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Abstract: This paper proposes a linear matrix inequality (LMI)-based fuzzy fast terminal sliding
mode control (FFTSM) approach for a multi-input multi-output (MIMO) system. This design aims
to achieve the finite-time convergence of system trajectories to their desired values, while at the
same time eliminating the chattering problem. Finite-time stability is proven using the Lyapunov
theory and the control parameters are obtained using the LMI approach. The fuzzy logic approach is
considered to fine tune the controller parameters and reduce the tracking error and control signal
amplitude. The performance of the proposed approach is assessed using a simulation study of a
direct current (DC) motor. The obtained results confirm the effectiveness of the proposed control
design. Simplicity of the design, robustness, finite-time convergence, and chattering-free dynamics
are among the features of the proposed approach.

Keywords: fuzzy logic; sliding mode control; MIMO systems; uncertainty; LMI; finite-time control

1. Introduction

Controlling uncertain systems is one of the most challenging problems in control
theory. Owing to its effectiveness, simplicity, disturbance rejection capability, insensitivity
to parameter variations and ease of implementation, sliding mode control (SMC) has been
widely considered in controlling uncertain nonlinear systems [1]. It has been successfully
implemented in various applications such as power grids, electric motors, automotive
systems, communication networks, and robotic systems, and so on [2]. SMC is achieved
following two stages: a reaching phase and a switching phase [3]. In the reaching phase, a
control signal steers the system states to a sliding surface, and in the switching phase, a
sliding surface is defined so that the system states remain on that surface [4,5]. Standard
SMC, however, suffers from two major drawbacks: (1) convergence of the system states to
the equilibrium point in finite time is not guaranteed; and (2) the chattering phenomena
resulting from the discontinuous control. Terminal Sliding Mode Control (TSMC) was
developed to achieve finite-time convergence in single input single output (SISO) and
MIMO systems [6–8]. In TSMC, a power fraction term is used on the sliding surface to
ensure finite-time convergence [9]. The nonlinear sliding surface in TSMC ramps up the
control input to speed up the convergence [10]. The idea of fast terminal sliding mode
was introduced in [11], to ensure faster transient convergence rates and robustness to
uncertainties. In [12], a new structure was introduced for FTSM. The finite-time stability in
chaotic systems was investigated by the FTSM method in [13].
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The authors in [14] proposed a recursive FTSM that archives finite-time tracking and
removes the singularity problem in the control phase. An FTSM-based fault tolerant control
was proposed in [15], and was shown to achieve a fast convergence speed. By combining
the TSMC and backstepping method, a controller was designed in [16] for industrial robotics
to achieve finite-time convergence and reduced oscillations. In [16], a newly modified fast
integral terminal sliding state control law was designed for the spacecraft formation system.
External disturbances were estimated in that approach using a reduced-order perturbation
observer. In [17], an LMI-based second-order FTSM was proposed for chaotic systems. The
use of FTSM for multi-input multi-output (MIMO) systems with uncertainties and chaos was
carried out in [18]. A TSM-based nonlinear sliding surface was proposed in [19] for MIMO
systems. The position of the state error bound was expressed in that approach using LMIs.
An FTSMC approach was considered for the multi-input multi-output twin-rotor system
in [20]. In [21], by using the fixed-time disturbance observer, the tracking control of aircraft
with external disturbances and measuring noises was investigated; however, the suggested
method [21] did not provide a law to adjust the switching control gains and improve the
system’s dynamic response. The study reported in [22] showed that combining the FTSMC
with a fuzzy logic approach to adjust the sliding surface and switching control gains can further
improve the system’s dynamic response. A PSO optimized super-twisting finite-time SMC
technique was designed in [23] for PMSM systems with external disturbances. An adaptive
finite-time SMC approach was introduced in [24] for a class of uncertain systems with external
disturbances and input saturation. In [25], by using TSM and fuzzy, an adaptive controller
was designed for MIMO systems, and the performance of this strategy was evaluated through
the control of ankle and knee movement and a two-link rigid robotic manipulator. A design
of a MIMO fuzzy terminal sliding mode controller was proposed in [26] for a manipulator
robotic. An intelligent nonsingular terminal sliding mode approach with type 2 fuzzy logic
control was proposed in [27] for the wind turbine system. In [28], a fuzzy adaptive fixed time
SMC method with state-observer was designed for a class of uncertain systems such as ship
course and robotic manipulators. By means of the known bounds of membership functions in
interval type-2 fuzzy models, the SMC and fuzzy observer methods are addressed in [29] to
guarantee the reachability of the SMC dynamics. In [30], the SMC approach was presented for
the discrete-time interval type-2 fuzzy singularly disturbed system where the optimization
algorithm reduces the convergence domain around the sliding surface.

