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Abstract: Recently, we have proposed a new diffusive representation for fractional derivatives and,
based on this representation, suggested an algorithm for their numerical computation. From the
construction of the algorithm, it is immediately evident that the method is fast and memory-efficient.
Moreover, the method’s design is such that good convergence properties may be expected. In this
paper, we commence a systematic investigation of these convergence properties.
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1. Introduction

Fractional differential operators have proven to be very useful tools for the numerical
modeling of various phenomena in science, engineering, and economics, cf., e.g., [1] and
the literature cited therein. Since differential equations with fractional derivatives are very
difficult, and often impossible, to solve exactly in closed form, there is a great need for
efficient numerical methods.

A large number of different approaches has been proposed but many of these are not
sufficiently fast or require too much memory whereas others are more efficient in these
respects but their convergence behaviour is not well understood (see Section 2 for more
details on this topic). In this paper, we pick up a recently developed approach [2] that is
very efficient with respect to both runtime and memory requirements and that has explicitly
been designed in a way that allows a thorough analysis. While [2] merely indicated that
such an error analysis is possible, in the present paper we actually describe this analysis and
its outcomes. Our main result, Theorem 1, contains an error estimate that clearly shows the
influence of all the parameters on which the algorithm depends. Therefore, in combination
with the results of [2], we now have a complete picture of the method’s properties, both
from the theoretical and from the practical perspective.

We explicitly stress that this paper is exclusively devoted to (theoretical) error analysis.
Numerical aspects of the algorithm under consideration have already been discussed
in [2]; that paper in particular also contains some numerical examples. Therefore, it is not
necessary to repeat these here.

2. A Diffusive-Representation-Based Numerical Scheme for Computing
Fractional Derivatives

The topic of this paper is the analysis of a recently developed numerical method for
the approximate calculation of fractional derivatives [2]. Specifically, we assume a function
y ∈ Cdαe[a, a + T] to be given with some T > 0 and some a ∈ R, and the task is to compute
the Caputo derivative Dα

a y(tj) of order α ∈ R+ \N of the function y ([3], Chapter 3) at some
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points t0 < t1 < t2 < · · · < tN , with t0 = a and tN = a + T being the two end points of the
interval of interest. The algorithm is based on the diffusive representation

Dα
a y(t) =

∫ ∞

−∞
φD(w, t)dw (1)

where the function φD(w, t) in the integrand on the right-hand side of Equation (1) is the
solution to the initial value problem

∂φD

∂t
(w, t) = −ewφD(w, t) + (−1)bαc

sin απ

π
ewqD y(dαe)(t), φD(w, a) = 0, (2)

cf. ([2], Theorem 1). In Equation (2), qD = α− dαe+ 1 ∈ (0, 1); thus, if α ∈ (0, 1), i.e., in the
case that is prevalent in most known technical applications of fractional derivatives, we
have qD = α.

Based on Equations (1) and (2), the algorithm developed in [2] comprises two elements:

1. approximate the integral in Equation (1) by means of a suitable quadrature formula, and
2. compute the integrand function that needs to be evaluated by this quadrature formula

by means of a numerical solver for the first-order initial value problem (2).

More precisely, there are two variants of the approach. Both variants use the quadra-
ture formula ∫ ∞

−∞
φD(w, t)dw =

∫ ∞

0
e−uφ̂(w, t)dw ≈

K

∑
k=1

aGLa
k,K φ̂(xGLa

k,K , t) (3)

with

φ̂(w, t) = ew
(

1
qD

φD(−w/qD, t) +
1

1− qD
φD(w/(1− qD), t)

)
(4)

where aGLa
k,K and xGLa

k,K for k = 1, 2, . . . , K denote the weights and nodes, respectively, of
the K-point Gauss–Laguerre quadrature formula, i.e., the Gaussian quadrature formula
for the weight function e−w. The difference between the two methods is that, in order to
compute the function values φ̂(xGLa

k,K , t) for some given t = tn via the representation (4), one
of them uses the backward Euler formula for the solution φD of the initial value problem (2)
whereas the other one employs the trapezoidal method.

