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Abstract: Recently, a new optimizer, called the Aquila Optimizer (AO), was developed to solve
different optimization problems. Although the AO has a significant performance in various problems,
like other optimization algorithms, the AO suffers from certain limitations in its search mechanism,
such as local optima stagnation and convergence speed. This is a general problem that faces almost
all optimization problems, which can be solved by enhancing the search process of an optimizer
using an assistant search tool, such as using hybridizing with another optimizer or applying other
search techniques to boost the search capability of an optimizer. Following this concept to address
this critical problem, in this paper, we present an alternative version of the AO to alleviate the
shortcomings of the traditional one. The main idea of the improved AO (IAO) is to use the search
strategy of the Whale Optimization Algorithm (WOA) to boost the search process of the AO. Thus,
the IAO benefits from the advantages of the AO and WOA, and it avoids the limitations of the local
search as well as losing solutions diversity through the search process. Moreover, we apply the
developed IAO optimization algorithm as a feature selection technique using different benchmark
functions. More so, it is tested with extensive experimental comparisons to the traditional AO and
WOA algorithms, as well as several well-known optimizers used as feature selection techniques, like
the particle swarm optimization (PSO), differential evaluation (DE), mouth flame optimizer (MFO),
firefly algorithm, and genetic algorithm (GA). The outcomes confirmed that the using of the WOA
operators has a significant impact on the AO performance. Thus the combined IAO obtained better
results compared to other optimizers.

Keywords: feature selection; the Cox proportional-hazards model; Whale Optimization Algorithm;
the Aquila Optimizer
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1. Introduction

Data mining is an unavoidable stage in extracting knowledge and data gained from
data mining, employed in various sectors, including industrial and medical applications [1].
Recently, there has been a growth in the number of gathered and retained features in
databases, though not all of them are valuable for data analysis; therefore, some of them
are utterly useless or unnecessary. These traits, therefore, have no utility in the information
extraction, but they mainly enhance the complexity and incompleteness of the outcomes.
As a result, feature selection aids in reducing the dimensionality of data prior to data
processing [2]. There are n features in a vast database with numerous features to manage.
The computation cost to assess all the features is exponential (O(2n)), making it essentially
unattainable. As a result, feature selection techniques serve as the foundation for data
mining, allowing beneficial characteristics to be retained for further learning tasks while dis-
carding the most irrelevant and less significant ones. In reality, feature selection approaches
disregard unimportant features, allowing the learning process to be more successful [3]. It
has also been demonstrated that feature selection improves the classification performance
of data mining algorithms such as the KNN classifier.

Mainly the three techniques to feature selection are the filter methods, embedded
methods, and wrapper approaches [4]. For filter methods, the selected features can be
filtered depending on the general properties of the used datasets (i.e., known metrics, for
example, correlation). Those methods can be implemented without predictive models.
Filter methods are fast, but they face some problems in case of avoiding overfitting, and they
may fail in selecting the best features. In contrast, the wrapper methods exist as wrappers
around the predictive models, and they employ the predictive models to select the best
features. The main drawbacks of those methods are their expensive computation, but they
produce better performance. In the case of embedded, the process of selecting features is
embedded in the learning model. Embedded models are computationally expensive than
wrapper methods, but they can be considered better from the aspects of overfitting.

The Catfish BPSO presented in this work is a wrapper approach. A vast number of
chosen features for many pattern classification issues does not necessarily result in an
excellent accuracy rate. In some instances, the effectiveness of algorithms solely dedicated
to data classification speed and predictive value can reduce even though features may be
unimportant or confusing, or are due to positive correlations. During the learning stage,
these characteristics might have a detrimental influence on the categorization process.
Ideally, the feature selection approach decreases the cost of feature assessment while
increasing classifier performance and quality. Several techniques have traditionally been
used to choose features from training and testing data, including Arithmetic Optimization
Algorithm [5], Binary Butterfly Optimization [6], Aquila Optimizer [7], binary Gradient-
based Optimizer [8], Firefly Algorithm [9], Atomic Orbit Search [10], RUN Kutta optimizer
(RUN) [11], Colony Predation Algorithm (CPA) [12], Slime Mould Algorithm (SMA) [13],
Harris Hawk Optimization (HHO) [14], Hunger Games Search (HGS) [15], and others.