To the best of the authors’ knowledge, most finite-time controllers, such as FTSM and
TSM, have been applied to single-input, single-output (SISO) systems. This paper proposes
an LMI-based FFTSM control design for MIMO uncertain systems. The main contributions
of this paper are as follows:

• A robust approach that yields faster finite-time convergence of the system states
to the equilibrium, while it ensures chattering-free dynamics, even in the presence
of uncertainties.

• An approach that combines FTSMC with fuzzy logic to adjust the sliding surface and
switching control gains and further improve the system’s dynamic response.

• A FTSC approach in which control parameters are determined using the LMI approach.

The rest of the paper is organized as follows. Section 2 provides the problem formula-
tion. Stability analysis and control law are described in Sections 3 and 4. The simulation
results are reported in Section 5. Finally, conclusions are provided in Section 6.

2. Problem Statement and Assumption

Consider the following MIMO system with uncertainties [31]:

.
x1 = A11 x1 + A12 x2 + fu (t, x)

.
x2 = A21 x1 + A22 x2 + B2u + fm (t, x, u)

y = Cx
(1)
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where x = [ x1 x2 ]
T are the state vector, and x1 ∈ Rn−m, x2 ∈ Rm×m, y is output and

y ∈ Rn−m, fu (t, x) ∈ Rn−m and fm (t, x, u) ∈ Rm are known as the system uncertain-

ties, B2 is m× m matrix and C is P× n matrix, A =

[
A11 A12
A21 A22

]
is a constant matrix;

A11 ∈ R(n−m)×(n−m), A12 ∈ R(n−m)×m, A21 ∈ Rm×(n−m) and A22 ∈ Rm×m are constant
sub-matrices; fm (t, x, u) and fu (t, x) denote the matched and mismatched uncertainties.
These latter satisfy the following inequalities:

‖ fu (t, x)‖ ≤ Lu (2)

‖ fm (t, x, u)‖ ≤ Lm (3)

where Lu and Lm are the upper bound of fu , fm.
The sliding surface for system (1) is defined as follows:

S(e) = Γ(e) (4)

Γ in the above equation is defined as Γ = [F G]. F (m×m) and G (m× (n−m)) are gain
matrices. e(t) = [e1(t) e2(t) ]

T is the error signal:

e1 = x1 − xd1 (5)

e2 = x2 − xd2 (6)

where xd = [xd1 xd2 ]
T represents the reference trajectory. Using Equation (4), the FTSMC

surface [10] is defined by
σ(e) = S(e) +

.
S(e) + S(e)

p/q (7)

where p/q is an odd positive constant, such that 1
2 < p/q < 1. When the sliding surface

reaches the equilibrium point, S(e) = 0, Equation (4) becomes:

e2 = −G−1Fe1 (8)

Equations (1), (5) and (8) are used to obtain:

.
e1 =

.
x1 −

.
xd1= A11e1 − A12 G−1Fe1 + A11xd1 + A12xd2 −

.
xd1+

fu(t, x) =
(

A11 − A12G−1F
)
e1 + A11xd1 + A12xd2 −

.
xd1 + fu(t, x)

(9)

Note 1: The nonlinear functions fu(x, t) and fm(t, x, u) are assumed to be differentiable.

Assumption 1. The ud for reference trajectory xd is defined as follow:

.
xd = Axd + Bud (10)

where
.
xd, xd and ud are assumed to be smooth vector functions. The vector xd must be generated

in such a way that it is consistent with the dynamics of (A, B). Equation (10) can be rewritten as:

.
xd1 = A11xd1 + A12xd2 (11)

.
xd2 = A21xd1 + A22xd2 + B2ud (12)

By substituting (11) into (9), the term
.

e1 is re-written as:

.
e1 =

(
A11 − A12G−1

)
e1 + fu(t, x) (13)
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Lemma 1. Consider a positive definite continuously Lyapunov function candidate V(t). The
derivative of V(t) must have the fallowing conditions:

.
V(t) ≤ −α V(t)− βV

p/q(t) ∀t ≥ t0
V(t0) ≥ 0

(14)

where α and β are positive constants, p/q chosen as an odd number and it is 0 < p/q < 1.

