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Abstract: We investigate the excitation of a quantum harmonic oscillator by pulses with different
envelopes in terms of the excitation probability during the action of a pulse. The majority of attention
is given to the dependence of the probability on the pulse duration and the pulse carrier frequency
for three envelopes: exponential, double exponential, and rectangular. The choice of these envelopes
makes it possible to cover various features of the excitation of a quantum oscillator by an external
pulse. In particular, the presence of weak and strong excitation modes is established, for each of
which the dependences of the process probability on pulse parameters are studied.
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1. Introduction

The quantum harmonic oscillator (QO) is a fundamental model in the field of quan-
tum optics [1]. It is important that this model is analytically solvable for any external
perturbation [2,3].

Currently, methods for generating laser pulses with specified parameters, such as
duration, carrier frequency, and envelope, are rapidly developing [4]. Therefore, the consid-
eration of a pulse excitation of a quantum oscillator and the determination of characteristic
features of this process become topical.

There are a significant number of papers in which the description of QO excitation
by various pulses is carried out in terms of the average number of quanta/photons and
the transient spectrum [5–8]. These works are based on the solution of the time-dependent
Heisenberg equation for annihilation and creation operators. In particular, time depen-
dences of the average number of photons were obtained and analyzed for various pulse
parameters and initial states of a QO. In addition, the sub-Poisson photon statistics [8] as
well as the effect of oscillator damping and of the pulse shape on transient spectra [6] were
investigated.

Another approach using the probability of QO excitation between stationary states
was developed in our papers [9–11]. This treatment is based on the Schwinger formula [2]
adopted for the laser pulse perturbation of a QO. We studied the probability during the
action of a pulse [9] and the instant probability at a given moment of time [11] for Gaussian
and hyperbolic secant envelopes. As a result of analytical consideration and numerical
analysis, the main regularities of the excitation probability as a function of pulse parameters
were established. In particular, it was shown that, with increasing electric field amplitude,
the extrema of the probability dependencies on the pulse duration and the pulse carrier
frequency evolve.
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In the present paper, we extend our consideration made in [9] to other important
envelopes of an exciting pulse, which allows us to cover additional peculiar features of
QO excitation.

2. Basic Formulas

Let us consider the excitation of a quantum oscillator by a pulse

E(t) = E0 f (t, ωc, τ) (1)

where E0 is the amplitude, f (t, ωc, τ) is the time-dependent envelope including oscillation
at carrier frequency ωc, and τ are the carrier frequency and the duration of the pulse. Then,
the Hamiltonian of the driven quantum oscillator can be represented as [7]

ˆ
H =

ˆ
H0 − } Ω0 f (t, ωc, τ) (2)

where Ω0 is the Rabi frequency and
ˆ

H0 is the unperturbed Hamiltonian. The explicit
expression for the Rabi frequency depends on the specific type of interaction that we do
not specify here.

We aim to study the probability of transition between stationary states of the QO
under the action of the pulse (1).

J. Schwinger in his theory of the quantized electromagnetic field [2] derived the
following expression for the excitation probability between stationary states of this field
m→ n ; [n > m] perturbed by a prescribed electric current:

Wnm =
m!
n!

(
|J|2
)m−n

exp
(
−|J|2

) ∣∣∣Ln−m
m

(
|J|2
)∣∣∣2 (3)

where |J| is the absolute value of the Fourier transform of the dimensionless electric current,
Ln−m

m is the generalized Laguerre polynomial.
To obtain the probability of QO excitation by a laser pulse, we use the expression (3)

and the following relation [9]:

|J|2 → Ω2
0 |F(ω0, ωc, τ)|2 (4)

where
F(ω, ωc, τ) =

∫
f (t, ωc, τ) exp(iωt)dt (5)

is the Fourier transform of the pulse envelope,ω0 is the QO eigenfrequency.
Note that relation (4) was derived in [9] for a charged oscillator. However, it is

valid in the general case because Hamiltonian (2) described all the realization of quantum
harmonic oscillators.

In this paper, we consider QO excitation from the ground state. The corresponding
probability follows from (3) and is equal to

Wn0 =

−
n

n

n!
exp

(
−−n
)

(6)

where
−
n = Ω2

0 |F(ω0, ωc, τ)|2 (7)

is the average number of QO quanta/photons for excitation from the ground state.
We consider three types of exciting pulses, namely:

exponential pulse

fexp(t, ωc, τ) = θ(t) exp(−t/τ) cos(ωc t) (8)
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double exponential pulse

f2 exp(t, ωc, τ) = exp(−|t|/τ) cos(ωc t) (9)

rectangular pulse

frect(t, ωc, τ) = θ(t)θ(τ − t) cos(ωc t) (10)

Here, θ(t) is the Heaviside step function.
To obtain short analytical expressions, hereafter we will use the rotating wave ap-

proximation. It is valid for multicycle pulses (ωc τ >> 1) and near resonance case
|ωc −ω0| << ω0, which we assume further. Then the average numbers of QO quanta for
different exciting pulse envelopes are equal to

−
nexp =

1
4

Ω2
0 τ2[

1 + (ω0 −ωc)
2 τ2

] (11)

−
n2 exp =

1
4

Ω2
0 τ2[

1 + (ω0 −ωc)
2 τ2

]2 (12)

−
nrect =

Ω2
0

(ω0 −ωc)
2 sin2[(ω0 −ωc)τ/2] (13)

It should be noted that in the resonance case
−
n(ωc = ω0) = Ω2

0 τ2/4 for all three
envelopes, there is a quadratic dependence of the average number of quanta on the pulse
duration in the short pulse limit τ < |ωc −ω0|−1.