The basic motivation for the development of this technique was to use it as a building
block for a numerical solver for fractional differential equations. If this is done, then, like other
numerical schemes based on diffusive representations or similar techniques (cf., e.g., [4–10])
this approach has some significant advantages over traditional schemes such as the fractional
Adams method [11,12] or fractional linear multistep methods [13,14]:

1. The computational complexity is O(N) where N is the number of time steps over
which the solution to the fractional differential equation is sought, whereas tradi-
tional methods usually have a cost of O(N2) when implemented in a straightforward
manner [11,13] or of O(N log N) or O(N log2 N) [15–18] if more sophisticated imple-
mentations are used.

2. Due to the completely different way in which the inherent memory of the fractional
differential operators is dealt with, the active memory requirements of the method
are only O(1) and not O(N) for the traditional methods or at best O(log N) for their
modified versions [15,19].

3. Whereas some (but not all) traditional schemes require the use of a uniform mesh,
this approach gives the user complete freedom to use any discretization whatsoever
of the interval on which the fractional differential equation is to be solved.

3. Convergence Properties of the Numerical Method

The paper [2] in which the abovementioned algorithm was developed contains some
numerical results. It also provides a qualitative convergence analysis and a heuristic
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argumentation as to why the method should have satisfactory convergence properties, and
it describes how to avoid certain potential pitfalls in the implementation of the algorithm in
finite precision arithmetic. However, it does not provide a thorough convergence analysis
in the quantitative sense, so we shall now address this matter here. To this end, we
assume that the function values of Dα

a y are to be approximately computed at the points tn,
n = 0, 1, 2, . . . , N, with a = t0 < t1 < . . . < tN = a + T. We then proceed as follows.

First of all, we note that our approximation formula takes the final form

Dα
a y(tn) ≈

K

∑
k=1

aGLa
k,K φ̂k,K,n (5)

where φ̂k,K,n denotes the approximation for φ̂(xGLa
k,K , tn) obtained by the ODE solver in

question using the grid {tn : n = 0, 1, . . . , N}. It thus follows that the error of this approxi-
mation is

Rα,K,n(y) = Dα
a y(tn)−

K

∑
k=1

aGLa
k,K φ̂k,K,n

=
∫ ∞

0
e−uφ̂(w, t)dw−

K

∑
k=1

aGLa
k,K φ̂k,K,n (6)

= RQ
α,K(y; tn) + RODE

α,K,n(y)

where

RQ
α,K(y; tn) =

∫ ∞

0
e−uφ̂(w, tn)dw−

K

∑
k=1

aGLa
k,K φ̂(xGLa

k,K , tn) (7)

is the error induced by the numerical quadrature, and

RODE
α,K,n(y) =

K

∑
k=1

aGLa
k,K

(
φ̂(xGLa

k,K , tn)− φ̂k,K,n

)
(8)

is the error induced by the ODE solver.

Remark 1. In the decomposition (6) of the total error, it is clear from Equation (7) that the
component RQ

α,K(y; tn)—as indicated by the notation—depends only on the function y whose
fractional derivative we want to compute, the order α of this derivative, the number K of nodes of
the Gauss–Laguerre quadrature formula that we use, and the point tn. Thus, there is an indirect
dependency on the exact solution of the initial value problem (2) at the point t = tn but not on the
numerical solution of this problem. Hence, for the analysis of RQ

α,K(y; tn), it does not matter by
which numerical method and with which grid we solve this initial value problem.

The component RODE
α,K,n(y), on the other hand, does not only depend on the ODE solver and its

grid but also on the number K of quadrature nodes and on the location of these nodes because these
quantities appear as parameters in the differential equation and thus have an influence on the ODE
solver’s error.

Our main goal now is to analyze and estimate the expressions RQ
α,K(y; tn) and RODE

α,K,n(y)
under reasonable assumptions on the given data. The first result in this context reads
as follows.

Lemma 1. Let y ∈ Cm[a, a + T] for some m ∈ N and some T > 0. Then, for all p > 0, we have
uniformly for all n ∈ {0, 1, 2, . . . , N} that

RQ
α,K(y; tn) = O(K−p)

as K → ∞.
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Therefore, we can conclude that the quadrature error converges to zero with a faster-
than-algebraic rate.