The above equation is re-written as follows:

V−
p/q(t)

.
V(t) ≤ −αV1−p/q(t)− β (15)

and also:

dt ≤ − V−
p/q(t)

αV1−p/q(t) + β
dV(t) (16)

Integrating the above expression yields:

dt ≤ − V−
p/q(t)

αV1−p/q(t) + β
dV(t) (17)

tr − t0 ≤
∫ 0

V(t0)

V−
p/q(t)

αV1−p/q(t) + β
dV(t) = − 1

α
(

1− p/q
) [lnβ− ln

(
αV1−p/q(t0)

]
(18)

Lyapunov’s function converges to zero the finite time tr, defined by:

tr = t0 +
1

α
(

1− p/q
) ln

αV1−p/q(t) + β

β
(19)

3. Main Results

Theorem 1. Consider Equation (13). Assuming ‖ fu (t, x)‖ ≤ Lu and ‖e1‖ ≥ r, where rand
Luare positive constants. If there exist matrices such as X > 0, W > 0, G > 0, Q > 0. In addition,
µ1 > 0 and µ2 > 0 are two scalar values. y with the right dimensions, the LMI will be [17]:[

A11X + XAT
11 − A12Y−YT AT

12 + Q X
X −W

]
< 0 (20)

µ1 In−m −Q < 0 (21)

µ2 In−m −W < 0 (22)

µ1 −
L2

u
r2 µ2 > 0 (23)

Then consider a positive definite matrix such that P = X−1 and F = GYX−1 in (4).
System (13) will be asymptotically bounded by ‖e1‖ ≥ r.

Select the candidate Lyapunov function as:

V1(e1) = eT
1 Pe1 (24)

Differentiating the above equation and substituting (13) in it yields:

.
V1(e1) = eT

1 P
.
e1 +

.
eT

1 Pe1 = eT
1 (P

(
A11 − A12G−1F

)
+
(

A11 − A12G−1F)T P
)

e1 + eT
1 P fu(t, x) + f T

u (t, x)Pe1 (25)

The following inequality can be used for the last term (25) and (24):



Mathematics 2022, 10, 1236 5 of 12

eT
1 P fu(t, x) + f T

u (t, x)Pe1 ≤ eT
1 PQPe1 + f T

u (t, x)Q−1 fu(t, x) ≤ eT
1 PQPe1 + l2

uλmax

(
Q−1

)
(26)

λmax
(
Q−1) is the maximum specific value of Q−1. The Q−matrix is positive definite. The

above two equations can be written using the following inequality:

eT
1 e1

r2 ≥ 1 (27)

By the condition ‖e1‖ ≥ r, the following inequality is achieved:

.
V1(e1) ≤ eT

1

(
P
(

A11 − A12G−1F
)
+
(

A11 − A12G−1F)T P
)
+ PQP

)
e1 + l2

uλmax

(
Q−1

)
(28)

By using (26) and (28), the following equation is obtained:

.
V1(e1) ≤ eT

1

(
P
(

A11 − A12G−1F
)
+
(

A11 − A12G−1F)T P
)
+ PQP

)
+

l2
u

r2 λmax

(
Q−1

)
In−m)e1 (29)

Now, using the following equation:

P
(

A11 − A12G−1F
)
+
(

A11 − A12G−1F)T P
)
+ PQP ≤ −W−1 (30)

We can simplify (29) as:

.
V1(e1) ≤ −((λmin(W−1)− l2

u
r2 λmax(Q−1))‖e1‖

2 (31)

where λmin
(
W−1) is the minimum specific value of W−1. If

α1 =
λmin

(
W−1)− l2

u
r2 λmax

(
Q−1)

λmax(P)
(32)

Equation (31) can be written as:

.
V1(e1) ≤ −α1V1(e1) (33)

Since α1 ≥ 0, we have:
µ1 < λmin(Q) (34)

µ2 > λmax(W) (35)

Given the above equations, the following inequality is obtained:

λmin(Q)− l2
u

r2 λmax(W) > 0 (36)

If X = P−1, pre and post multiplying (30) by X yields:

A11X− A12G−1FX + X(A11 − A12G−1F)
T
+ Q ≤ −XW−1X (37)

Considering Y = G−1FX and Schur compliment [32], the LMI condition is realized.

