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1. Introduction

Functions are the most important and fundamental concepts in almost all areas of
science, especially in mathematics. The functions are used as key research objects in
mathematics for modeling and solving many real world phenomena. There are numerous
important classes of functions, one of the most interesting classes of functions is the
class of convex functions [1–5]. This class of functions has several interesting properties
and due to such properties and its behavior with solving problems, it become a focus
point for the researchers [6–8]. This class of functions has been applied in many fields,
including engineering [9], statistics [10], optimization [11] economics [12], information
theory [13] and epidemiology [14], etc. Due to the huge importance of this class, it has been
generalized, improved, and expanded in diverse directions while utilizing its behavior and
properties [15]. In an elegant manner, convex function can be defined as:

Definition 1. A real valued function Ψ is said to be convex on [a, b], if the inequality

Ψ(ξ1γ + (1− ξ1)ζ) ≤ ξ1Ψ(γ) + (1− ξ1)Ψ(ζ) (1)

is valid, for all γ, ζ ∈ [a, b] and ξ1 ∈ [0, 1].
If for the aforesaid conditions, the inequality (1) is valid in the reverse direction, then the

function Ψ is said to be concave.

As a result of considerable applicability of the convex functions class, many important
generalizations of this class have been investigated such like P−convex, s−convex, coordi-
nate convex and quasi convex functions and many more. Among these generalizations of
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convex functions, one of them is the class of 4-convex functions. To give the definition of
4-convex function, first we present divided difference:

Consider the arbitrary function Ψ : [a, b] → R and let ζ0, ζ1, . . . , ζm be any distinct
points from [a, b], then the mth ordered divided difference of Ψ at the selected points is
defined recursively as:

[ζi]Ψ = Ψ(ζi), i = 1, 2, . . . , m,

[ζ0, ζ1, . . . , ζm]Ψ =
[ζ1, . . . , ζm]Ψ− [ζ0, . . . , ζm−1]Ψ

ζm − ζ0

and the 4th ordered divided difference is given by:

[ζ0, ζ1, ζ2, ζ3, ζ4]Ψ =
[ζ1, ζ2, ζ3, ζ4]Ψ− [ζ0, ζ1, ζ2, ζ3]Ψ

ζ4 − ζ0
.

Now, we give the definition of 4-convex function.

Definition 2 ([2]). A function Ψ : [a, b]→ R is said to be 4-convex, if the relation

[ζ0, ζ1, ζ2, ζ3, ζ4]Ψ ≥ 0 (2)

is valid for all distinct points ζ0, ζ1, ζ2, ζ3, ζ4 ∈ [a, b].
If the relation (2) is valid in the reverse sense with the mentioned conditions, then the function

Ψ is said to be 4-concave.

The following theorem provides a criteria for a function to be 4-convex.

Theorem 1 ([2]). Let Ψ : [a, b]→ R be any function such that Ψ
′′′′

exists. Then Ψ is a 4-convex if
and only if Ψ

′′′′ ≥ 0 on [a, b].

Due to the massive properties and consequences of convex functions, a lot of problems
have been solved and modeled in diverse fields of science with the help of this class of
functions [16–20]. It has been ascertained that, the convex functions played a very mean-
ingful performance in the field of mathematical inequalities [2,21–24]. There are many
consequential inequalities that have been established via convex functions, such as ma-
jorization [25], Favard’s [26], Hermaite–Hadamard inequalities [27] and many more [28–32].
Besides these inequalities, one of the most attractive inequalities for the class of convex
functions is the Jensen inequality [10]. This inequality is also of the great interest in the
sense that many classical inequalities can be deduced from it [10,33]. The formal form of
the Jensen inequality is verbalized in the next theorem:

Theorem 2. Assume that γi ≥ 0 and ζi ∈ [a, b] for each i ∈ {1, 2, · · · , m} such that
m
∑

i=1
γi > 0.

Further, suppose that the real valued function Ψ is convex on [a, b], then

Ψ

( m
∑

i=1
γiζi

m
∑

i=1
γi

)
≤

m
∑

i=1
γiΨ(ζi)

m
∑

i=1
γi

. (3)

The inequality (3) flips for the function Ψ to be concave on [a, b].

The integral variant of the Jensen inequality is stated in the following theorem.



Mathematics 2022, 10, 1274 3 of 19

Theorem 3. Let g1, g2 : [a, b] → [c, d] be any integrable functions such that g1(y) ≥ 0, for
y ∈ [a, b] with

∫ b
a g1(y)dy > 0. Also, assume that Ψ is a convex function on [c, d] and Ψ ◦ g2 is

an integrable, then

Ψ

(∫ b
a g1(y)g2(y)dy∫ b

a g1(y)dy

)
≤
∫ b

a g1(y)Ψ
(

g2(y)
)
dy∫ b

a g1(y)dy
. (4)

For the concave function Ψ, the inequality (4) holds in reverse direction.