For the proof of Lemma 1, we require an auxiliary result on the asymptotic behaviour
of φD(w, t) for w→ ±∞ that refines the findings of ([2], Theorem 1(e)):

Lemma 2. Let y ∈ Cm[a, a + T] for some m ∈ N and some T > 0. Then, for all r ∈ N0, we have

∂rφD

∂wr (w, t) = O(ew(qD−1)) · | sin απ| for w→ ∞

and
∂rφD

∂wr (w, t) = O(ewqD) · | sin απ| for w→ −∞.

The implied constants in the O-terms can be bounded uniformly for all t ∈ [a, a + T] and all
α ∈ (m− 1, m).

Proof. The claims for r = 0 have already been shown in ([2], Theorem 1(e)). We thus only
discuss the cases r = 1, 2, . . . here. To this end, we first recall from ([2], Theorem 1) that

φD(w, t) = (−1)bαc
sin απ

π
ewqD

∫ t

a
y(m)(τ) exp(−(t− τ)ew)dτ (9)

holds for any fixed t ∈ [a, a + T]. This implies, in particular, that φD(w, a) = 0 for all w, and
so the claims clearly hold in the case t = a.

For t > a, an application of the Leibniz rule to (9) shows that

∂rφD

∂wr (w, t) = (−1)bαc
sin απ

π

×
r

∑
s=0

(
r
s

)
qr−s

D ewqD

∫ t

a
y(m)(τ)

∂s

∂ws exp(−(t− τ)ew)dτ

which, upon setting

c(α) :=
| sin απ|

π
‖y(m)‖L∞ [a,a+T] < ∞, (10)

implies for all w ∈ R that∣∣∣∣∂rφD

∂wr (w, t)
∣∣∣∣ ≤ c(α)

r

∑
s=0

(
r
s

)
qr−s

D ewqD

∫ t

a

∂s

∂ws exp(−(t− τ)ew)dτ

= c(α)
r

∑
s=0

(
r
s

)
qr−s

D ewqD
∂s

∂ws

∫ t

a
exp(−(t− τ)ew)dτ (11)

= c(α)
r

∑
s=0

(
r
s

)
qr−s

D ewqD
∂s

∂ws

[
e−w(1− exp(−(t− a)ew))

]
.

For the last factor in each summand, we can again use the Leibniz rule and find

∂s

∂ws

[
e−w(1− exp(−(t− a)ew))

]
=

s

∑
σ=1

(
s
σ

)
(−1)s−σe−w ∂σ

∂wσ
exp(−(t− a)ew) (12)

+ (−1)se−w(1− exp(−(t− a)ew))

=
s

∑
σ=1

(
s
σ

)
(−1)s−σ Jσ(w) + (−1)s J0(w)

with
J0(w) = e−w(1− exp(−(t− a)ew))
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and
Jσ(w) = e−w ∂σ

∂wσ
exp(−(t− a)ew) (σ = 1, 2, 3, . . .).

It is then immediately clear that

|J0(w)| ≤ e−w for all w,

so
lim

w→∞
ew|J0(w)| ≤ 1. (13)

Furthermore, by de l’Hospital’s rule,

lim
w→−∞

J0(w) = t− a.

Together with the fact that J0(w) is monotonically decreasing in w, this shows that

|J0(w)| ≤ T for all w. (14)

Moreover, a straightforward mathematical induction yields for σ = 1, 2, 3, . . . that there
exist polynomials πσ−1 of degree σ− 1 such that

Jσ(w) = exp(−(t− a)ew)πσ−1(ew).

Denoting the polynomials πσ−1 by πσ−1(z) = ∑σ−1
ρ=0 ψρzρ, it can also be seen via the

induction process that the coefficients ψρ depend on t− a in a continuous way and so they
may be bounded in absolute value independently of t. Hence, we conclude

Jσ(w) = exp(−(t− a)ew)
σ−1

∑
ρ=0

ψρeρw =
σ−1

∑
ρ=0

ψρ exp(ρw− (t− a)ew).

Thus,

lim
w→−∞

|Jσ(w)| ≤ lim
w→−∞

σ−1

∑
ρ=0
|ψρ| exp(ρw− (t− a)ew) = |ψ0| (15)

and

lim
w→∞

ew|Jσ(w)| ≤ lim
w→∞

σ−1

∑
ρ=0
|ψρ| exp((ρ + 1)w− (t− a)ew) = 0 (16)

because (since we only need to deal with those values of t for which t > a) the argument of
each of the exponential functions is less than −2w for sufficiently large w. Plugging (13)
and (16) into (12), we then derive

∂s

∂ws

[
e−w(1− exp(−(t− a)ew))

]
= O(e−w) for w→ ∞,

and inserting (14) and (15) into (12), we find

∂s

∂ws

[
e−w(1− exp(−(t− a)ew))

]
= O(1) for w→ −∞.