Theorem 2. Consider the nonlinear system (1) and the sliding surface (7). Assume that F and G
are found via LMI. If the control signal is defined as follows, then the states will reach the sliding
surface with any initial condition in the finite time:

.
u = (GB2)

−1
{

k−
(

p/qdiag
(

s
p/q−1

)
+ Im

)
GB2 − (FA12 + GA22)B2)u

}
(38)
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where the value of k is determined as follows:

k = −((p/q diag
(

s
p/q−1

)
+ Im)[ ΓAe + GB2 f (x)] + ΓA2e + GB2

.
f (x)+

(FA12 + GA22)B2 f (x) + Πsign(σ) + γσ + ϕsign(σ) | σ |
p/q)

(39)

where p and q should be selected as positive odd numbers with q > p > 0 to avoid the singularity
problem in the controller. The terms ϕ and γ are positive coefficients and Π is upper bound of
uncertainties.

Candidate Lyapunov function as follows:

V2(σ) =
1
2

σTσ (40)

The term
.
e2 is obtained by the same procedure as

.
e1 as follows:

.
e2 = A21e1 + A22e2 + B2(u + f (x)) + fm (t, x, u) (41)

The first-order derivative of the sliding surface is as follows:

.
s(e) = F(A11e1 + A12e2 + fu (t, x)) + G(A21e1 + A22e2 + B2(u + f (x)) + fm (t, x, u) (42)

and the second-order derivative of the sliding surface is introduced as follows:

..
s(e) = (FA12 + GA22)(A21e1 + A22e2 + B2(u + f (x)) + fm (t, x, u)+
(FA11 + GA21)(A11e1 + A12e2 + fu (t, x)) + GB2

( .
u +

.
f (x)

)
+ F

.
f u (t, x)+

G
.
f m(t, x, u)

(43)

Deriving (40) yields:

.
V2(σ) = σT .

σ = σT(
(

p/qdiag
(

s
p/q−1

)
+ Im

) .
s +

..
s (44)

Equation (44) can be simplified as follows:
.

V2(σ) = σT
{(

p/qdiag
(

s
p/q−1

)
+ Im

)
[F(A11e1 + A12e2 + fu (t, x)] + G(A21e1 + A22e2+

B2 f (x) + fm (t, x, u) )] + F
.
f u (t, x) + (FA12 + GA22)(A21e1 + A22e2 + B2 f (x) + fm (t, x, u) )+

G
.
f m (t, x, u) + (FA11 + GA21)(A11e1 + A12e2 + fu (t, x)) + GB2

.
f (x) + k

} (45)

Substituting k in (45), yields:

.
V2(σ) = −σT ϕsign(σ)|σ|

p/q − σTγσ− σTΠsign(σ) + σT
(

p/qdiag
(

s
p/q−1

)
+ Im

)
+

σTΓ
(

A fu, m +
.
f u,m

) (46)

where α2 = 2λmin(γ) > 0 and β2 = 2
(

p
q +1)

2 λmin(ϕ) > 0
Equation (46) can be resulted as:

.
V2(σ) ≤ −λmin(γ)‖σ‖2 − λmin(ϕ)‖σ‖

p/q+1 = −α2V2(σ)− β2V
p/q+1

2
2 (47)

and
p/q+1

2 < 1.
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The states will reach the surface in the finite time tr, defined by:

tr =
1

α2

(
1−

p/q+1
2

) ln
α2V2(σ(t0))

1−
p/q+1

2 + β2

β2
(48)

4. Fuzzy Fast Terminal Sliding Mode

To improve the results, a fuzzy control can be integrated with the FTSM control. This
method can (1) eliminated chattering, (2) reduce the amplitude of the control signal, and
(3) reduce the error [33,34]. Selection of the fuzzy rules is the first problem to be resolved.
Usually, the sliding surface (s), time-derivative of sliding surface (

.
s), error signal (e) and its

time-derivative (
.
e) are selected as Fuzzy inputs [35,36]. For the fuzzy input, the triangular

membership functions (trimf) are considered, and for the fuzzy output, the singletons
membership functions are used. It is clear that the output should track the reference signal.
Given that the output is lower or higher than the reference path and based on the definition
of the error signals (5) and (6), the negative and positive signs of the error signal are
determined. Furthermore, the sign of the function

.
e is related to the slope of the output

diagram. The error signal and its time-derivative are used in the sliding surface (7). Hence,
their sign plays an important role in the determination of the sign of the sliding surface.
The fuzzy rules are chosen so that if the output deviates from the reference path, it can be
brought closer for accurate tracking purposes.

In this work, the error e and its derivative
.
e are selected as a Fuzzy input and the

sliding surface s as the output, where N, P and Z stand for negative, positive and zero in
fuzzy language [37]. The fuzzy rules are written in Table 1. The graph of membership
function is given in the simulation results section.