The Jensen inequality has many applications in the several fields of science for example,
in information theory [10], economics [12], and statistics [34], etc. This inequality has also
been acquired for several other generalized classes of convex functions. Moreover, the
aforesaid inequality has also been refined [13], generalized [35] and improved [33] in many
ways by consuming its behavior and properties. In 1981, Slater presented a companion
inequality to the celebrated Jensen inequality, which is formally verbalized below:

Theorem 4 ([36]). Assume that γi ≥ 0 and ζi ∈ (a, b) for each i ∈ {1, 2, · · · , m} such that
m
∑

i=1
γi > 0. Also, let Ψ : (a, b)→ R be an increasing convex function and

m
∑

i=1
γiΨ

′
+(ζi) 6= 0. Then

m
∑

i=1
γiΨ(ζi)

m
∑

i=1
γi

≤ Ψ

( m
∑

i=1
γiζiΨ

′
+(ζi)

m
∑

i=1
γiΨ

′
+(ζi)

)
. (5)

In 1985, Pečarić relaxed the monotonicity condition of the function Ψ by assuming

that:

m
∑

i=1
γiζiΨ

′
+(ζi)

m
∑

i=1
γiΨ

′
+(ζi)

∈ (a, b) and obtained the following generalization of Slater’s inequality.

Theorem 5 ([37]). Assume that γi ≥ 0 and ζi ∈ (a, b) for each i ∈ {1, 2, · · · , m} such that
m
∑

i=1
γi > 0. Also, let the real valued function Ψ : (a, b) → R be convex,

m
∑

i=1
γiΨ

′
+(ζi) 6= 0 and

m
∑

i=1
γiζiΨ

′
+(ζi)

m
∑

i=1
γiΨ

′
+(ζi)

∈ (a, b). Then

m
∑

i=1
γiΨ(ζi)

m
∑

i=1
γi

≤ Ψ

( m
∑

i=1
γiζiΨ

′
+(ζi)

m
∑

i=1
γiΨ

′
+(ζi)

)
. (6)

By exploiting the behavior of Slater’s inequality and the properties of the convex
functions, various types of generalizations, extensions, refinements, and improvements
using different methods and approaches have been established. In addition, this inequality
has also been acquired for other generalized classes of convex functions. In 2006, Bakula
et al. [38] considered the classes of m and (α, m)−convex functions and acquired several sig-
nificant variants of Slater’s inequality. Furthermore, they also obatined variants of Jensen’s
inequality and more other cognate results for aforementioned classes of convex functions.
Bakula et al. [39] established a couple of general inequalities of the Jensen-Steffensen type
for the class of convex functions and then used these generalized inequalities to acquire
some variants of the Slater as well as Jensen-Steffensen inequalities as special cases. Adil
Khan and Pečarić [40] achieved a reversion and an improvement of Slater’s inequality
and also obtained some other related inequalities while taking differentiable functions.
In 2012, Dragomir [41] considered convex functions defined on general linear spaces and
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acquired some Slater’s type inequalities. In addition, applications of conserved inequal-
ities for f−divergence measures and norm inequalities are also provided. Delavar and
Dragomir [42] obtained some fundamental inequalities for the class of η−convex functions
and also inequalities related to the class of differentiable η−convex functions. Furthermore,
Jensen’s and Slater’s type and other related inequalities have also been derived for this
class of convex functions.

The main theme of this article is to establish some improvements of the Slater inequal-
ity via 4-convexity. The whole article is organized in the following way:

• In Section 2, we shall establish the improvements of the Slater inequality.
• In Section 3, we shall give several relations for the power means as consequences of

the main results.
• In Section 4, we shall present some applications of the obtained results in information

theory.
• In Section 5, we shall achieve some bounds for the Zipf–Mandelbrot entropy as

applications of the acquired results.

2. Improvements of Slater’s Inequality

In this section, we are going to establish improvements of the Slater inequality. The
required improvements shall be made possible by using the definition of convex function
and the renowned Jensen inequality for convex functions.

Now, we commence this section by stating a lemma that establishes an identity while
taking a twice differentiable function.

Lemma 1. Presume that yi ∈ (a, b), qi ≥ 0 for each i ∈ {1, 2, · · · , m} with
m
∑

i=1
qi > 0 and

Ψ : (a, b) → R is a function such that Ψ
′′

exists. In addition, let

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ
′ (yi)

∈ (a, b) and

m
∑

i=1
qiΨ

′
(yi) 6= 0. Then

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi) =
1

m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

×
∫ 1

0
tΨ
′′
(

tyi + (1− t)
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ

′(yi)

))
dt. (7)
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Proof. Without loss of generality, let yi 6=

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ
′ (yi)

for each i ∈ {1, 2, · · · , m}. Utilizing

the integration by parts rule, we have

1
m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2 ∫ 1

0
tΨ
′′
(

tyi + (1− t)
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ

′(yi)

))
dt

=
1

m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

×
[

t(
yi −

m
∑

i=1
qiyiΨ

′ (yi)

m
∑

i=1
qiΨ
′ (yi)

)Ψ
′
(

tyi + (1− t)
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ

′(yi)

))∣∣∣∣∣
1

0

− 1(
yi −

m
∑

i=1
qiyiΨ

′ (yi)

m
∑

i=1
qiΨ
′ (yi)

)
∫ 1

0
Ψ
′
(

tyi + (1− t)
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ

′(yi)

))
dt

]

=
1

m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2[
1(

yi −

m
∑

i=1
qiyiΨ

′ (yi)

m
∑

i=1
qiΨ
′ (yi)

)Ψ
′
(yi)

− 1(
yi −

m
∑

i=1
qiyiΨ

′ (yi)

m
∑

i=1
qiΨ
′ (yi)

)2
Ψ

(
tyi + (1− t)

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

))∣∣∣∣∣
1

0

]

= − 1
m
∑

i=1
qi

m

∑
i=1

qiΨ(yi) + Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
.