Note that Formulas (11)–(13) can also be obtained within the framework of the ap-
proach described in paper [7] in the limit of long times.

In what follows, we will consider the dependence of the QO excitation probability on
the pulse duration (the τ-dependence) and on the pulse carrier frequency (the excitation
spectrum) for different envelopes Formulas (8)–(10).

3. Results and Discussion
3.1. Exponential Pulse
3.1.1. τ-Dependence of Excitation Probability

Substituting Formula (7) in Formula (6), in view of Formulas (8) and (5), we find for
the pulse duration at the maximum of the excitation probability for the transition 0→ n :

τmax =
1

Ω0

2
√

n√
1− 4 n[|ω0 −ωc|/Ω0]

2
(14)

As follows from Formula (14), only one maximum is possible under the condition

Ω0 > 2
√

n |ω0 −ωc| ≡ Ωe
0 (15)

In the opposite case, the τ-dependence increases monotonically with increasing pulse
duration. The Rabi frequency Ωe

0 separates the regions of weak and strong excitation of a
quantum oscillator by an exponential pulse from the point of view of the τ-dependence.

It should be noted that in the limit Ω0 >> |ωc −ω0| we have τmax ≈ 2
√

n
Ω0

. This value
of the pulse duration imitates the period of Rabi oscillations.

The figures below show the results of calculations in terms of dimensionless variables:

α = ω0 τ; δ = |ωc −ω0|/ω0; ξ = Ω0/ω0 (16)
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Figure 1 presents the τ-dependence for different values of the dimensionless Rabi
frequency ξ. It shows that as ξ increases, a maximum appears in the τ-dependence and
becomes more pronounced. It is also seen that the asymptotic value of the excitation
probability (for large values α) is a nonlinear function of the Rabi frequency.
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Figure 1. The excitation probability as a function of the dimensionless pulse duration for an ex-
ponential pulse, δ = 0.03, n = 1, and the following values of the dimensionless Rabi frequency:
solid line—ξ = 0.03, dotted line—ξ = 0.07, dashed line—ξ = 0.1.

3.1.2. Excitation Spectra

The excitation spectra for different values of the dimensionless Rabi frequency ξ are
shown in Figure 2 for the transition 0→1. It can be seen from this figure that the saturation
effect [12] occurs with increasing Rabi frequency. It manifests itself in transformation of the
maximum at ωc = ω0 to a minimum and appearance of two additional maxima when the
following inequality is fulfilled:

Ω0 > Ωsat
0 ≡ 2

√
n/τ (17)
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The value Ωsat
0 can be called the Rabi frequency of saturation. It follows from (17) that

saturation is more easily achieved for longer pulses.
Additional maxima appear at the position

|ω0 −ωc|max =
1
τ

√
Ω2

0 τ2

4 n
− 1 (18)

It should be noted that for Ω0 >> 1/τ we have |ω0 −ωc|max
∼= Ω0/2

√
n. Thus, the

positions of these spectral maxima are proportional to the Rabi frequency.

3.2. Double Exponential Pulse
3.2.1. τ-Dependence of Excitation Probability

The excitation probability as a function of the pulse duration is presented in Figure 3
in terms of the dimensionless variable α for different values of the Rabi frequency (the
dimensionless variable ξ).
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Figure 3. The excitation probability as a function of the dimensionless pulse duration for a double
exponential pulse, δ = 0.03, n = 1, and the following values of the dimensionless Rabi frequency: solid
line—ξ = 0.1, dotted line—ξ = 0.2, dashed line—ξ = 0.3.

It can be seen that, in contrast with the exponential pulse, the τ-dependence in the
case under consideration for any ξ has extrema (if ωc 6= ω0).

For small values of the Rabi frequency

Ω0 < 4
√

n |ω0 −ωc| ≡ Ω2e
0 (19)

there is one maximum for the following value of the pulse duration:

τmax =
1

|ωc −ω0|
(20)

It should be noted that this maximum disappears at the resonance carrier frequency
when ωc = ω0.

