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Rui Liu 1, Michal Fečkan 2,3,* , Donal O’Regan 4 and Jinrong Wang 1

1 Department of Mathematics, Guizhou University, Guiyang 550025, China; gzliuruiha@163.com (R.L.);
jrwang@gzu.edu.cn (J.W.)

2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and
Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia

3 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
4 School of Mathematical and Statistical Sciences, National University of Ireland, H91 TK33 Galway, Ireland;

donal.oregan@nuigalway.ie
* Correspondence: Michal.Feckan@fmph.uniba.sk

Abstract: In this paper, we investigate the controllability of first order linear fuzzy differential systems.
We use the direct construction method to derive the controllability results for three types of first
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presented to illustrate our theoretical results.
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1. Introduction

The study of controllability is an important area of research and classical differential
controlled systems have been discussed in many papers. In [1], controllability of impulsive
differential equations was studied for the first time. The authors in [2] established some
sufficient conditions for controllability by applying the measure of noncompactness and
Mönch’s fixed point theorem. In [3], the authors presented complete controllability of the
considered impulsive control system and in [4], the author gave local and global control-
lability properties for nonlinear systems. In [5], the controllability and the observability
of continuous linear time-varying systems with norm-bounded parameter perturbations
was considered. When using classical mathematical models alone, many equations need
to be solved due to the uncertainty of the measurement parameters and this can be time-
consuming and can be financially burdensome to compute. The disadvantages of uncer-
tainty can be overcome by fuzzy differential systems. The concept of controllability was
introduced by Kalman [6] in 1963 and has played an important role in control theory since
then. We have done some research on fuzzy differential systems [7,8], in this paper we will
go further investigate the controllability of first-order linear fuzzy differential systems and
it can resolve the controllability problem with uncertainty more accurately.

The main contributions are as follows:
Comparing the relevant literature above, we use the direct construction method to

present the controllability of three types of first order linear fuzzy differential systems in
the case of a > 0, (c1)-solution; a > 0, (c2)-solution; a < 0, (c1)-solution; a < 0, (c2)-solution,
respectively.

While the method used is standard in some sense the constructed approach is technical
and the control function given for our problem is a function with hyperbolic sine and cosine.
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The controllability of first order fuzzy differential systems in iterative feedback tuning
in fuzzy control system, fuzzy control design for non-holonomic wheeled mobile and fuzzy
optimal control for complex nonlinear systems is useful and for more details we refer the
reader to [9–11].

In this paper, we consider the controllability of three types of first order linear fuzzy
differential systems{

y′(t) = a(t)y(t) + b(t) + d̃u(t), t ∈ J = [0, T],
y(0) = y0,

(1)

and {
y′(t) + (−a(t))y(t) = b(t) + d̃u(t), t ∈ J,
y(0) = y0,

(2)

and {
y′(t) + (−(b(t) + d̃u(t))) = a(t)y(t), t ∈ J,
y(0) = y0,

(3)

where a : J → R, y0 ∈ RF and b : J → RF, u : J → RF, d̃ ∈ R+.
In Section 2, we present notations, concepts, and lemmas needed in this paper. In

Section 3, we establish some theorems concerning the controllability of first order linear
fuzzy differential systems. Finally, in the last section, we give an example to illustrate our
main results.

2. Preliminaries

We collect some concepts which will be used throughout the paper; for more details,
see for [12,13].

Denote by RF := {v | v : R → [0, 1]} the class of the fuzzy subsets of the real axis
satisfying the following properties:

(X1) v is normal (i.e., ∃ x0 ∈ R s.t. v(x0) = 1).
(X2) v is convex fuzzy set (i.e., v(ξs0 + (1 − ξ)s1) ≥ min{v(s0), v(s1)}) for all s0,

s1 ∈ R and ξ ∈ [0, 1].
(X3) v is upper semicontinuous on R.
(X4) [v]0 = {x ∈ R : v(x) > 0} is compact.
Let α ∈ (0, 1]. Consider the α-level set of v ∈ RF by [v]α = {s ∈ R | v(s) ≥ α}, which

is a nonempty compact interval for all α ∈ (0, 1]. We use [v]α = [vα, vα] to denote explicitly
the α-level set of v. We call vα and vα the lower and upper branches of v, respectively. We
use the notation diam([v]α) = vα − vα to denote the length of v.

Now ∀α ∈ [0, 1], u, v ∈ RF and ξ ∈ R, we define the sum u + v and the produce ξu as
[u + v]α = [u]α + [v]α = [uα + vα, uα + vα] and [ξu]α = ξ[u]α.

