A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter
Abstract
:1. Introduction
2. Preliminaries
3. The Lower Bound of the Distance Laplacian Spectral Radius of Graphs among
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aouchiche, M.; Hansen, P. Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 2013, 439, 21–33. [Google Scholar] [CrossRef]
- Aouchiche, M.; Hansen, P. Montréal, Some properties of the distance Laplacian eigenvalues of a graph. Czechoslov. Math. J. 2014, 64, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Niu, A.; Fan, D.; Wang, G. On the distance Laplacian spectral radius of bipartite graphs. Discret. Appl. Math. 2015, 186, 207–213. [Google Scholar] [CrossRef]
- Nath, M.; Paul, S. On the distance Laplacian spectra of graphs. Linear Algebra Appl. 2014, 460, 97–110. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, B. On the distance Laplacian spectral radius of graphs. Linear Algebra Appl. 2015, 475, 265–275. [Google Scholar] [CrossRef]
- Tian, F.; Wong, D. Jianling Rou, Proof for four conjectures about the distance Laplacian and distance signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 2015, 471, 10–20. [Google Scholar] [CrossRef]
- Aouchiche, M.; Hansen, P. On the distance signless Laplacian of a graph. Linear Multilinear Algebra 2016, 64, 1113–1123. [Google Scholar] [CrossRef]
- Xing, R.; Zhou, B. On the distance and distance signless Laplacian spectral radii of bicyclic graphs. Linear Algebra Appl. 2013, 439, 3955–3963. [Google Scholar] [CrossRef]
- Xing, R.; Zhou, B.; Li, J. On the distance signless Laplacian spectral radius of graphs. Linear Multilinear Algebra 2014, 62, 1377–1387. [Google Scholar] [CrossRef]
- Das, K.C. Proof of conjectures on the distance signless Laplacian eigenvalues of graphs. Linear Algebra Appl. 2015, 467, 100–115. [Google Scholar] [CrossRef]
- Lin, H.; Lu, X. Bounds on the distance signless Laplacian spectral radius in terms of clique number. Linear Multilinear Algebra 2015, 63, 1750–1759. [Google Scholar] [CrossRef]
- Zhai, M.; Liu, R.; Shu, J. On the spectral radius of bipartite graphs with given diameter. Linear Algebra Appl. 2009, 430, 1165–1170. [Google Scholar] [CrossRef] [Green Version]
- van Dam, E.R. Graphs with given diameter maximizing the spectral radius. Linear Algebra Appl. 2007, 426, 454–457. [Google Scholar] [CrossRef] [Green Version]
- van Dam, E.R.; Kooij, R.E. The minimal spectral radius of graphs with a given diameter. Linear Algebra Appl. 2007, 423, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, NY, USA, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Miao, L.; Zhao, W.; Liu, L. A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter. Mathematics 2022, 10, 1301. https://doi.org/10.3390/math10081301
Qi L, Miao L, Zhao W, Liu L. A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter. Mathematics. 2022; 10(8):1301. https://doi.org/10.3390/math10081301
Chicago/Turabian StyleQi, Linming, Lianying Miao, Weiliang Zhao, and Lu Liu. 2022. "A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter" Mathematics 10, no. 8: 1301. https://doi.org/10.3390/math10081301
APA StyleQi, L., Miao, L., Zhao, W., & Liu, L. (2022). A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter. Mathematics, 10(8), 1301. https://doi.org/10.3390/math10081301