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Abstract: Let G be a connected, undirected and simple graph. The distance Laplacian matrix L(G)

is defined as L(G) = diag(Tr)−D(G), where D(G) denotes the distance matrix of G and diag(Tr)
denotes a diagonal matrix of the vertex transmissions. Denote by ρL(G) the distance Laplacian
spectral radius of G. In this paper, we determine a lower bound of the distance Laplacian spectral
radius of the n-vertex bipartite graphs with diameter 4. We characterize the extremal graphs attaining
this lower bound.
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1. Introduction

The distance Laplacian and distance signless Laplacian matrices of a graph G pro-
posed by Aouchiche and Hansen [1] are defined as L(G) = diag(Tr)−D(G) and Q(G) =
diag(Tr) +D(G), respectively. Much attention has been paid to them since they were put
forward. Aouchiche et al. [2] described some elementary properties of the distance Lapla-
cian eigenvalues of graphs. Niu et al. [3] determined some extremal graphs minimizing the
distance Laplacian spectral radius among bipartite graphs in terms of the matching number
and the vertex connectivity, respectively. Nath and Paul [4] focused on the graph whose
complement is a tree or a unicyclic graph and considered the second-smallest distance
Laplacian eigenvalue. Lin and Zhou [5] determined some extremal graphs among several
classes of graphs. Tian et al. [6] proved four conjectures put forward by Aouchiche and
Hansen in [2]. One can refer to [7–11] for more details on the distance signless Laplacian
spectral radius of graphs.

Although lots of conclusions have been obtained, many more problems remain un-
solved. For instance, there are few papers focusing on the distance (signless) Laplacian
spectral radius of graphs in terms of diameter, an important parameter of graphs. For
adjacency matrices of graphs, several conclusions with respect to the diameter have been
derived (e.g., [12–14]). In [12], the authors determined some extremal graphs with small
diameter. Generally, the communication network is organized with small diameter to
improve the quality of the service on the networks. Motivated by this, in the present paper,
we deduce a lower bound of the distance Laplacian spectral radius among bipartite graphs
with diameter 4, and we hope that it could be used to address a general case.

This paper is arranged as follows. In Section 2, some elementary notions and lemmas
applied in the next parts are presented. In Section 3, the lower bound for the distance
Laplacian spectral radius is obtained for bipartite graphs with diameter 4. Moreover, the
extremal graph attaining the lower bound is determined.
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2. Preliminaries

All graphs considered in this paper are undirected, connected and simple. By V(G),
we denote the vertex set of G, and the order of G is |V(G)|. Denote by NG(u) the set of
vertices adjacent to u. If NG(u) = NG(v) for u, v ∈ V(G), then they are called twin points.
Generally, a subset S ⊂ V(G) is called a twin point set, if NG(u) = NG(v) for any u, v ∈ S.
The distance between u, v ∈ V(G), denoted by d(u, v), is the length of the shortest path
between u and v. The diameter of graph G, written as d(G) (d for short), is the maximum
distance among all pairs of vertices of G. The chromatic number of G means the least
number of colors required to color all the vertices of G such that each pair of adjacent
vertices has different colors. The spanning subgraph of G is obtained by deleting some
edges from G with order invariable. The transmission TrG(u) of a vertex u is referred to
as the sum of the distances of u to all other vertices of V(G), i.e., TrG(u) = ∑v∈V(G) d(v, u).
Trmax(G) means the maximal vertex transmission of G. Let Bn,d be the set of all n-vertex
bipartite graphs with diameter d and Cn,k the set of all n-vertex graphs with chromatic
number k.

Suppose V(G) = {v1, v2, . . . , vn}. The distance matrix D(G) of G is an n× n symmet-
ric real matrix with d(vi, vj) as the (i, j)-entry. Let the diagonal matrix diag(Tr), called the
vertex transmission matrix of G, be

diag(Tr) = diag(TrG(v1), TrG(v2), . . . , TrG(vn)).

The largest eigenvalue of the distance Laplacian matrix L(G) is called the distance
Laplacian spectral radius, written as ρL(G). For any matrix M, λ1(M) always denotes the
largest eigenvalue of M.

A vector x = (x1, x2, . . . , xn)T can be considered as a function defined on V(G) =
{v1, v2, . . . , vn}, which maps vi to xi, i.e., x(vi) = xi. Thus, for L(G),

xTL(G)x = ∑
{u,v}⊆V(G)

d(u, v)(x(u)− x(v))2.