A feature selection approach by ant colony optimization is given in [16]. The approach
uses numerous rounds to select the best feature subset without utilizing any learning
techniques. Furthermore, the feature importance will be estimated using the correlation
among features, resulting in reducing repetition. The experimental findings on numerous
commonly used datasets demonstrate the proposed method’s efficiency and enhancements
over earlier comparable approaches. This paper provides a new machine learning technique
for high-dimensional data [17], which uses the Henry gas solubility optimization (HGSO)
method to pick key features and enhance classification performance. The suggested tech-
nique is assessed against well-established optimization algorithms using multiple datasets
with a broad feature size range, from tiny to large. Finally, the empirical research indicates
that the suggested method is significantly successful on low or high-dimensional data.

A new mixed ant colony optimization approach is presented in [18] for feature se-
lection utilizing a learning algorithm in this study. Choosing a subset of conspicuous
characteristics of decreased size is an essential part of this approach. The suggested method



Mathematics 2022, 10, 1273 3 of 17

employs a hybrid search methodology that combines the benefits of the filter and wrapper
techniques. The specifics of the comparison demonstrate that the presented process has a
surprising capacity to construct reduction subsets of prominent features while still giving
high classification performance.

In [19], a new feature selection technique using a mathematical framework of grasshop-
per interaction in discovering nutrition is suggested. The grasshopper optimization tech-
nique was modified to make it acceptable for a feature selection challenge. The proposed
strategy is augmented by statistical measures to remove redundant features with the most
interesting features during repetitions. Comparative trials show that the suggested ap-
proach is more effective than existing classification techniques. This work attempted to
increase the effect of text classification using the particle swarm optimizer [20]. Many
exploratory search strategies are conducted in this study by examining current accomplish-
ments of enhanced particle swarm optimizers and characteristics of traditional feature
selection methods. The basic model is chosen first, followed by two upgraded models based
on the structural inertia weight and steady restriction factor to optimize feature selection
approaches. The trial findings and significance tests reveal that the dynamically upgraded
model outperforms all others in text classification effectiveness and dimension reliability.

The work in [21] suggests a non-negative inter feature selection method with variable
graph restrictions to overcome the feature selection problem. In the presented model, linear
regression is used to design the original data environment into a low-dimensional space to
create the label matrix. The results demonstrate the efficiency of the suggested strategy on
ten real datasets compared to other comparative approaches. A novel binary version of the
grasshopper optimizer is presented and employed in [22] for the feature subset selection
challenge in this research. This suggested novel binary grasshopper optimizer is evaluated
and analyzed to five optimization algorithms employed in the feature selection issue. These
techniques have been developed and tested on different data sets of varying sizes. The
findings showed that the suggested strategy outperformed the other approaches examined.

The paper [23] provides a novel feature-selection search strategy for feature selection-
based intrusion detection systems (IDS) using the cuttlefish optimization algorithm. Be-
cause IDS deal with a vast quantity of data, one of their most important duties is maintain-
ing the highest quality of features that reflect the real data set while removing duplicate
and unnecessary characteristics. Compared to the results produced utilizing all features,
the feature subset derived via the proposed method provides a greater increasing security
and correctness rate with a reduced probability of detection.

Unfortunately, Several issues are not addressed in the research mentioned above [24].
To begin, all features are chosen at random with the same chance. As a result, the principal
features cannot be quickly taken for inclusion in the newly generated feature subset.
Moreover, the traditional feature selection techniques cannot adequately select the most
informative features. Thus, the improved optimization methods are too near to determine
the best relative features through an efficient search process. These methods significantly
reduce the efficiency of searching for the ideal feature subset.