The two claims of the Lemma then follow upon combining these two relations, both of
which evidently hold uniformly for all admissible values of t and α, with Equation (11) and
the observation that c(α) = c̃ · | sin απ| with some constant c̃ ∈ R.

Remark 2. Clearly, the bounds of Lemma 2 imply the slightly simpler relationships

∂rφD

∂wr (w, t) = O(ew(qD−1)) for w→ ∞
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and
∂rφD

∂wr (w, t) = O(ewqD) for w→ −∞

uniformly for all t ∈ [a, a + T] and all α ∈ (m− 1, m) that, however, provide weaker bounds than
Lemma 2 itself if α is close to an integer.

Proof of Lemma 1. We begin by noting that φD(·, t) ∈ C∞(R) (this is an immediate conse-
quence of the representation (9); see also ([2], Theorem 1(d))). Therefore, it follows from
Equation (4) that φ̂(·, t) ∈ C∞[0, ∞). Moreover, defining the function κr for r ∈ N0 on
[0, ∞) by

κr(w) = e−wwr/2 ∂rφ̂

∂wr (w, t),

we can see by definition of φ̂, cf. Equation (4), that κr ∈ C[0, ∞). In addition, by the Leibniz
formula we conclude

κr(w) = e−wwr/2
r

∑
s=0

(
r
s

)
ew ∂s

∂ws

[
1

qD
φD(−w/qD, t) +

1
1− qD

φD(w/(1− qD), t)
]

= wr/2
r

∑
s=0

(
r
s

)[
(−1)s

qs+1
D

∂s

∂us φD(u, t)|u=−w/qD
+

1
(1− qD)s+1

∂s

∂us φD(u, t)|u=w/(1−qD)

]
.

An application of Lemma 2 then tells us that, for arbitrary r ∈ N and w→ ∞,

|κr(w)| ≤ wr/2c| sin απ|
r

∑
s=0

(
r
s

)[
1

qs+1
D

e−w +
1

(1− qD)s+1 e−w

]

≤ c| sin απ|wr/2e−w
r

∑
s=0

(
r
s

)[
1

qs+1
D

+
1

(1− qD)s+1

]

= c| sin απ|
[
(qD + 1)r

qr+1
D

+
(2− qD)

r

(1− qD)r+1

]
wr/2e−w (17)

with some constant c that is independent of t and α. Therefore, κr ∈ L1[0, ∞) for all r ∈ N,
so we may invoke ([20], Theorem 1) with any such r, and the claim of Lemma 1 follows.

Remark 3. An inspection of the proof of Lemma 1 reveals that the implied constant in the O-term of
the final estimate cannot be bounded uniformly for all α ∈ (m− 1, m). This is due to the presence of
the positive powers of qD and (1− qD) in the denominators of the right-hand side of Equation (17)
and the fact that qD tends to zero for α → m− 1 and that 1− qD tends to zero for α → m. The
factor | sin απ| on the right-hand side of Equation (17) (that originates from the bounds of Lemma 2
in its present form) can only compensate a first power of these expressions but not a higher one.
Whether or not a uniform bound can be obtained with a more sophisticated estimation technique
remains an open question. The uniformity of the bound with respect to n is no problem though.

For the other component of the total error, we may also derive a bound. We assume
here that the backward Euler formula is chosen as the numerical solver for the initial
value problems.

Lemma 3. Assume that the grid {tn : n = 0, 1, . . . , N} is uniform, i.e., that tn = a + nh with
h = T/N. If y ∈ Cdαe+1[a, a + T] and the differential equations are solved by means of the
backward Euler method, then

|RODE
α,K,n(y)| ≤ C(K)tnh ≤ C(K)Th
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with

C(K) =
| sin απ|

2π
exGLa

K,K qD/(1−qD)

×
(∥∥∥y(dαe+1)(t)

∥∥∥
L∞ [a,a+T]

+ 2exGLa
K,K /(1−qD)

∥∥∥y(dαe)(t)
∥∥∥

L∞ [a,a+T]

)
.