For higher Rabi frequencies

Ω0 > 4
√

n |ω0 −ωc| (21)
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the maximum (20) turns to a minimum, and two maxima appear at the pulse durations

τmax,1,2 =
Ω0 ±

√
Ω2

0 − 16 n |ωc −ω0|2

4
√

n |ωc −ω0|2
(22)

In the limit Ω0 >> |ωc −ω0|, we have from (22) the following approximate relations:

τ1 ≈
2
√

n
Ω0

; τ2 ≈
Ω0

2
√

n |ωc −ω0|2
(23)

In particular, from the equalities (23), it follows that in the case of the resonance
(ωc = ω0), only one maximum remains at the pulse duration τ1.

3.2.2. Excitation Spectra

The excitation spectra are similar to the case of the exponential pulse (Figure 4).
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For low Rabi frequencies Ω0 < 2
√

n/τ, a maximum appears at the resonance
ωc = ω0.

For higher Rabi frequencies Ω0 > 2
√

n/τ, the saturation effect occurs: the maximum
at ωc = ω0 turns to a minimum, and two side maxima appear that are defined by the
following equality:

|ω0 −ωc|max =
1
τ

√
Ω0 τ

2
√

n
− 1 (24)

It should be noted that the condition for the occurrence of the saturation effect coincides
with the inequality (17), and the relation (24) differs from the equality (18) only in the power
of the first term under the square root sign.

3.3. Rectangular Pulse
3.3.1. τ-Dependence of Excitation Probability

This case differs significantly from the previous ones. It already follows from the
expression for the average number of photons (13), which is a periodic dependence on
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the parameters of the problem, in contrast to the cases of exponential (11) and double
exponential (12) pulses. A simple analysis shows that at low Rabi frequencies

Ω0 < Ωr
0 ≡
√

n |ωc −ω0| (25)

the extrema probability in QO excitation is achieved at the following pulse durations:

τmin =
2 l π

|ωc −ω0|
, τmax =

(2 l + 1) π

|ωc −ω0|
, l = 0, 1, 2 . . . (26)

When the Rabi frequency exceeds the value Ωr
0, the maximum (26) turns to a minimum,

and two maxima appear near the minimum (26), the position of which is defined by the
following expression:

τ
(k)
max =

2
|ωc −ω0|

∣∣∣∣(−1)k arcsin
[
|ωc −ω0|

√
n

Ω0

]
+ k π

∣∣∣∣, k = 0,±1,±2 . . . (27)

The described evolution of the τ-dependence with increasing Rabi frequency is shown
in the graphs of Figure 5.
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3.3.2. Excitation Spectra

The excitation spectra of a quantum oscillator under the action of a rectangular pulse
are shown in Figure 6 for different values of the dimensionless Rabi frequency ξ for the
transition 0→1.

It is seen that with increasing Rabi frequency, the central maximum turns to a minimum
if the condition (17) is satisfied, and two side maxima appear. This is a consequence of the
saturation effect. The positions of other spectral maxima are defined by the expression.

|ω0 −ωc|max =
2
τ

xk (28)

where xk are the solutions of the transcendental equation tg(x) = x.
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The carrier frequencies of the spectral minima are given by the formula

|ωc −ω0|min =
2 π k

τ
; k = ±1,±2 . . . (29)

The relations (28) and (29) follow from the Formulas (6) and (13).
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4. Summary

Thus, we have carried out an analytical and numerical study of the characteristic
features of excitation of a quantum harmonic oscillator by pulses with different envelopes
in terms of the probability during the action of a pulse.

The analytical expressions were obtained for the τ-dependence and the excitation
spectra for different values of the duration of a pulse, its carrier frequency and amplitude
(the Rabi frequency) for exponential, double exponential, and rectangular envelopes.

The influence of the pulse amplitude on the characteristic features of QO excitation
was studied. In particular, the transition from the weak excitation mode (a low Rabi
frequency) to the strong excitation mode (a high Rabi frequency) was traced from the point
of view of the evolution of extrema in the τ-dependence and in the excitation spectra. The
characteristic value of the Rabi frequency was established that separates the modes of weak
and strong excitation for each pulse envelope.

A qualitative difference was established between the excitation of a quantum oscillator
under the action of pulses with smooth fronts (exponential and double exponential pulses)
and under the action of a pulse with a steep front (a rectangular pulse). So, in the first case,
the τ-dependence can be monotonic (in the weak excitation mode for an exponential pulse)
and can have one or two maxima (in the strong excitation mode for a double exponential
pulse), and in the second case, the number of maxima is unlimited.

The criteria for the occurrence of the saturation effect were established, and its influ-
ence on the excitation spectra was studied. In particular, it was shown that the characteristic
value of the Rabi frequency, at which the saturation effect manifests itself, is the same for
all considered envelopes of excitation pulses.

In conclusion, we note that the results obtained can be applied not only in quantum
optics, but also in the currently developing field of coherent phononics [13], especially
in connection with achievements in the development of effective sources of terahertz
radiation [14]. The presented study can be generalized to the two-dimensional case for
describing e.g., the interaction of radiation with gated quantum dots [15].
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