Motivation and Contribution

To some extent, population-based optimization algorithms can prevent local optima
stagnation. It also has a high capacity to converge to the optima. One of the primary
motivations for this research is that there is no suitable optimizer for addressing all kinds
of problems, as given in No-Free-Lunch; hence the excellent version of any optimization
method on a set of problems does not guarantee a compelling performance on another
problems. To the aim to contribute, no one has yet used Aquila Optimizer using the leading
search operators of the Whale Optimization Algorithm to tackle feature selection in a
systematic manner. The authors selected the Whale Optimization Algorithm because of its
proven efficiency and superiority compared with numerous algorithms such as PSO, GA,
GWO, etc., in several optimization problems in different fields. Moreover, the logarithmic
spiral function of WOA is an attractive operator to enhance the AO phases to cover a major
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area in uncertain search space. This was the primary motivator for us to select the Aquila
Optimizer as the core of our work. This paper’s overarching focus is on providing new
binary variants of the Aquila Optimizer, called IAO, for wrapper feature selection. The IAO
enhanced the original search strategies of the Aquila Optimizer by using the main operators
of the Whale Optimization Algorithm. This modification enables the IAO to tackle the
main weaknesses of using a single search method by avoiding the local search problem and
losing the diversity of the solutions in the search stage. The suggested technique identifies
the best feature subset, which reduces feature subset size while increasing classification
performance. The proposed IAO is evaluated on benchmark problems in terms of fitness
values, the selected features number, and classification accuracy. The obtained results
showed that the IAO got promising outcomes compared to different feature selection
methods. Moreover, the IOA searchability is clearly observed in determining the best
relative subset of features.

The following parts of the paper are arranged as follows, Section 2 the Aquila Opti-
mizer and Whale Optimization Algorithm are described. Section 3 introduces the proposed
algorithm for feature selection. Section 4 shows experiments, results, and discussions.
Section 5, shows the conclusion and future work.

2. Background
2.1. The Aquila Optimizer (AO)

This subsection contains the basic formulation of the Aquila Optimizer (AO) [7]. To
catch its target, the AO algorithm often imitates Aquila’s social behaviour. The AO has
been adopted to solve various problems, such as time series forecasting [25], improving
intrusion detection system (IDS) [26], task scheduling [27], global optimization [28,29], and
others [30].

AO is a population-based optimization technique. It involves the formation of X with
N agents as in Equation (1).

Xij = r1 × (UBj − LBj) + LBj, j = [1, 2, 3, . . . , Dim], i = [1, 2, 3, . . . , N] (1)

where UBj and LBj denotes search space. r1 ∈ [0, 1]. Dim refers to the solution’s dimension.
The next phase in the AO technique is to either explore or exploit until the best solution

is identified. According to [7], there are two methods for exploitation and exploration. In
the exploration, the best agent Xb and the XM are used as:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (2)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, 3, . . . , Dim (3)

In Equation (2), the search is governed by
(

1−t
T

)
. T stands for the max genera-

tions number.
Meanwhile, the levy flight (Levy(D) is used in exploration phase to improve the ability

of the population to find the best solution. This process is formulated as:

Xi(t + 1) = Levy(D)× Xb(t) + XR(t) + (y− x) ∗ rand, (4)

Levy(D) = s× u× σ

|υ|
1
β

, σ =

Γ(β + 1)× sine(πβ
2 )

Γ( β+1
2 )× β× 2(

β−1
2 )

 (5)

where β and s are set to 0.01 and 1.5, respectively. υ and u are generated randomly.
XR represents a solution selected randomly from X. Furthermore, y and x denote two
parameters that are utilized to replicate the spiral shape:
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y = r× cos(θ), x = sin(θ)× r (6)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
, U = 0.005650 , ω = 0.0050 (7)

here r1 ∈ [0, 20] stands for random value.
The initial strategy employed in [7] to improve the agents in the exploitation phase,

comparable to exploration, is based on both Xb and XM, which is written as:

Xi(t + 1) = (Xb(t)− XM(t))× α− rnd + ((UB− LB)× rnd + LB)× δ (8)

where δ and α are exploitation parameters.
In the second exploitation approach, the position is updated by Levy, the quality

function QF, or Xb. The mathematical definition of this technique is as follows:

Xi(t + 1) = Xb(t)×QF− GX− G2 × Levy(D) + rnd× G1 (9)

GX = (X(t)× G1 × rnd)

QF(t) = t
2×rnd()−1
(1−T)2 (10)

where G2 is a parameter which updated using the following formula.

G2 = 2× (1− t
T
) (11)

In addition, the parameter G1 that is used to track the motion of the best solution is
updated as:

G1 = 2× rnd()− 1 (12)

where rnd represents a random value. Algorithm 1 lists the steps of the AO.

2.2. Whale Optimization Algorithm

WOA [31] is an optimization technique. Its mathematical formulation is based on
how well it does in hunting. The WOA uses a unique hunting approach that used by a
killer whale species known as the humpback whale, which is known as bubble-net feeding.
Each whale’s location indicates a solution that may be updated with respect to its attitude
toward attacking the prey; such position is denoted by the symbol Xb. Whales can use two
tactics to attack their prey [32]. The first strategy is known as encircling prey, in which the
humpback whale can locate the target and encircle it. The target prey is assumed to be the
best answer (Xb(t) by WOA. Once Xb(t) has been identified (found), the other whales will
attempt to update their positions to match Xb(t), as shown in Equations (13)–(15):

Disi = |B� Xb(t)− Xi(t)|, B = 2r (13)

Xi(t + 1) = Xb(t)− A� Disi (14)

In Equation (15), Disi stands for the distance between Xi(t) and Xb(t). A is a coefficient
vector and is calculated by the following equation:

A = 2a� r− a (15)

where r ∈ [0, 1]. Whereas the parameter a denotes a parameter that updated its value as:

a = a− t
a

tmax
(16)

where tmax stands for the number of generations.
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Algorithm 1 Aquila Optimizer (AO)

1: Input: dimension of each agent Dim,
2: Solutions number N,
3: Generations number T.
4: Form the initial population X.
5: t = t + 1
6: while t ≤ T do
7: Compute the fitness for Xi.
8: Select the best Xb(t)
9: for (i = 1, 2, ..., N) do

10: if t≤ ( 2
3 )×T then

11: if rand() > 0.50 then
12: Update the Xi by Equation (2).
13: else
14: Update the Xi by Equation (4).
15: end if
16: else
17: if rand() ≤ 0.50 then
18: Update the Xi by Equation (8).
19: else
20: Update Xi by Equation (9).
21: end if
22: end if
23: if Fit(X3(t + 1)) < Fit(X(t)) then
24: X(t) =(X3(t + 1))
25: if Fit(X3(t + 1)) < Fit(Xb(t)) then
26: Xb(t) =X3(t + 1)
27: end if
28: end if
29: end for
30: end while
31: Output: return (Xb).

The second strategy is bubble-net attacking which represents the exploitation phase
and it has two techniques: spiral updating position and shrinking encircling mechanism.
Reduce the a in Equation (15) to satisfy the shrinking encircling process. The distance
between Xi and Xb is calculated as follows using the spiral updating position mechanism:

X(t + 1) = Dis′ � ebl � cos(2πl) + Xb(t) (17)

In Equation (17), l is a value that stands for the shape from the logarithmic spiral. In
this regard, the whales can also swim around the Xb utilizing a spiral-shaped path as well
as a diminishing circle at the same time. As a result, the following equation, which is based
on combining (13)–(15) and Equation (17), can be used to improve the location.