Consider the Hausdorff distance D : RF ×RF → R+ ∪ {0} where D(u, v) = sup
0≤α≤1

dH([u]α, [v]α) = sup
0≤α≤1

max{|uα − vα|, |uα − vα|} (see [14]). Then (RF, D) is a complete

metric space (see [15]) and (i) D(u + e, v + e) = D(u, v), ∀ u, v, e ∈ RF, (ii) D(ςu, ςv) =
|ς|D(u, v), ∀ ς ∈ R, u, v ∈ RF, (iii) D(u + e, v + $) ≤ D(u, v) + D(e, $), ∀ u, v, e, $ ∈ RF are
satisfied.
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Definition 1 (see [13] (Definition 2.1)). Let f : [a, b] → RF be measurable and integrably
bounded. The integral of f over [a, b], denoted by

∫ b
a f (t)dt, is defined levelwise by the expression[ ∫ b

a
f (t)dt

]α

:=
∫ b

a
[ f (t)]αdt

=

{ ∫ b

a
f̃ (t)dt | f̃ : [a, b]→ RF is a measurable selection for [ f (·)]α

}
,

for every α ∈ [0, 1].

Throughout this paper, we use the symbol 	 to represent the H-difference. Note that
a1 	 a2 6= a1 + (−1)a2 := a1 − a2. In the sequel, we fix J = [0, T], for T > 0.

Here we simplify the classes of strongly generalized differentiable by considering case
(i) and case (ii) as in paper [16].

Definition 2 (see [13] (Definition 2.2)). Let Q : J → RF and fix n0 ∈ J. We say Q is
differentiable at n0, if we have an element Q′(n0) ∈ RF such that either

(c1) for all p > 0 sufficiently close to 0, the H-differences Q(n0 + p)	 Q(n0), Q(n0)	
Q(n0 − p) exist and the limits (in the metric D)

lim
p→0+

Q(n0 + p)	Q(n0)

p
= lim

p→0+

Q(n0)	Q(n0 − p)
p

= Q′(n0),

or
(c2) for all p > 0 sufficiently close to 0, the H-differences Q(n0)	Q(n0 + p), Q(n0 − p)	

Q(n0) exist and the limits (in the metric D)

lim
p→0+

Q(n0)	Q(n0 + p)
−p

= lim
p→0+

Q(n0 − p)	Q(n0)

−p
= Q′(n0).

Definition 3 (See [13] (Definition 2.5)). Let Q : J → RF. We say Q is (c1)-differentiable on J if
Q is differentiable in the sense (c1) in Definition 2 and its derivative is denoted D1Q. Similarly we
can define (c2)-differentiable and denote it by D2Q.

Theorem 1 (see [13] (Theorem 2.6)). Let Q : J → RF and put [Q(t)]α = [pα(t), qα(t)] for each
α ∈ [0, 1].

(i) If Q is (c1)-differentiable then pα and qα are differentiable functions and [D1Q(t)]α =
[p′α(t), q′α(t)].

(ii) If Q is (c2)-differentiable then pα and qα are differentiable functions and we have [D2Q(t)]α =
[q′α(t), p′α(t)].

Theorem 2 (see [17] (Theorem 2.2)). Let K : J → RF be a differentiable fuzzy number-valued
mapping and we suppose that the derivative K′ is integrable over J. Then for each t ∈ J, we have

(a) if K is (c1)-differentiable, then K(t) = K(b) +
∫ t

b K′(s)ds;
(b) if K is (c2)-differentiable, then K(t) = K(b)	

∫ t
b −K′(s)ds.

Theorem 3 (see [13] (Theorem 2.7)). Let Q be (c2)-differentiable on J and assume that the
derivative Q′ is integrable over J. Then for each t ∈ J we have

Q(t) = Q(a)	
∫ t

a
−Q′(τ)dτ.
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Theorem 4 (see [18] (Theorem 2.4)). Let K : J → RF be continuous. Define the integral
G(t) := σ	

∫ t
v −K(s)ds, t ∈ J, where σ ∈ RF is such that the preceding H-difference exist on J.

Then G(t) is (c2)-differentiable and G′(t) = K(t).

Consider the following conditions (here p : R→ RF):

Hypothesis 1. For a given t ∈ J, p(t + h)	 p(t) and p(t)	 p(t− h) exist for h→ 0+;

Hypothesis 2. For a given t ∈ J, p(t)	 p(t + h) and p(t− h)	 p(t) exist for h→ 0+.