Clearly, which is equivalent to (7).

In the next theorem, we obtain an improvement for the Slater inequality by using the
definition of convex function.
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Theorem 6. Let all the hypotheses of Lemma 1 are valid. Moreover, if Ψ is 4-convex, then

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi)

≤ 1
m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2(2Ψ
′′
(yi) + Ψ

′′

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ
′ (yi)

)
6

)
. (8)

For the 4−concave function Ψ, the inequality (8) reverses its direction.

Proof. As a results of the fact that, the function Ψ is 4-convex, therefore utilizing the convex
function definition on the right side of (7), we acquire

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi) ≤
1

m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

×
[

Ψ
′′
(yi)

∫ 1

0
t2dt + Ψ

′′
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ

′(yi)

) ∫ 1

0
(t− t2)dt

]
. (9)

Now, evaluating the integrals in (9), we receive (8).

The integral form of (8) is stated in the coming theorem.

Theorem 7. Let g1, g2 : (a, b) → (c, d) be any integrable functions such that g1 ≥ 0 with∫ b
a g1(y)dy > 0 and Ψ : (c, d)→ R be a twice differentiable such that

∫ b
a g1(y)Ψ

′(
g2(y)

)
dy 6= 0

and
∫ b

a g1(y)g2(y)Ψ
′(

g2(y)
)

dy∫ b
a g1(y)Ψ

′(g2(y)
)

dy
∈ (c, d). If Ψ ◦ g2 and Ψ

′ ◦ g2 are integrable and Ψ is 4-convex, then

Ψ

(∫ b
a g1(y)g2(y)Ψ

′(
g2(y)

)
dy∫ b

a g1(y)Ψ
′(g2(y)

)
dy

)
− 1∫ b

a g1(y)dy

∫ b

a
g1(y)Ψ

(
g2(y)

)
dy

≤ 1∫ b
a g1(y)dy

∫ b

a
g1(y)

(
g2(y)−

∫ b
a g1(y)g2(y)Ψ

′(
g2(y)

)
dy∫ b

a g1(y)Ψ
′(g2(y)

)
dy

)2

×
(2Ψ

′′(
g2(y)

)
+ Ψ

′′
( ∫ b

a g1(y)g2(y)Ψ
′(

g2(y)
)

dy∫ b
a g1(y)Ψ

′(g2(y)
)

dy

)
6

)
dy. (10)

The relation (10) is true in reverse direction for the 4−concave function Ψ.

In the following theorem, we receive another improvement for the Slater inequality.
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Theorem 8. Assume that all the postulates of Theorem 6 are true, then

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi)

≥ 1

2
m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

Ψ
′′
(2yi +

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ
′ (yi)

3

)
. (11)

The inequality (11) is valid in contrary direction, if the function Ψ is 4−concave.

Proof. From (7), we have

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi) =
1

2
m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

×

∫ 1
0 tΨ

′′

(
tyi + (1− t)

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ
′ (yi)

))
dt

∫ 1
0 t dt

. (12)

From (12), we obtain the following inequality with the help of Jensen’s inequality

Ψ

( m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)
− 1

m
∑

i=1
qi

m

∑
i=1

qiΨ(yi) ≥
1

2
m
∑

i=1
qi

m

∑
i=1

qi

(
yi −

m
∑

i=1
qiyiΨ

′
(yi)

m
∑

i=1
qiΨ

′(yi)

)2

×Ψ
′′
(∫ 1

0 t
(

tyi + (1− t)
( m

∑
i=1

qiyiΨ
′
(yi)

m
∑

i=1
qiΨ
′ (yi)

))
dt

∫ 1
0 t dt

)
. (13)

Inequality (11) can easily be obtained by checking the integral on the right side of (13).

The analogous form of the inequality (11) is given in the below theorem.

Theorem 9. Assume that, all the hypotheses of Theorem 7 are true, then

Ψ

(∫ b
a g1(y)g2(y)Ψ

′(
g2(y)

)
dy∫ b

a g1(y)Ψ
′(g2(y)

)
dy

)
− 1∫ b

a g1(y)

∫ b

a
g1(y)Ψ

(
g2(y)

)
dy

≥ 1

2
∫ b

a g1(y)

∫ b

a
g1(y)

(
g2(y)−

∫ b
a g1(y)g2(y)Ψ

′(
g2(y)

)
dy∫ b

a g1(y)Ψ
′(g2(y)

)
dy

)2

×Ψ
′′
(2g2(y) +

∫ b
a g1(y)g2(y)Ψ

′(
g2(y)

)
dy∫ b

a g1(y)Ψ
′(g2(y)

)
dy

3

)
dy. (14)

If the function Ψ is 4−concave, then (14) is true in opposite sense.
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3. Applications for the Power Means

In the current section, some of the consequences of the established results will be
discussed in the form of inequalities for the notable power means. Here, we put some
particular 4-convex functions in the main results for the obtaining of intended relations of
the power means. Now, we initiate this with the definition of power mean.