X(t + 1) =

{
Xb(t)− A� Dis i f p ≥ 0.50
Dis′ � ebl � cos(2πl) + Xb(t) i f p < 0.50

. (18)

In Equation (18), p ∈ [0, 1] stands for probability used to control the updating mecha-
nism.

Furthermore, instead of using Xb, each whale’s position can be updated through
selecting arbitrary search whale, Xr, as shown in the equation below:

X(t + 1) = Xr − A� Dis (19)

Dis = |B� Xrand − X(t)| (20)
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Algorithm 2 provides the basic steps of WOA.

Algorithm 2 WOA

1: Input: The max iterations number tmax and the population size N.
2: Create a set of N random solutions (X).
3: Set t= 1.
4: Calculate each Xi’s fitness value (Fi).
5: Find the Xb value that corresponds to the best fitness value Fb.
6: for t = 1 : tmax do
7: while a > 0 do
8: for all xi ∈ X do
9: Update the value of p randomly as p = rand.

10: if p ≥ 0.5 then
11: To improve Xi, use Equation (17).
12: else
13: if | A |≥ 0.5 then
14: To improve Xi, use Equation (19).
15: else
16: To improve Xi, use Equation (13).
17: end if
18: end if
19: end for
20: Update the value of a.
21: end while
22: end for

3. Proposed Method

Herein, this section provides description on the IAO method. It utilizes the benefits of
the WOA to enhance the performance of the original version of the AO. In detail, the WOA
is used as a local search of the AO to raise its capability in solving different optimization
problems which adds more ability and flexibility to the IAO to explore and exploit the
search space as well as improve its diversity.

The structure of the IAO is illustrated in Figure 1. The IAO starts by declaring the
global parameters and generating the initial population using random distribution methods.
This population is evaluated to determine the best solution using the objective function.
Throughout the optimization process of the IAO, the expanded exploitation of the original
AO is improved using the spiral behavior of the WOA to update the solutions. In this
regard, the expanded exploitation equation of the AO is replaced by the spiral equation
of the WOA namely Equation (8), as in steps 30 to 36 in Algorithm 1, are updated using
the WOA Equation (17). Therefore, the exploitation phase of the IAO benefits from both
AO and WOA algorithms. Then, each solution is checked and updated by the objected
function then the best one is retained to the subsequent iteration. Such sequence is iterated
for all solutions till reaching stop condition, afterwards the best result within the population
are selected and saved. Finally, the final results are presented.

Furthermore, the IAO begins by declaring the parameters of both AO and WOA. Then
the AO generates a X [xi, i = 1, 2, . . . , xN] random binary population with size N and
dimension D. The population values are converted to binary values by Equation (22).

X =

{
1 i f xi ≥ 0.5
0 otherwise

(21)

Then, the initial objective function value is computed using the operators of the AO
whereas, the remaining values of the objective function are computed using the IAO
structure. This sequence is iterated till meeting stop condition. So, in the final step, the
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best results are presented as the output of the IAO. The formula Equation (22) is applied to
compute the objective function value:

f (xi(t)) = ξExi(t) + (1− ξ)(
|xi(t)|
|C| ) (22)

where Exi(t) denotes the error of the fitness function Equation (23), ξ ∈ [0, 1] balances the
error and the selected features number. The terms xi(t) and C denote the selected features
number and total feature numbers, respectively [5].

f it = h(Xi, t) = h0(t)exp[
p

∑
j=1

xijbj] (23)

where, Xi = (xi1, xi2, . . . ) denotes the predictor variable. h0(t) refers to the baseline hazard
rate function. h(Xi, t) refers to the hazard rate at time t for Xi.

Figure 1. Structure of the IAO.