3. Controllability of First Order Linear Fuzzy Differential Systems

Definition 4. Fuzzy system (1)–(3) is called controllable on [t0, T] (T > t0), if for an arbitrary
initial state y0 ∈ RF at t0, final state y1 ∈ RF at time T1(here t0 = 0 and T1 = T), there exists
a control u : J → RF such that the system (1)–(3) has a solution y that satisfies y(T1) = y1(i.e.,
[y(T1)]

α = [y1]
α).

Consider the following system (see [17]):{
y′(t) = a(t)y(t) + b(t) + d̃u(t), t ∈ J,
y(0) = y0,

where a : J → R, y0 ∈ RF and b : J → RF, u : J → RF, d̃ ∈ R+.
From [17] (Theorem 3.1, a < 0), the (c1)-solution of (1) can be written in the form:

y(t) = cosh
( ∫ t

0
a(v)dv

)(
y0 +

∫ t

0

[
(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)
	(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)]
ds
)

+ sinh
( ∫ t

0
a(v)dv

)(
y0 +

∫ t

0

[
(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)
	(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)]
ds
)

.

From [17] (Theorem 3.1, a < 0), the (c2)-solution of (1) can be written in the form:

y(t) = e
∫ t

0 a(v)dvy0 	 e
∫ t

0 a(v)dv
∫ t

0
(−b(s))e−

∫ s
0 a(v)dvds	 e

∫ t
0 a(v)dv

∫ t

0
(−d̃u(s))e−

∫ s
0 a(v)dvds.

Thus, we consider two cases to study the controllability of (1): The (c1)-solution and
the (c2)-solution.

Case 1.1 Consider a < 0 via (c1)-solution.

Theorem 5. In Case 1.1, system (1) is controllable, if the control function u(t) is given by

u(t) =
1

T1d̃

[
y1 cosh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
	 y1 sinh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
	
(

cosh
( ∫ t

0
a(v)dv

)
y0 + sinh

( ∫ t

0
a(v)dv

)
y0

)]
	 1

d̃
b(t), t ∈ J,

where the H-differences exist.
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Proof. Since the H-differences exist in u(t), for T1 > 0, we obtain

y(T1) = cosh
( ∫ T1

0
a(v)dv

)
y0 + sinh

( ∫ T1

0
a(v)dv

)
y0

+
1
T1

∫ T1

0
cosh

( ∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y1ds

+
1
T1

∫ T1

0
sinh

( ∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y1ds

	 1
T1

∫ T1

0
cosh

( ∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y1ds

	 1
T1

∫ T1

0
sinh

( ∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y1ds

	 1
T1

∫ T1

0
cosh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y0ds

	 1
T1

∫ T1

0
sinh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y0ds

+
1
T1

∫ T1

0
cosh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y0ds

+
1
T1

∫ T1

0
sinh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y0ds

=

(
cosh

( ∫ T1

0
a(v)dv

)
y0 	 cosh

( ∫ T1

0
a(v)dv

)
y0

)
+

(
sinh

( ∫ T1

0
a(v)dv

)
y0 	 sinh

( ∫ T1

0
a(v)dv

)
y0

)
+ y1

= y1.

Thus, the system (1) is controllable in this case.

Case 1.2 Consider a < 0 via the (c2)-solution.

Theorem 6. In Case 1.2, system (1) is controllable, if W−1
0 [0, T1] exists; here

W0[0, T1] =
∫ T1

0
e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvds. (4)

Proof. From W0[0, T1] =
∫ T1

0 e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvds, for T1 > 0, for any final state y1 ∈
RF we choose a control function as follows:

u1(t) = −d̃e−
∫ t

0 a(v)dvW−1
0 [0, T1]

(
y0 	

∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds	 e−

∫ T1
0 a(v)dvy1

)
, t ∈ J,

where the H-differences exist.
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Then we get

y(T1) = e
∫ T1

0 a(v)dvy0 	 e
∫ T1

0 a(v)dv
∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds

	e
∫ T1

0 a(v)dv
∫ T1

0
(−d̃u1(s))e−

∫ s
0 a(v)dvds

= e
∫ T1

0 a(v)dvy0 	 e
∫ T1

0 a(v)dv
∫ T1

0
(−b(s))e

∫ s
0 a(v)dvds

	e
∫ T1

0 a(v)dv
∫ T1

0
e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvW−1
0 [0, T1]

×
(

y0 	
∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds	 e−

∫ T1
0 a(v)dvy1

)
ds

= e
∫ T1

0 a(v)dvy0 	 e
∫ T1

0 a(v)dv
∫ T1

0
(−b(s))e

∫ s
0 a(v)dvds

	e
∫ T1

0 a(v)dvy0 + e
∫ T1

0 a(v)dv
∫ T1

0
(−b(s))e

∫ s
0 a(v)dvds

+e
∫ T1

0 a(v)dve−
∫ T1

0 a(v)dvy1

= y1.