Table 1. Fuzzy rules.

s.
.
e e

Z N P
N N N
P P P
Z P N

5. Simulation Results

Consider a DC servo motor represented by [38]:

.
x1(t) =

[
0 1
0 −0.694

]
x1(t) +

[
0

112.36

]
x2(t)

.
x2(t) =

[
0 −161.8

]
x1(t)− 1500x2(t) + 200u(t) + 20 sin(10x2(t))
y(t) =

[
1 0 0

]
x(t)

(49)

where x1(t) =
[

θ
.
θ
]T

represents the angular velocity and the angular position. x2(t) = i
is the armature current. The parameters of the servomotor considered in this simulation
study are provided in Table 2 [30]. The desired values are defined as xd =

[
0 0 0

]T .
The initial values are set as: x(0) =

[
π
3 3 1

]
. p/q is selected equal to 7/9.

P =

[
99.565 0.001
0.001 0.004

]
, W =

[
7.918 0.151
0.151 24.841

]
and Q =

[
18, 141.89 0

0 18, 141.89

]
.

These are the obtained values by using the LMI MATLAB toolbox. The parameters µ1 and
µ2 are found as µ1 = 99.565 and µ2 = 24.867. Figure 1 shows the membership function of e,
which is based on Table 1.
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Table 2. Parameters of the DC servo motor.

Parameters Values

Armature Resistance (R) 7.5 Ω
Armature Inductance (L) 5 mH

Motor inertia (J) 0.006 kgm2

Friction Constant (B) 0.005 Nms
Torque constant (Kt) 0.809 Nm/A

Back emf constant (Ke) 0.809 Vs/rad
Rated Speed 1500 r/min
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The proposed approach is compared to the classic fast terminal sliding mode control
(CFTSMC) method [39] and classic sliding mode control (CSMC) [21,40], which considers
the control of spacecraft electromagnetic docking and DC servo motor. The dynamics of
the sliding surfaces for all three approaches are depicted in Figure 3.
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As shown in Figure 3, the chattering related to the sliding surface and overshoot are
reduced by using fuzzy. The control signal is shown in Figure 4. The control signals for all
three approaches are shown in Figure 4. Note that the (FFTSM) control signal is simpler
and has less oscillations.
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Figure 4. Comparison between the FFTSMC, CFTSMC and CSMC control signals.

Figure 5 shows the convergence of the angular position to the desired value. The
angular position starts with the π

3 initial value and converges to zero.
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Figure 5. Angular position tracking.

Table 3 examines the comparison between the three control methods for the angular
position. Note from Table 3 that the advantages of the proposed method are the fast and
finite-time convergence to the reference trajectory and robustness to parametric uncertain-
ties and external disturbances. The error signal is converged to zero and the ISV and IAE
criteria [41] are smaller than the other methods. Moreover, unlike the CSMC approach, the
proposed method is free of the chattering phenomenon.
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Table 3. Comparison between three control methods for angular position.

Controller Time of Convergences to Zero Tracking Error Control Signal Range Chattering Phenomenon ISV (u) IAE

Proposed method 7.315 (s) −2.2932 to 0.1101 No 1.2942 1.1635
CFTSM 7.510 (s) −2.2932 to 0.2157 No 1.9397 1.2605

CSM ∞ −0.0010 to 0.5201 Yes 2.6511 88.8725

Note that we can infer from Table 3 that the proposed approach yields a control
signal with smaller amplitude that of the two other approaches. Note also that the pro-
posed approach yields chattering-free dynamics. Figure 6 shows the dynamics of the
angular velocity.
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Figure 6. Angular velocity tracking.

Note from the above figure that tracking to the desired value occurs faster with
the proposed controller. Figure 7 shows the convergence of the armature current to the
desired value.
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Figure 7. Armature current tracking.

Note that the proposed approach results in armature current that tracks its reference
value much faster than the other approaches and without any chattering. All the obtained
results confirm the superior performance of the proposed approach in terms of faster finite-
time convergence of the system states to the equilibrium and chattering-free dynamics.

6. Conclusions

This paper proposed an LMI-based fuzzy fast terminal sliding mode control technique
for MIMO uncertain systems. The fast terminal sliding mode control scheme is used to
reach the desired value more quickly. The control parameters are obtained using the LMI
approach. Fuzzy logic is considered to adjust the sliding surface and switching control gains
and further improve the system’s dynamic response. The performance of the proposed
approach was assessed using a DC motor. The obtained results showed that the proposed
approach yields control gains with smaller ranges, ensured fast finite-time convergence of
the system states to their references, and resulted in chattering-free dynamics.
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