Moreover, the complexity of the presented algorithm depends on the complexity AO
and WOA. So, it is O(N × (tmax × D)). Since OIAO = K1OAO + (N − K1)OWOA where
OAO is O(N × (tmax × D)). OWOA is O(N × (tmax × D)).
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4. Experiment and Results

The use of regression modeling to investigate the effects of many factors on a response
is commonplace. In examining time-to-event data, the model of Cox proportional hazards
is widely applied. It is a model applied in medical studies to examine the association
between a patient’s survival time and other predictor variables.

Creating a model of Cox proportional hazards that includes all of the predictors is
undesirable when the number of predictors is enormous since it gives low prediction
accuracy and is challenging to comprehend [33]. Variable selection has become a significant
emphasis on Cox proportional-hazards modeling due to these factors.

Four biological benchmark datasets are used in this study to evaluate the modified
variant of AO’s (IAO) performance. Diffuse large B-cell lymphoma (DLBC2002) [34]
comprises the samples of 240 lymphoma patients, each of one has 7399 gene expression
measurements. The Lung cancer (Lung-cancer) [35] is the second dataset. This dataset
comprises information on 86 lung cancer patients, each one had their gene expression
tested 7129 times. The Dutch Breast Cancer (Duch Breasst) is the third dataset [36] contains
295 breast cancer patients’ information. The data for each patient consists of 4919 gene
expression measurements. The cytogenetically normal acute myeloid leukaemia dataset
(AML-full) is the fourth collection [37]. This dataset contained information from 165 prob-
lems. A total of 6283 gene expression measurements are included in the data for each prob.
The survival time, whether censored or not, is the response variable in both datasets.

The improved version of AO has been compared with a set of more popular optimiz-
ers, including the standard AO algorithm, firefly algorithm (Firefly), genetic algorithm
(GA), salp swarm algorithm, indicated as SSA, particle swarm optimizer (PSO), in addi-
tion to differential evolution (DE), WOA and finally moth-flame optimizer (MFO). The
parameters of those algorithms are listed in Table 1. All optimizers, as mentioned earlier,
are implemented over 30 runs with 100 iteration numbers besides to 50 search agents on
Matlab“2020a” platform for unbiased comparison. Several statistical metrics have been
computed for providing a detailed analysis. The computed metrics of the Tables 2–6 are the
average, worst (Max) (Equation (25)) and best (Min) (Equation (24)) fitness function ( f it)
values (Equation (23)), moreover, the standard deviation (Equation (26)) and the selected
features number are shown below:

Min f it = min
1≤i≤r

f it1 (24)

Max f it = max
1≤i≤r

f iti (25)

Standard deviation =

√√√√ 1
N

N

∑
i=1
| f iti − µ|2 (26)

where, µ refers to the fitness function ( f it). N refers to the sample number.
The average of the fitness function, Max, and Min values of the log-likelihood were

reported in Tables 1–5, respectively, to highlight the performance that our IAO and other
employed algorithms can achieve on the four datasets (in all Tables the best values are
in boldface). According to Tables 1–3, the suggested algorithm, IAO, outperformed the
different algorithms for all datasets as it has the least fitness function values. The reported
data in Table 4 affirms the highly consistent performance of the proposed optimizer com-
pared with the AO, Firefly, SSA, GA, PSO, DE, and MFO. The WOA can be located at the
section rank after the proposed IAO in handling the first and fourth datasets (DLBC2002,
AML-full). In contrast, WOA is not efficient for the Lung-cancer dataset. Moreover, WOA
has a remarkable deviation from the IAO for the Duch Breast dataset. Accordingly, the
IAO can be considered a successful technique across all datasets. For the selected features
number of Table 5, the IAO chose fewer genes than the other algorithms. The MFO is the
worst technique for handling these datasets as it picked the highest number of genes.
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Table 1. Parameter settings.