Definition 3. Let m1 = (γ1, γ2, · · · , γm) and m2 = (ζ1, ζ2, · · · , ζm) be arbitrary positive
m−tuples and r be any real number. Then the power mean of order r is defined by:

Mr(m1, m2) =



(
m
∑

i=1
γiζ

r
i

) 1
r

, r 6= 0,

(
m
∏
i

ζ
γi
i

) 1
m
∑

i=1
γi , r = 0.

In the below corollary, we present some inequalities for the power means as a conse-
quence of Theorem 6.

Corollary 1. Presume that m1 = (γ1, γ2, · · · , γm), m2 = (ζ1, ζ2, · · · , ζm) are any positive
m−tuples and r, t are arbitrary non zero real numbers such that t < r, then the following statements
are true:
(i) If r > 0 such that 3r ≤ t or r ≤ t ≤ 2r or t < 0, then

Mt
t(m1, m2)−

(Mt
t(m1, m2)

m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

) t
r

≤ 1
m
∑

i=1
γi

m

∑
i=1

γi

(
ζr

i −
Mt

t(m1, m2)
m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

)2

×
(2ζt−2r

i +

(
Mt

t(m1,m2)
m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

) t
r−2

6

)
. (15)

(ii) If r < 0 such that 3r ≥ t or 2r ≤ t ≤ r or t > 0, then (15) holds.
(iii) If r > 0 such that 2r < t < 3r or r < 0 with 2r > t > 3r, then (15) holds in the opposite
direction.

Proof. (i) Consider the function Ψ(y) = y
t
r defined on (0, ∞). Then Ψ

′′′′
(y) = t

r
( t

r − 1
)( t

r −
2
)( t

r − 3
)
y

t
r−4, obviously Ψ

′′′′
> 0. Which substantiate the 4-convexity of the function Ψ on

(0, ∞) for the mentioned values of t and r. Therefore, utilizing (8) for Ψ(y) = y
t
r , qi = γi

and yi = ζr
i , we get (15).

(ii) For the specified values of r and t, the function Ψ(y) = y
t
r is convex on (0, ∞). Therefore,

applying (8) while choosing Ψ(y) = y
t
r , qi = γi and yi = ζr

i , we obtain (15).
(iii) For the mentioned conditions on r and t, the function Ψ(y) = y

t
r is concave on (0, ∞).

Therefore, taking Ψ(y) = y
t
r , qi = γi and yi = ζr

i in (8), we acquire the reverse inequality
of (15).

The following corollary is the direct consequence of Theorem 8 for the power means.
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Corollary 2. Let m1 = (γ1, γ2, · · · , γm), m2 = (ζ1, ζ2, · · · , ζm) be arbitrary positive m−tuples
and r, t be any non zero real numbers such that t < r, then the following assertions are valid:
(i) If r > 0 such that 3r ≤ t or r ≤ t ≤ 2r or t < 0, then

Mt
t(m1, m2)−

(Mt
t(m1, m2)

m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

) t
r

≥ 1

2
m
∑

i=1
γi

m

∑
i=1

γi

(
ζr

i −
Mt

t(m1, m2)
m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

)2

×
(2ζr

i +
Mt

t(m1,m2)
m
∑

i=1
γi

m
∑

i=1
γiζ

t−r
i

3

) t
r−2

. (16)

(ii) If r < 0 such that 3r ≥ t or r ≥ t ≥ 2r or t > 0, then (16) holds.
(iii) If r > 0 such that 2r < t < 3r or r < 0 with 2r > t > 3r, then (16) holds in the opposite
direction.

Proof. (i) Let Ψ(y) = y
t
r be a function defined on (0, ∞). Then clearly, the function Ψ is

4-convex with the given conditions. Therefore, putting Ψ(y) = y
t
r , qi = γi and yi = ζr

i in
(11), we receive (16).
(ii) For the stated conditions, the function Ψ(y) = y

t
r is 4-convex. Therefore, to deduce (16)

follow the procedure of (i).
(iii) Obviously the function Ψ(y) = y

t
r is 4-concave for the aforementioned conditions.

Therefore, the reverse inequality of (16) can be obtained by adopting the method of (i).

Another relation for the power means is deduced from Theorem 6.