It is clear that 1 = (1, 1, . . . , 1)T is an eigenvector corresponding to the eigenvalue
zero of L(G). Thus, if x = (x1, x2, . . . , xn)T is an eigenvector of L(G) corresponding to a
nonzero eigenvalue, then ∑n

i=1 xi = 0.

Lemma 1 (Rayleigh’s Principal Theorem, p. 29, [15]). Let A be a symmetric real matrix and u
any unit nonzero vector. Then λ1(A) ≥ uT A u with equality if and only if u is the eigenvector
corresponding to λ1(A).

Lemma 2 (Courant-Weyl Inequality, p. 31, [15]). Let A1 and A2 be two symmetric real matrices
of order n. Then

λn(A2) + λi(A1) ≤ λi(A1 + A2) for 1 ≤ i ≤ n.

Lemma 3 (Interlacing Theorem, p. 30, [15]). Suppose A is a symmetric real matrix of order n
and M a principal submatrix of A with order s(≤ n). Then

λi(A) ≥ λi(M), 1 ≤ i ≤ s.

The next lemma follows from Lemma 3 immediately.

Lemma 4 (Proposition 2.11, [6]). Let G be an n-vertex graph and M a principal submatrix of
L(G) with order s ≤ n. Then λ1(M) ≤ ρL(G).

Lemma 5 (Theorem 3.5, [1]). Suppose G + euv is the graph obtained from G by adding an edge
euv joining u and v. Then ρL(G) ≥ ρL(G + uv).



Mathematics 2022, 10, 1301 3 of 9

3. The Lower Bound of the Distance Laplacian Spectral Radius of Graphs among Bn,4

If G ∈ Bn,d, then there exists a partition {V0, V1, . . . , Vd} of V(G) such that |V0| = 1
and d(u, v) = i for u ∈ V0 and v ∈ Vi (i = 1, 2, . . . , d).

Lemma 6 (Lemma 2.1, [12]). Let G ∈ Bn,d with a vertex partition described as above. Then G[Vi]
induces an empty graph (i.e., containing no edge) for each i ∈ {0, 1, . . . , d}.

Lemma 7. Let d ≥ 3 and G ∈ Bn,d. If d(G + e) < d when any edge e is added to G, then |Vd| = 1
and the induced subgraph G[Vi−1 ∪Vi] (i = 1, 2, . . . , d) is a complete bipartite graph.

Proof. From Lemma 6, it is clear that G[Vi−1 ∪Vi] (i = 1, 2, . . . , d) is a complete bipartite
graph. Moreover, let u ∈ Vd and v ∈ Vd−3. Assume, on the contrary, that |Vd| ≥ 2, then the
graph G + euv ∈ Bn,d, a contradiction.

Remark 1. Denote a subset of Bn,d by B̃n,d, consisting of all the graphs satisfying Lemma 7. For
instance, if G ∈ B̃n,4, then G is of the form shown in Figure 1. Then the partition of V(G) can be
written as V0 = {w}, V1 = {v1, . . . , vs}, V2 = {u1, . . . , ut}, V3 = {y1, . . . , yk} and V4 = {z},
where s + t + k + 2 = n and s, t, k ≥ 1.

zw

v1

vs

u 1

u t

y
1

y
k

Figure 1. A graph G ∈ B̃n,4.

Before giving the main conclusion of this section, we first investigate the properties of
the eigenvector corresponding to ρL(G) for G ∈ B̃n,4.

Let G ∈ B̃n,4 and the partition of V(G) be arranged as in Remark 1. Without loss of
generality, suppose |V3| ≥ |V1| ≥ 1 (i.e., k ≥ s ≥ 1).

Lemma 8. Let the eigenvector corresponding to ρL(G) be x. Then
x(vi) = x(vj) (1 ≤ i, j ≤ s),
x(ui) = x(uj) (1 ≤ i, j ≤ t),
x(yi) = x(yj) (1 ≤ i, j ≤ k).