Algorithm Parameters Values

AO δ = 0.1, α = 0.1
Firefly β = 0.2, α = 0.5, γ = 1
SSA C3 ∈ [0, 1], C2 ∈ [0, 1]
GA γ = 0.20, pc = 0.80, mu = 0.020, pm = 0.30, β = 8
PSO wDamp = 0.990, w = 1, C1 = 1, C2 = 2
DE pCR = 0.20, βmax = 0.80, βmin = 0.20
WOA a = [0, 2], l = [−1, 1], b = 1
MFO a =∈ [−2− 1], b = 1
IAO δ = 0.1, α = 0.1, a = [0, 2], b = 1, l = [−1, 1]

For measuring the accumulated performance of the IOA, the mean values of average,
Min, Max, standard deviation, and the features number over the four datasets are depicted
in Figures 2–6. The displayed figures are a shred of evidence of the efficiency and superiority
of the IAO and its success in handling the four datasets as it has the minor average, Min,
Max, standard deviation, and the selected features number with high performance. These
observations are primarily due to the created algorithm’s ability to adjust for the limitations
of the typical AO algorithm. In addition, Figure 7 illustrates the average of the computation
time overall datasets. From this figure the IAO showed accepted time compared to the
other methods.

Table 2. Numerical results of the fitness functions.

DS IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 −233.043 −232.904 −231.880 −229.445 −230.639 −231.227 −230.936 −231.989 −230.212
Lung-cancer −62.913 −58.9001 −58.171 −57.963 −58.223 −58.271 −58.451 −61.276 −57.297
Duch Breasst −307.687 −301.913 −305.818 −303.578 −304.606 −305.465 −305.285 −305.154 −301.364
AML-full −93.533 −88.8636 −88.822 −88.304 −88.416 −88.759 −88.737 −92.010 −88.075

Table 3. Numerical results of the Max.

DS IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 −230.672 −229.409 −230.672 −227.704 −228.858 −229.427 −229.427 −230.671 −227.704
Lung-cancer −58.087 −56.1811 −56.463 −55.993 −56.463 −56.463 −56.662 −57.290 −55.969
Duch Breasst −303.420 −298.355 −301.943 −300.563 −299.440 −301.887 −301.979 −300.589 −297.438
AML-full −91.573 −86.986 −86.808 −87.063 −87.214 −87.655 −87.451 −90.867 −87.107

Table 4. Numerical results of the Min.

DS IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 −233.409 −233.343 −233.342 −231.866 −233.310 −233.409 −233.409 −232.713 −232.010
Lung-cancer −63.935 −63.935 −63.935 −63.935 −63.935 −63.935 −63.935 −63.935 −60.872
Duch Breasst −314.193 −306.826 −314.193 −314.193 −311.276 −314.184 −314.193 −311.264 −311.276
AML-full −93.838 −90.8613 −91.573 −90.849 −90.849 −90.849 −91.573 −93.109 −89.601

Table 5. Numerical results of the standard deviation.

DS IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 0.77164 1.0321 0.84894 1.25801 1.28674 1.21517 1.24301 0.80291 1.25666
Lung-cancer 1.33654 2.14285 2.34839 2.44722 2.32250 2.28789 2.19259 2.49236 1.40572
Duch Breasst 2.46672 1.37495 3.53870 4.31523 3.63534 3.90358 3.94957 3.23130 4.18625
AML-full 0.67068 1.17163 1.69382 1.32353 1.21093 1.21578 1.47812 0.92584 0.95712
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Table 6. Numerical results of the selected features ratio.

DS IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 0.3560 0.43878 0.4997 0.4996 0.4995 0.4982 0.4996 0.3914 0.5348
Lung-cancer 0.3368 0.43412 0.4980 0.4987 0.4970 0.4962 0.4982 0.3824 0.5288
Duch Breasst 0.4042 0.41995 0.4972 0.5010 0.4953 0.4993 0.5018 0.4660 0.5318
AML-full 0.4152 0.44055 0.5005 0.5009 0.5029 0.5030 0.4984 0.4637 0.5253

Figure 2. Average computed from the fitness values over the datasets.

Figure 3. Average computed from the MAX fitness values over the datasets.