Proof. According to Equations (3) and (4), we need to solve the differential equation in
Equation (2) for w ∈W− ∪W+ where

W− = {−xGLa
k,K /qD : k = 1, 2, . . . , K} (18)

and
W+ = {xGLa

k,K /(1− qD) : k = 1, 2, . . . , K}. (19)

Let us introduce the notation

f (t, z) = −ewz + (−1)bαc
sin απ

π
ewqD y(dαe)(t),

so that the differential equation in question takes the form

∂φD

∂t
(w, t) = f (t, φD(w, t)).

For any w ∈ W+ ∪W−, we have −ew ≤ − exp(−xGLa
K,K /qD) and so, for all z1, z2 ∈ R, we

can see that

( f (t, z1)− f (t, z2))(z1 − z2) = −ew(z1 − z2)
2 ≤ − exp(−xGLa

K,K /qD) · (z1 − z2)
2. (20)

Therefore, in the terminology of ([21], Definition 8.58), the initial value problem satisfies
an upper Lipschitz condition with constant − exp(−xGLa

K,K /qD) < 0, and hence the initial
value problem is dissipative.

This property allows us to estimate the local truncation error of the backward Euler
method in the following essentially standard way: By our smoothness assumption on the
function y, a Taylor expansion shows that the local truncation error in the n-th step has
the form

δn = h( f (tn, φD(w, tn))− f (tn, φD,n(w))) +
1
2

h2 d
dt

f (t, φD(w, t))|t=ξ

where φD,n(w) is the approximation for φD(w, tn) (so that δn = φD(w, tn)− φD,n(w)) and
ξ ∈ [tn−1, tn]. Hence,(

δn −
1
2

h2 d
dt

f (t, φD(w, t))|t=ξ

)
δn = h( f (tn, φD(w, tn))− f (tn, φD,n(w)))δn

≤ −h exp(−xGLa
K,K /qD)δ

2
n

in view of Equation (20). A rearrangement of terms then yields

δ2
n(1 + h exp(−xGLa

K,K /qD)) ≤
1
2

h2 d
dt

f (t, φD(w, t))|t=ξ
· δn.

Evidently, the left-hand side of this inequality is nonnegative, and so the right-hand side
must be nonnegative too. Hence, we may replace both sides of the inequality by their
respective absolute values without changing anything. Having done that, we may divide
both sides by |δn| to obtain

|δn|(1 + h exp(−xGLa
K,K /qD)) ≤

1
2

h2
∣∣∣∣ d
dt

f (t, φD(w, t))|t=ξ

∣∣∣∣. (21)
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In view of the chain rule, the concrete structure of the function f and the differential
equation under consideration, we have∣∣∣∣ d

dt
f (t, φD(w, t))

∣∣∣∣ ≤ ∣∣∣∣∂ f
∂t

(t, φD(w, t))
∣∣∣∣+ ∣∣∣∣∂ f

∂z
(t, φD(w, t)) · ∂φD

∂t
(w, t)

∣∣∣∣
≤ | sin απ|

π
ewqD

∣∣∣y(dαe+1)(t)
∣∣∣+ ew| f (t, φD(w, t))|.

Using the explicit representation of φD given in Equation (9), it can be shown that the last
expression in this inequality satisfies

| f (t, φD(w, t))| ≤ 2ewqD
| sin απ|

π

∣∣∣y(dαe)(t)∣∣∣.
Thus, we can continue the estimation of Equation (21) as

|δn|(1 + h exp(−xGLa
K,K /qD))

≤ 1
2

h2 | sin απ|
π

ewqD

(∥∥∥y(dαe+1)(t)
∥∥∥

L∞ [a,a+T]
+ 2ew

∥∥∥y(dαe)(t)
∥∥∥

L∞ [a,a+T]

)
≤ 1

2
h2 | sin απ|

π
exGLa

K,K qD/(1−qD)

×
(∥∥∥y(dαe+1)(t)

∥∥∥
L∞ [a,a+T]

+ 2exGLa
K,K /(1−qD)

∥∥∥y(dαe)(t)
∥∥∥

L∞ [a,a+T]

)
.