That means system (1) is controllable in this case.

From [17] (Theorem 3.2, a > 0), the (c1)-solution of (1) can be written in the form:

y(t) = e
∫ t

0 a(v)dv
(

y0 +
∫ t

0
b(s)e−

∫ s
0 a(v)dvds +

∫ t

0
d̃u(s)e−

∫ s
0 a(v)dvds

)
.

From [17] (Theorem 3.2, a > 0), the (c2)-solution of (1) can be written in the form:

y(t) = cosh
( ∫ t

0
a(v)dv

)(
y0 	

∫ t

0

[
(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)
−(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)]
ds
)

	− sinh
( ∫ t

0
a(v)dv

)(
y0 	

∫ t

0

[
(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)
−(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)]
ds
)

.

Thus, we consider two cases to study the controllability of (1): The (c1)-solution and
the (c2)-solution.

Case 2.1 Consider a > 0 via the (c1)-solution.

Theorem 7. In Case 2.1, system (1) is controllable, if V−1
ε [0, T1] exists; here

Vε[0, T1] =
∫ T1

0
e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvds. (5)

Proof. We set

u0(t) = −d̃e−
∫ t

0 a(v)dvV−1
ε [0, T1]

(
y0 	

∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds	 e−

∫ T1
0 a(v)dvy1

)
, t ∈ J,

where the H-differences exist. The rest of proof is the same as in Case 1.2.

Case 2.2 Consider a > 0 via the (c2)-solution.
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Theorem 8. In Case 2.2, system (1) is controllable, if the control function u2(t) is given by

u2(t) =
1

T1d̃

[(
−
(

cosh
( ∫ t

0
a(v)dv

)
y0 	− sinh

( ∫ t

0
a(v)dv

)
y0

))
	− y1 cosh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
	y1 sinh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)]
	 1

d̃
b(t), t ∈ J,

where the H-differences exist.

Proof. Since the H-differences exist in u2(t), for T1 > 0, we get

y(T1)

=

[
cosh

( ∫ T1

0
a(v)dv

)
y0 	

(
1
T1

∫ T1

0
cosh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y0ds

	 1
T1

∫ T1

0
sinh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y0ds

)]
+

[
−
(

1
T1

∫ T1

0
sinh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y0ds

	 1
T1

∫ T1

0
cosh

( ∫ T1

0
a(v)dv +

∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y0ds

)
	− sinh

( ∫ T1

0
a(v)dv

)
y0

]
+

1
T1

∫ T1

0
cosh

( ∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y1ds

	 1
T1

∫ T1

0
sinh

( ∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y1ds

	−
(

1
T1

∫ T1

0
sinh

( ∫ s

0
a(v)dv

)
cosh

( ∫ s

0
a(v)dv

)
y1ds

	 1
T1

∫ T1

0
cosh

( ∫ s

0
a(v)dv

)
sinh

( ∫ s

0
a(v)dv

)
y1ds

)
= y1.

Thus, system (1) is controllable in this case.

Consider system (2) (see [17]):{
y′(t) + (−a(t))y(t) = b(t) + d̃u(t), t ∈ J,
y(0) = y0,

where a : J → R, y0 ∈ RF and b : J → RF, u : J → RF, d̃ ∈ R+.
From [17] (Theorem 3.3, a < 0), the (c1)-solution of (2) can be written in the form:

y(t) = e
∫ t

0 a(v)dv
(

y0 +
∫ t

0
(b(s) + d̃u(s))e−

∫ s
0 a(v)dvds

)
.
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From [17] (Theorem 3.3, a < 0), the (c2)-solution of (2) can be written in the form:

y(t) = cosh
( ∫ t

0
a(v)dv

)(
y0 	 (−1)

∫ t

0

[
(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)
	(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)]
ds
)

+ sinh
( ∫ t

0
a(v)dv

)(
y0 	 (−1)

∫ t

0

[
(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)
	(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)]
ds
)

.

Thus, we consider two cases to study the controllability of (1): The (c1)-solution and
the (c2)-solution.

Case 3.1 Consider a < 0 via the (c1)-solution.

Theorem 9. In Case 3.1, system (2) is controllable, if W−1
1 [0, T1] exists; here

W1[0, T1] =
∫ T1

0
e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvds. (6)

Proof. Let

u3(t) = d̃e−
∫ t

0 a(v)dvW−1
1 [0, T1]

(
e−
∫ T1

0 a(v)dvy1 	 y0 	
∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds

)
, t ∈ J,

where the H-differences exist. The method of proof is the same as in Case 1.2, so we omit it
here.