Corollary 3. Suppose that m1 = (γ1, γ2, · · · , γm), m2 = (ζ1, ζ2, · · · , ζm) are any m−tuples
such that γi, ζi > 0, for each i ∈ {1, 2, · · · , m}, then

M0(m1, m2)

M−1(m1, m2)

≤ exp

(
1

m
∑

i=1
γi

m

∑
i=1

γi

(
ζi −M−1(m1, m2)

)2(2ζ−2
i + M2

−1(m1, m2)

6

))
. (17)

Proof. Consider Ψ = − ln y, y > 0. Then Ψ
′′′′
(y) = 6y−4, clearly Ψ

′′′′
(y) > 0 for all

y ∈ (0, ∞). This confirms the 4-convexity of Ψ. Therefore, utilizing (8) for Ψ(y) = − ln y,
qi = γi and yi = ζi, we acquire (17).

By taking the 4-convex function Ψ(y) = − ln y in (11), we acquire a relation for the
power means which is verbalized in the next corollary.

Corollary 4. Let all the hypotheses of Corollary 3 are true. Then

M0(m1, m2)

M−1(m1, m2)

≥ exp

(
1

2
m
∑

i=1
γi

m

∑
i=1

γi

(
ζi −M−1(m1, m2)

)2(2ζ−1
i + M−1(m1, m2)

3

)−2
)

. (18)

Proof. Inequality (18) can easily be obtained by taking Ψ(y)− ln y, qi = γi and yi = ζi,
in (11).
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The below corollary is the another consequence of Theorem 6 for the power means.

Corollary 5. Suppose that all the conditions of Corollary 3 are valid, then

exp

(
M2

2(m1, m2)

M1(m1, m2)

)
−M1(m1, m2) ≤

1
m
∑

i=1
γi

m

∑
i=1

γi

(
ln ζi −

M2
2(m1, m2)

M1(m1, m2)

)2

×
(2ζi + exp

(
M2

2(m1,m2)
M1(m1,m2)

)
6

)
. (19)

Proof. Since, the function Ψ(y) = exp y is 4-convex on R. Therefore, utilizing (8) while
picking Ψ(y) = exp y, qi = γi and yi = ln ζi, we get (19).

With the help of Theorem 8, we obtain a relation for power means given in coming
corollary.

Corollary 6. Presume that, the conditions of Corollary 3 are fulfilled, then

exp

(
M2

2(m1, m2)

M1(m1, m2)

)
−M1(m1, m2) ≥

1

2
m
∑

i=1
γi

m

∑
i=1

γi

(
ln ζi −

M2
2(m1, m2)

M1(m1, m2)

)2

× exp
(2 ln ζi +

M2
2(m1,m2)

M1(m1,m2)

3

)
. (20)

Proof. Taking Ψ(y) = exp y, qi = γi and yi = ln ζi in (11), we acquire (20).

Remark 1. The analogous form of the above relations for the power means can easily be obtained by
utilizing Theorem 7 and Theorem 9.

4. Applications in Information Theory

In the present section, we give some applications of the main results in information
theory. The proposed applications of the main results will provide different estimates
for the Csiszár and Kullback–Leibler divergences, Shannon entropy, and Bhattacharyya
coefficient.

We begin this section with the definition of Csiszár divergence.

Definition 4. Let Ψ be any real valued function defined on (0, ∞) and m1 = (γ1, γ2, · · · , γm),
m2 = (ζ1, ζ2, · · · , ζm), be arbitrary positive m−tuples. Then, the Csiszár divergence is defined as:

CΨ(m1, m2) =
m

∑
i=1

γiΨ
( ζi

γi

)
.

The following theorem is the application of Theorem 6 for the Csiszár divergence.
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Theorem 10. Assume that Ψ is any real valued function defined on (0, ∞) such that Ψ
′′

exists
and m1 = (γ1, γ2, · · · , γm), m2 = (ζ1, ζ2, · · · , ζm) are arbitrary positive m−tuples. If Ψ is a
4-convex function, then

Ψ

( m
∑

i=1
ζiΨ

′
(

ζi
γi

)
CΨ′ (m1, m2)

)
− CΨ(m1, m2)

m
∑

i=1
γi

≤ 1
m
∑

i=1
γi

m

∑
i=1

γi

(
ζi
γi
−

m
∑

i=1
ζiΨ

′
(

ζi
γi

)
CΨ′ (m1, m2)

)2

×
(2Ψ

′′( ζi
γi

)
+ Ψ

′′
( m

∑
i=1

ζiΨ
′( ζi

γi

)
C

Ψ′
(m1,m2)

)
6

)
. (21)

Proof. Applying (8) by choosing qi = γi and yi =
ζi
γi

, we receive (21).

As an application of Theorem 8, we acquire the following relation for the Csiszár
divergence.

Theorem 11. Let all the conditions of Theorem 10 be true. Then

Ψ

( m
∑

i=1
ζiΨ

′
(

ζi
γi

)
CΨ′ (m1, m2)

)
− CΨ(m1, m2)

m
∑

i=1
γi

≥ 1

2
m
∑

i=1
γi

m

∑
i=1

γi

(
ζi
γi
−

m
∑

i=1
ζiΨ

′
(

ζi
γi

)
CΨ′ (m1, m2)

)2

×Ψ
′′
(2 ζi

γi
+

m
∑

i=1
ζiΨ
′
(

ζi
γi

)
C

Ψ′
(m1,m2)

3

)
. (22)

Proof. Utilizing qi = γi and yi =
ζi
γi

in (11), we acquire (22).