Since the second factor on the left-hand side is greater than 1, we deduce

|δn| ≤
1
2

h2 | sin απ|
π

exGLa
K,K qD/(1−qD) (22)

×
(∥∥∥y(dαe+1)(t)

∥∥∥
L∞ [a,a+T]

+ 2exGLa
K,K /(1−qD)

∥∥∥y(dαe)(t)
∥∥∥

L∞ [a,a+T]

)
.

for all admissible values of the parameters.
This estimate, together with the dissipativity of the differential equation, allows us to

derive our claim from ([21], Theorem 8.68).

Thus, combining Lemmas 1 and 3 with the fact that

xGLa
K,K < 4K + 2

(cf. [22], Equation (6.32.2)), we obtain the following overall error estimate:

Theorem 1. If y ∈ Cdαe+1[a, a + T], if the grid {tn : n = 0, 1, . . . , N} is uniform and if the
differential equations are solved using the backward Euler method, then, for all p > 0,

max
n=1,2,...,N

|Rα,K,n(y)| = O(K−p) + O
(

h · exp
(

1 + qD

1− qD
(4K + 2)

))
as K → ∞ and/or N → ∞, where h = T/N.

Remark 4. If the backward Euler method for solving the differential Equation (2) for w ∈W− ∪W+

is replaced by the trapezoidal method, a similar analysis may be performed. It is then possible to
replace the factor h in the error estimate by h2, reflecting the higher order of the trapezoidal scheme,
but this requires even stronger differentiability assumptions on the function y.
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4. Comments and Further Remarks

The results indicated above give rise to a number of observations that raise new
questions and indicate some directions for additional research work. We intend to address
these issues in the future.

4.1. The Stiffness of the Differential Equation for the Integrand

A short look at the differential equation in the initial value problem (2) reveals that
it is an inhomogeneous linear differential equation with constant coefficients (note that
it is a dfferential equation with respect to the variable t, so the value w that arises in the
coefficient of φD on the right-hand side is a constant for any given differential equation of
this form). The Lipschitz constant of the function on its right-hand side is ew with some
w ∈ W− ∪W+ (cf. Equations (18) and (19)). Since xk,K > 0 for all k and qD ∈ (0, 1), it
is clear that W− ⊂ (−∞, 0), and so ew ∈ (0, 1) for w ∈ W−. Therefore, the differential
equations associated to these values of w have small Lipschitz constants and thus do not
exhibit any stiffness which, in turn, means that they do not pose significant challenges for
the numerical solvers.

For the case w ∈ W+, however, the situation is completely different. Here, we en-
counter Lipschitz constants of up to LK,+ = exp(xGLa

K,K /(1− qD)). Bearing in mind the well
known result ([22], Equation (6.32.8)) that

xGLa
K,K = 4K(1 + o(1)) as K → ∞,

it is clear that this Lipschitz constant may be an extremely large number if qD is close to 1
(i.e., if α = A− ε with some A ∈ N and a positive number ε close to 0) or if K is large.
Therefore, these differential equations may be extremely stiff and hence difficult to handle
numerically. This, in fact, also explains why one should only use A-stable solvers for the
differential equation.

4.2. The Error Bounds for the ODE Solver

The error estimates of Lemma 3 and hence also of Theorem 1 indicate that the error
of the ODE solver depends on the maximum of the Lipschitz constants of the differential
equations under consideration and hence, in view of the observation from Section 4.1,
on the number K of quadrature nodes or, more precisely, on the location of the largest
node xGLa

K,K of the quadrature formula in use. Although this is only an upper bound that
in fact may drastically overestimate the true error ([23], p. 7), it nevertheless clarifies the
importance of keeping the value xGLa

K,K as small as possible.