Case 3.2 Consider a < 0 via the (c2)-solution.

Theorem 10. In Case 3.2, system (2) is controllable, if the control function u4(t) is given by

u4(t) =
1

T1d̃

[(
− cosh

( ∫ t

0
a(v)dv

)
y0 − sinh

( ∫ t

0
a(v)dv

)
y0

)
	− y1 cosh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
−y1 sinh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)]
	 1

d̃
b(t), t ∈ J,

where the H-differences exist.

Proof. The method of proof is the same as in Case 1.1, so we omit it here.

From [17] (Theorem 3.5, a > 0), the (c1)-solution of (2) can be written in the form:

y(t) = cosh
( ∫ t

0
a(v)dv

)(
y0 +

∫ t

0

[
(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)
−(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)]
ds
)

	− sinh
( ∫ t

0
a(v)dv

)(
y0 +

∫ t

0

[
(b(s) + d̃u(s)) sinh

( ∫ s

0
a(v)dv

)
−(b(s) + d̃u(s)) cosh

( ∫ s

0
a(v)dv

)]
ds
)

.
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From [17] (Theorem 3.5, a > 0), the (c2)-solution of (2) can be written in the form:

y(t) = e
∫ t

0 a(v)dv
(

y0 	
∫ t

0
(−b(s)− d̃u(s))e−

∫ s
0 a(v)dvds

)
.

Thus, we consider two cases to study the controllability of (1): The (c1)-solution and
the (c2)-solution.

Case 4.1 Consider a > 0 via the (c1)-solution.

Theorem 11. In Case 4.1, system (2) is controllable, if the control function u5(t) is given by

u5(t) =
1

T1d̃

[
− y1 cosh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
+ y1 sinh

( ∫ T1

0
a(v)dv−

∫ t

0
a(v)dv

)
	−

(
cosh

( ∫ t

0
a(v)dv

)
y0 	− sinh

( ∫ t

0
a(v)dv

)
y0

)]
	 1

d̃
b(t), t ∈ J,

where the H-differences exist.

Proof. The method of proof is the same as in Case 1.1, so we omit it here.

Case 4.2 Consider a > 0 via the (c2)-solution.

Theorem 12. In Case 4.2, system (2) is controllable, if W−1
2 [0, T1] exists; here

W2[0, T1] =
∫ T1

0
e−
∫ s

0 a(v)dvd̃d̃e−
∫ s

0 a(v)dvds. (7)

Proof. Let

u6(t) = −d̃e−
∫ t

0 a(v)dvW−1
2 [0, T1]

(
y0 	

∫ T1

0
(−b(s))e−

∫ s
0 a(v)dvds	 e−

∫ T1
0 a(v)dvy1

)
, t ∈ J,

where the H-differences exist. The method of proof is the same as in Case 1.2, so we omit
it here.

Next, we consider the following system (3):{
y′(t) + (−(b(t) + d̃u(t))) = a(t)y(t), t ∈ J,
y(0) = y0,

where a : J → R, y0 ∈ RF and b : J → RF, u : J → RF, d̃ ∈ R+.
The method of proof is same as in systems (1) and (2), so we omit it here.

4. An Example

In this section we give an example to prove our theorems.

Example 1. Consider linear fuzzy differential equations:{
y′(t) = −y(t) + d̃u(t), t ∈ [0, 0.3],
y(0) = γ,

(8)

where a = −1, [γ]α = [α− 1, 1− α], y1 = 0.6γ, d̃ = 3.
According to Theorem 6,

W0[0, T1] ,
∫ 0.3

0
9(e

∫ s
0 dv)2ds = 9

∫ 0.3

0
e2sds =

9
2
(e0.6 − 1) = 3.6995,
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then W−1
0 [0, 0.3] = 0.1827. Note

u1(t) = −d̃e−
∫ t

0 a(v)dvW−1
0 [0, 0.3]

(
y0 	

∫ 0.3

0
(−b(s))e−

∫ s
0 a(v)dvds	 e−

∫ 0.3
0 a(v)dvy1

)
= −0.4439e−tγ.

To sum up, W−1
0 [0, T1] exists, so the system is controllable.

5. Conclusions

In this paper we mainly study the controllability of first order linear fuzzy differen-
tial equations with the direct construction method. In future work, we shall study the
controllability of first order linear and non-linear impulsive fuzzy differential equations.
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