The Friedman test is applied to check the statistical significance of the experiment’s
methods for further analysis. It is one of the most important statistical tests that indicate
the significant differences between the compared algorithms [38,39]. Table 7 ranks all
methods in all datasets utilizing the Friedman test. From Table 7, we can conclude that the
IAO was ranked first in DLBC2002, Lung-cancer, and AML-full datasets whereas, it was
ranked second in Duch Breasst after the Firefly method. Moreover, the IAO showed good
performance as in Figures 8–11 which illustrate the boxplot for all datasets.
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Figure 4. Average computed from the MIN fitness values over the datasets.

Figure 5. Average accuracy measure over all datasets.

Figure 6. Average of the selected features for all datasets.
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Figure 7. Average computation time.

Table 7. Results of the Friedman for all datasets.

IAO AO Firefly SSA GA PSO DE WOA MFO

DLBC2002 2.438 3.750 3.438 8.563 6.375 4.500 5.563 3.438 6.938
Lung-cancer 2.250 5.750 5.375 6.563 5.000 5.125 4.313 2.375 8.250
Duch Breasst 3.188 7.000 3.125 6.125 4.813 3.938 3.563 4.938 8.313
AML-full 1.000 4.500 5.125 6.813 6.500 5.375 5.375 2.375 7.938

Figure 8. Boxplot for DLBC2002 dataset.
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Figure 9. Boxplot for Lung-cancer dataset.

Figure 10. Boxplot for Duch Breasst dataset.

To analyse the exploration and exploitation of the IAO and the original version of
AO, their behaviours with the studied datasets are illustrated in Figure 12. The curves of
the Figure 12 illustrate the ratios of exploitation and exploration throughout the search
stages at the studied datasets for the IOA and standard AO. From these curves, it can be
observed that there is a balance between both curves of IAO throughout the search process.
The exploration stage raises in the first part of the optimization stage. The exploitation
is started after 10% of this process and working together with exploration with a nearly
equal ratio as indicated in the cases of DLBC2002, Duch Breast, and AML-full, while the
AO is still searching for adequate solutions. Hence the IAO achieves a successful trade-off
between the two phases.
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Figure 11. Boxplot for AML-full dataset.

(a) (b)

(c) (d)

Figure 12. Exploration and exploitation curves of the IAO and AO for all datasets. (a) DLBC2002.
(b) Lung-cancer. (c) Duch Breasst. (d) AML-full.

5. Advantages and Drawbacks

In this section, the attractive features and limitations of the proposed IAO can be
summed up in the following bullet points:

• The advantages of the proposed IAO are achieving a high balance between the explo-
ration and exploitation stages. The consistency and efficiency of the IAO are more
remarkable than the standard AO. Moreover, the IAO’s ability to reach the optimal
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solutions compared with the other competitors (Firefly, GA, SSA, PSO, DE, WOA,
and MFO).

• The main limitation of the proposed IAO is increasing the adjustable parameters of
the algorithm via using the operators of WOA. For solving this issue, the authors will
modify these parameters adaptively in future work.

6. Conclusions

The advances in optimization methods have been adopted to address different prob-
lems, including feature selection (FS). Therefore, this study proposed a novel version of
the Aquila optimizer (AO) to solve FS applications. The main idea of this improved, called
IAO is to boost the search performance of the original AO using the operators of the Whale
Optimization Algorithm (WOA). Thus, this new combination provides the proposed IAO
with a strong search ability to avoid local optima stagnation. We considered extensive
evaluation and comparisons to verify the quality of the suggested IAO. We used four medi-
cal datasets to test the IAO. The results reflected that the IAO performed better than the
versions of AO and WOA, as well as several well-known optimization methods, such as e
particle swarm optimizer, differential evaluation, mouth flame optimizer, firefly algorithm,
and genetic algorithm. In future work, the IAO will be evaluated in different fields for
example multi-objective optimization and parameter estimation.
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