4.3. Choice of the Quadrature Formula

From the results of Mastroianni and Monegato [24] one can conclude that it might
be useful to modify the quadrature formula in use in our algorithm. To be precise, they
suggest truncating the summation in Equation (5) prematurely, i.e., letting the summation
index k run only from 1 to some number K∗ with K∗ < K. This concept has two obvious
advantages, namely, it reduces the computational cost and it improves the approximation
quality of the ODE solver (due to the fact that the largest nodes of the quadrature formula,
i.e., the nodes of which the associated differential equations have the right-hand sides
with the largest Lipschitz constants and are thus most difficult so solve accurately—cf.
Section 4.2—are left out). Intuitively, one is likely led into the belief that one has to pay
for this improvement on the ODE solver component that this approach generates in terms
of a loss of accuracy on the numerical integration component. It has been shown in [24],
however, that, in reality, the convergence rate of the quadrature formula actually becomes
better, at least when the number K∗ is chosen in a proper way.
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4.4. The Smoothness of the Function y

The assumptions of Lemma 3 are relatively strong in the sense that they require some
degree of smoothness of the function y whose fractional derivative we want to compute. If
an algorithm of the type under consideration is to be used in the context of numerically
solving fractional initial value problems of the form

Dα
a y(t) = f (t, y(t)), y(a) = y0 (23)

with some α ∈ (0, 1), it is well known ([3], Theorem 6.27) that these smoothness properties
can only be expected to be present in rare and exceptional situations. If the function is less
smooth, then the convergence order of Lemma 3 and Theorem 1 cannot be achieved. This
expectation was confirmed by the numerical experiments in [2] for this particular algorithm
and in [25] for a different algorithm based on the same fundamental principle (i.e., on
diffusive representations). A precise estimation of the convergence behaviour under less
restrictive (and hence more realistic, in the context of solutions to fractional differential
equations) conditions remains a topic for future research.

4.5. Diffusive Representations for Fractional Integrals

As a possible remedy for the problem discussed in Section 4.4, one may rewrite the
given initial value problem (23) in the equivalent form ([3], Lemma 6.2)

y(t) = y0 + Jα
a [ f (·, y(·))](t)

where Jα
a is the Riemann–Liouville integral operator of order α with starting point a,

find a diffusive representation analog to (1) for this integral operator and proceed in a
corresponding manner. It is conceivable that the functions needing to be approximated
in this approach possess more favorable smoothness properties, thus possibly leading to
better convergence properties of the ODE solver.

4.6. The Discretization of the Interval [a, a + T]

In the error analysis of Theorem 1, we had assumed a uniform discretization of the
interval [a, a + T] on which the fractional derivative of y was to be computed. However,
as indicated above, the basic construction principle of our approach actually admits a
completely arbitrary discretization a = t0 < t1 < t2 < · · · < tN = a + T. In such a case, the
methods applied in the proof of Theorem 1 can still be applied and the same result may be
obtained, wherein the parameter h must then be interpreted as h = maxn=1,2,...,N(tn− tn−1).

If one chooses a graded mesh of the form tn = a + (n/N)µT with a mesh grading
coefficient µ > 0 (most commonly actually with µ ≥ 1), then we conjecture that it may be
possible to obtain an error bound of the form given in Theorem 1 under weaker smoothness
conditions on the function y.

5. Conclusions

In [2], a new algorithm for the approximate calculation of fractional derivatives of Ca-
puto’s type has been developed. The algorithm is based on a novel diffusive representation
of such operators. By construction, with respect to run time and memory requirements
the method described in [2] behaves in the same way as other methods based on diffusive
representations, i.e., in order to compute the fractional derivative at N points, the com-
putational complexity is O(N) and the memory requirements are O(1). This is optimal
and, in particular, significantly smaller than the corresponding requirements of traditional
methods which are not based on diffusive representations.

The main difference between the approach of [2] and other diffusive-representation-
based schemes is that, also by construction, the numerical integration phase of the algorithm
has been specifically designed in a way that allows to invoke traditional well understood,
fast and highly accurate quadrature methods. There is no need to use ad hoc quadra-
ture methods with many numerical parameters whose behaviour is hardly understood.
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Rather, the only parameters of the algorithm that have an influence on the error are the
discretization grid and the number of quadrature nodes. The simplicity of this structure has
enabled us in this paper to provide a comprehensive error analysis which clearly exhibits
the influence of each parameter on the accuracy of the final result and which is much more
complete than the error analysis that has been conducted for many other methods based
on diffusive representations.

Combining the new error analysis developed here with the numerical results shown
in [2], we can conclude that the algorithm described in Equation (5)—which is based on the
new diffusive representation, comprising Equations (1) and (2)—provides a promising tool
for the approximate calculation of Caputo-type fractional derivatives and that, as such, it is
also a good candidate to be a fundamental building block in numerical schemes for solving
fractional differential equations.
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