2 in [15]);

there exist T − linear isomorphisms

θl(g0, g1, . . . , gn; l(n), l(n)) : g0X{g1,...,gn}l(n)
→ X{(g0g1),...,gn}l(n)

(A18)

and θr(g1, . . . , gn, gn+1; l(n), l(n)) : X{g1,...,gn}l(n)
gn+1 → X{g1,...,(gngn+1)}l(n)

(bg0)x{g1,...,gn}l(n)
= b(g0x{g1,...,gn}l(n)

) (A19)

and x{g1,...,gn}l(n)
(bgn+1) = (x{g1,...,gn}l(n)

gn+1)b

and bx{g1,...,gn}l(n)
= x{g1,...,gn}l(n)

b,

(g0gn+1)x{g1,...,gn}l(n)
= t3(g0, gn+1, g)g0(gn+1x{g1,...,gn}l(n)

) (A20)

and (g0x{g1,...,gn}l(n)
)gn+1 = t3(g0, g, gn+1)g0(x{g1,...,gn}l(n)

gn+1)

and (x{g1,...,gn}l(n)
g0)gn+1 = t3(g, g0, gn+1)x{g1,...,gn}l(n)

(g0gn+1)

for every b ∈ T , x{g1,...,gn}l(n)
∈ X{g1,...,gn}l(n)

, elements g0, g1,. . . ,gn, gn+1 in the metagroup G,
vectors q(n) and v(n) indicating orders of pairwise multiplications, where g = {g1, . . . , gn}l(n).
Then, a two-sided A-module X satisfying Conditions (A16)–(A20) will be called smashly Gn-
graded. For short, it also will be called “Gn-graded” instead of “smashly Gn-graded”. In particular,
if the module X is Gn-graded and splits into a direct sum

X =
⊕

g1∈G,...,gn∈G
X{g1,...,gn}l(n)

(A21)

of two-sided T -submodules X{g1,...,gn}l(n)
, then we will say that that X is directly Gn-graded.

Similarly, Gn-graded left and right A-modules are defined.
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