The Shannon entropy is defined as:

Definition 5. For any positive probability distribution m1 = (γ1, γ2, · · · , γm), the Shannon
entropy is defined by:

SE(m1) = −
m

∑
i=1

γi log γi.

The following corollary gives an estimate for the Shannon entropy as application of
Theorem 6.

Corollary 7. Let m1 = (γ1, γ2, · · · , γm) be an arbitrary probability distribution such γi > 0, for
each i ∈ {1, 2, · · · , m}. Then

log
m

∑
i=1

γ2
i − SE(m1) ≤

m

∑
i=1

γi

(
1
γi
− 1

m
∑

i=1
γ2

i

)2(2γ2
i +

( m
∑

i=1
γ2

i

)2

6

)
. (23)

Proof. Consider the function Ψ(y) = − log y defined on (0, ∞). Then Ψ
′′′′
(y) = 6y−4,

which shows that Ψ
′′′′

> 0 on (0, ∞). This confirms the 4-convexity of the said function.
Therefore, take Ψ(y) = − log y and ζi = 1, for each i ∈ {1, 2, · · · , m} in (21), we get (23).

The following corollary is the application of Theorem 8 for the Shannon entropy.
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Corollary 8. Presume that, all the hypotheses of Corollary 7 are valid, then

log
m

∑
i=1

γ2
i − SE(m1) ≥

1
2

m

∑
i=1

γi

(
1
γi
− 1

m
∑

i=1
γ2

i

)2( 2
γ2

i
+ 1

m
∑

i=1
γ2

i

3

)−2

. (24)

Proof. Since, the function Ψ(y) = − log y is 4-convex on (0, ∞). Therefore, applying (22)
by putting Ψ(y) = − log y and ζi = 1, for each i ∈ {1, 2, · · · , m}, we get (24).

Now, we recall the definition of Kulback–Leibler divergence.

Definition 6. Let m1 = (γ1, γ2, · · · , γm) and m2 = (ζ1, ζ2, · · · , ζm) be any positive m−tuples

such that
m
∑

i=1
γi = 1 and

m
∑

i=1
ζi = 1. Then Kullback–Leibler divergence is defined as:

Kd(m1, m2) =
m

∑
i=1

γi log
(γi

ζi

)
.

In the next corollary, we receive a bound for the Kulback–Leibler divergence as an
application of Theorem 6.

Corollary 9. Assume that m1 = (γ1, γ2, · · · , γm) and m2 = (ζ1, ζ2, · · · , ζm) are positive

m−tuples such that
m
∑

i=1
γi = 1 and

m
∑

i=1
ζi = 1, then

log
( m

∑
i=1

γ2
i

ζi

)
− Kd(m1, m2) ≤

m

∑
i=1

γi

(
ζi
γi
−
( m

∑
i=1

γ2
i

ζi

)−1)2

×
(2
(

γi
ζi

)2
+

(
m
∑

i=1

γ2
i

ζi

)2

6

)
. (25)

Proof. Using the 4-convex function Ψ(y) = − log y in (21), we obtain (25).

The following corollary is the application of Theorem 8 for the Kulback–Leibler diver-
gence.

Corollary 10. Assume that, the hypotheses of Corollary 9 are true, then

log

(
m

∑
i=1

γ2
i

ζi

)
− Kd(m1, m2) ≥

1
2

m

∑
i=1

γi

(
ζi
γi
−
( m

∑
i=1

γ2
i

ζi

)−1)2

×
(2 ζi

γi
+

(
m
∑

i=1

γ2
i

ζi

)−1

3

)−2

. (26)

Proof. Inequality (26) can easily be deduced by taking Ψ(y) = − log y in (22).

Instantly, we give the definition of Bhattacharyya coefficient.
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Definition 7. Let m1 = (γ1, γ2, · · · , γm) and m2 = (ζ1, ζ2, · · · , ζm) be any m−tuples with

the positive entries such that
m
∑

i=1
γi = 1 and

m
∑

i=1
ζi = 1. Then, the Bhattacharyya coefficient is

defined by:

Bc(m1, m2) =
m

∑
i=1

√
γiζi.

The coming corollary provide a bound for the Bhattacharyya coefficient as an applica-
tion of Theorem 6.

Corollary 11. Suppose that, all the assumptions of Corollary 9 are valid, then√√√√√Bc(m1, m2)
m
∑

i=1
γ

3
2
i ζ
−1
2

i

− Bc(m1, m2) ≤
1
4

m

∑
i=1

γi

(
ζi
γi
− Bc(m1, m2)

m
∑

i=1
γ

3
2
i ζ
−1
2

i

)2

×
(2
(

γi
ζi

)− 3
2
+

(
Bc(m1,m2)
m
∑

i=1
γ

3
2
i ζ
−1
2

i

)− 3
2

6

)
. (27)

Proof. Let us take the function Ψ(y) = −√y, y > 0. Then Ψ
′′′′
(y) = 15

16 y−
7
2 , clearly Ψ

′′′′

is positive on (0, ∞). This substantiate the 4-convexity of the aforementioned function.
Therefore, the desired inequality (27) can easily be acquired by taking Ψ(y) = −√y
in (21).

The next corollary is the application of Theorem 8 for Bhattacharyya coefficient.

Corollary 12. Let the conditions of Corollary 9 be fulfilled. Then

Bc(m1, m2)−
(

Bc(m1, m2)
m
∑

i=1
γ

3
2
i ζ
−1
2

i

)
≥ 1

8

m

∑
i=1

γi

(
ζi
γi
− Bc(m1, m2)

m
∑

i=1
γ

3
2
i ζ
−1
2

i

)2

×
( ζi

γi
+ Bc(m1,m2)

m
∑

i=1
γ

3
2
i ζ
−1
2

i

3

)− 3
2

. (28)

Proof. To obtain (28), use Ψ(y) = −√y in (22).

Remark 2. The integral versions of the above aforementioned relations can also be acquired by
using Theorem 7 and Theorem 9.

5. Applications for the Zipf–Mandelbrot Entropy

The Zipf–Mandelbrot entropy is one of the important tools for solving a variety of
problems in diverse areas of science [6,13]. Particular, this entropy has extensive applica-
tions in probability and statistic [10]. This section of the article concern to present some
additional applications of main results for the Zipf–Mandelbrot entropy. To acquire the
intended relations, first we discuss some basics.

For any θ ≥ 0, s > 0, i ∈ {1, 2, · · · , m}, and m ∈ {1, 2, · · · , }, the generalized harmonic
number is defined as follows:

Mm,θ,s =
m

∑
i=1

1
(i + θ)s .
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The expression:
1/(i + θ)s

Mm,θ,s

represents the probability mass function for the Zipf–Mandelbrot law.
The following is mathematical form of the Zipf–Mandelbrot entropy:

Z(M, θ, s) =
s

Mm,θ,s

m

∑
i=1

log(i + θ)

(i + θ)s + log Mm,θ,s.

In the below corollary, we present an application of Theorem 6 for the Zipf–Mandelbrot
entropy.

Corollary 13. Let m1 = (ζ1, ζ2, · · · , ζm) be any positive m−tuple such that
m
∑

i=1
ζi = 1. If θ ≥ 0

and s > 0, then

log

(
1

M2
m,θ,s

m

∑
i=1

1

ζi
(
i + θ

)2s

)
+ Z(M, θ, s) +

1
Mm,θ,s

m

∑
i=1

log ζi(
i + θ

)s

≤ 1
Mm,θ,s

m

∑
i=1

1(
i + θ

)s

(
Mm,θ,sζi

(
i + θ

)s −
(

1
M2

m,θ,s

m

∑
i=1

1

ζi
(
i + θ

)2s

)−1
)2

×
( 2(

Mm,θ,sζi

(
i+θ
)s
)2 +

(
1

M2
m,θ,s

m
∑

i=1

1

ζi

(
i+θ
)2s

)2

6

)
. (29)

Proof. To prove inequality (29), consider γi = 1
Mm,θ,s(i+θ)s , then clearly γi > 0 for each

i ∈ {1, 2, · · · , m}. Therefore, we have

m

∑
i=1

γi log
(γi

ζi

)
=

m

∑
i=1

1
Mm,θ,s(i + θ)s log

( 1
Mm,θ,s(i + θ)sζi

)
=

m

∑
i=1

1
Mm,θ,s(i + θ)s

(
− s log(i + θ)− log Mm,θ,s − log ζi

)
= − s

Mm,θ,s

m

∑
i=1

log
( i + θ

(i + θ)s

)
− log Mm,θ,s −

1
Mm,θ,s

m

∑
i=1

1
(i + θ)s log ζi

= −Z(M, θ, s)− 1
Mm,θ,s

m

∑
i=1

1
(i + θ)s log ζi, (30)

log
( m

∑
i=1

γ2
i

ζi

)
= log

(
1

M2
m,θ,s

m

∑
i=1

1
(i + θ)2sζi

)
, (31)
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and

m

∑
i=1

γi

(
ζi
γi
−
( m

∑
i=1

γ2
i

ζi

)−1
)2
(2
(

γi
ζi

)2
+

(
m
∑

i=1

γ2
i

ζi

)2

6

)

=
1

Mm,θ,s

m

∑
i=1

1(
i + θ

)s

(
Mm,θ,sζi

(
i + θ

)s −
(

1
M2

m,θ,s

m

∑
i=1

1
(i + θ)2sζi

)−1
)2

×
( 2(

Mm,θ,sζi

(
i+θ
)s
)2 +

(
1

M2
m,θ,s

m
∑

i=1

1
(i+θ)2sζi

)2

6

)
. (32)

Now, use (30)–(32) in (25), we acquire (29).

The below corollary gives another bounds for the Zipf–Mandelbrot entropy.

Corollary 14. Assume that θ1, θ2 ≥ 0 and s1, s2 > 0, then

log

(
Mm,θ2,s2

M2
m,θ1,s1

m

∑
i=1

(i + θ2)
s2

(i + θ1)2s1

)
+ Z(M, θ1, s1)−

1
Mn,θ1,s1

m

∑
i=1

log Mm,θ2,s2(i + θ2)
s2

(i + θ1)s1

≤ 1
Mm,θ1,s1

m

∑
i=1

1
(i + θ1)s1

(
Mm,θ1,s1

Mm,θ2,s2

(i + θ1)
s1

(i + θ2)s2
−
(

Mm,θ2,s2

M2
m,θ1,s1

m

∑
i=1

(i + θ2)
s2

(i + θ1)2s1

)−1
)2

×
(2
(

Mm,θ2,s2
Mm,θ1,s1

(i+θ2)
s2

(i+θ1)
s1

)2

+

(
Mm,θ2,s2
M2

m,θ1,s1

m
∑

i=1

(i+θ2)
s2

(i+θ1)
2s1

)2

6

)
. (33)

Proof. To get inequality (33), consider γi =
1

Mm,θ1,s1
(i+θ1)

s1 and ζi =
1

Mm,θ2,s2
(i+θ2)

s2 , then

clearly both γi and ζi are positive for each i ∈ {1, 2, · · · , m}. Also,
m
∑

i=1
γi = 1 and

m
∑

i=1
ζi = 1.

Therefore, we have

m

∑
i=1

γi log
(γi

ζi

)
=

m

∑
i=1

1
Mm,θ1,s1(i + θ1)s1

log

(
Mm,θ2,s2(i + θ2)

s2

Mm,θ1,s1(i + θ1)s1

)

=
m

∑
i=1

log Mm,θ2,s2(i + θ2)
s2

Mm,θ1,s1(i + θ1)s1
−

m

∑
i=1

log Mm,θ1,s1(i + θ1)
s1

Mm,θ1,s1(i + θ1)s1

=
m

∑
i=1

log Mm,θ2,s2(i + θ2)
s2

Mm,θ1,s1(i + θ1)s1
− s1

Mm,θ1,s1

m

∑
i=1

log(i + θ1)
s1

(i + θ1)s1
− log Mm,θ1,s1

=
m

∑
i=1

log Mm,θ2,s2(i + θ2)
s2

Mm,θ1,s1(i + θ1)s1
− Z(M, θ1, s1), (34)

log
( m

∑
i=1

γ2
i

ζi

)
= log

(
Mm,θ2,s2

M2
m,θ1,s1

m

∑
i=1

(i + θ2)
s2

(i + θ1)2s1

)
, (35)
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and

m

∑
i=1

γi

(
ζi
γi
−
( m

∑
i=1

γ2
i

ζi

)−1)2
(2
(

γi
ζi

)2
+

(
m
∑

i=1

γ2
i

ζi

)2

6

)

=
1
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m
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)2

6

)
. (36)

Instantly, using (34)–(36) in (25), we receive (33).

The below corollary is the application of Theorem 8.

Corollary 15. Suppose that, all the assumptions of Corollary 13 are valid, then

log
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. (37)

Proof. Consider γi =
1

Mm,θ1,s1
(i+θ1)

s1 for each i ∈ {1, 2, · · · , m}, then we have
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3

)−2

. (38)

Inequality (37) can easily be obtained by using (30), (31), and (38) in (26).

The following corollary gives a bound for the Zipf–Mandelbrot entropy as an applica-
tion of Theorem 8.
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Corollary 16. Assume that θ1, θ2 ≥ 0 and s1, s2 > 0, then
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. (39)

Proof. Let us consider γi =
1
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s1 and ζi =
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s2 , then clearly both γi and

ζi are positive for each i ∈ {1, 2, · · · , m} such that their sums over i is unity. Therefore, we
have

m
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. (40)

Now, to deduce (39), just use (34), (35), and (40) in (26).

6. Conclusions

The convexity is the most powerful tools for solving a diverse type of problems in many
areas of science such as in engineering, differential equations, analysis, information theory
and statistics, etc. Due to the great importance and applicability, the convex functions have
been generalized, refined and extended in many ways accordingly. One of the interesting
generalized form of the class of the ordinary convexity is the 4-convexity. The class of
ordinary convexity and its generalizations have played an unforgettable performance in
the field of mathematical inequalities. There are a huge amount of inequalities which have
been acquired with the help of convexity and its generalizations. In the present article, we
established some new improvements of the Slater inequality by utilizing 4-convex functions.
The proposed improvements are provided in both discrete and continuous versions. With
the help of main results, we acquired some relations for the famous power means. The
aforesaid relations are deduced by putting some particular 4-convex functions in main
results. Furthermore, we parented applications of the established results in information
theory in the form of bounds for Csiszár and Kullback–Leibler divergences, Shannon
entropy and Bhattacharyya coefficient. Moreover, some additional applications of the
acquired results are also discussed for the Zifp–Mandelbrot entropy. The idea and technique
used in this article for obtaining the results for Slater’s inequality, will motivate researchers
for further work on Slater’s inequality.
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