Proof. Since the proofs of the three results are parallel, here we only give the first one. As
the vertices of V1 are twin points (if s > 1), d(v, vi) = d(v, vj) for each v ∈ V(G)\{vi, vj},
and thus Tr(vi) = Tr(vj) = 2s + t + 2k + 2. Considering the characteristic equations
indexed by vi and vj, it is obtained that{

ρL(G) · x(vi) = ∑v∈V(G) d(vi, v)(x(vi)− x(v))
ρL(G) · x(vj) = ∑v∈V(G) d(vj, v)(x(vj)− x(v)).

Then it follows that ρL(G) · (x(vi) − x(vj)) = (Tr(vi) + 2)(x(vi) − x(vj)). From
Lemma 4, we easily obtain

ρL(G) ≥ Trmax = Tr(w) = s + 2t + 3k + 4
> 2s + t + 2k + 4 = Tr(vi) + 2.

Thus, x(vi) = x(vj) follows.
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For the eigenvector x in Lemma 8, suppose x(w) = x0, x(vi) = x1 (1 ≤ i ≤ s),
x(ui) = x2 (1 ≤ i ≤ t), x(yi) = x3 (1 ≤ i ≤ k) and x(z) = x4. Then x can be written as

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s

, x2, . . . , x2︸ ︷︷ ︸
t

, x3, . . . , x3︸ ︷︷ ︸
k

, x4)
T .

Lemma 9. Let x be as just described. If |V1| = |V3| (i.e., s = k), then
x0 = −x4 6= 0,
x1 = −x3 6= 0,
x2 = 0.

Proof. Applying Lemma 8, the characteristic equation L(G) · x = ρL(G) · x can be simpli-
fied in the conventional form as follows:

m0 · x0 − s · x1 − 2t · x2 − 3k · x3 − 4x4 = ρL(G) · x0

−x0 + m1 · x1 − t · x2 − 2k · x3 − 3x4 = ρL(G) · x1

−2x0 − s · x1 + m2 · x2 − k · x3 − 2x4 = ρL(G) · x2

−3x0 − 2s · x1 − t · x2 + m3 · x3 − x4 = ρL(G) · x3

−4x0 − 3s · x1 − 2t · x2 − k · x3 + m4 · x4 = ρL(G) · x4,

(1)

where m0 = Tr(w), m1 = Tr(vi)− 2(s− 1), m2 = Tr(ui)− 2(t− 1), m3 = Tr(yi)− 2(k− 1)
and m4 = Tr(z).

The sum of the first equality and the fifth one gives

(n + t + 2k + 2)x0 − 4(x0 + sx1 + tx2 + kx3 + x4) + (n + t + 2s + 2)x4 = ρL(G) · (x0 + x4). (2)

Since s = k and x0 + sx1 + tx2 + kx3 + x4 = 0, we have

2n(x0 + x4) = ρL(G) · (x0 + x4). (3)

Take a 2× 2 principal submatrix M of L(G), where M =

(
Tr(w) −4
−4 Tr(z)

)
. Note

that Tr(w) = Tr(z) = 2n for s = k. Then, applying Lemma 4,

ρL(G) ≥ λ1(M) = Tr(w) + 4 = 2n + 4.

Thus, we obtain x0 + x4 = 0, i.e., x0 = −x4 from (3). Similarly, from the second and
the fourth equalities in (1), it follows that

−2(x0 + x4) + (n + 2)(x1 + x3) = ρL(G) · (x1 + x3).

Since x0 + x4 = 0 and ρL(G) ≥ 2n + 4 > n + 2, x1 + x3 = 0, i.e., x1 = −x3. The fourth
equality in (1) minus the second one indicates that

2(x4 − x0) = [ρL(G)− (2s + t + 2k + 4)](x3 − x1)
= (ρL(G)− 2n + t)(x3 − x1).

(4)

If x0 = 0, then x4 = −x0 = 0. Further, from (4), it follows that x1 = −x3 = 0 (note that
ρL(G) ≥ 2n + 4). Recalling that x0 + sx1 + tx2 + kx3 + x4 = 0, we know x2 = 0, and thus
x is a zero vector, a contradiction. Hence, x0 = −x4 6= 0. Similarly, x1 = −x3 6= 0, which
implies x2 = 0. The proof is complete.

For convenience, denote the graph G ∈ B̃n,4 by G(1, s, t, k, 1) with vertex partition
shown in Remark 1. We next determine the unique extremal graph minimizing the distance
Laplacian spectral radius among B̃n,4.
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Theorem 1. The graph G(1, 1, n− 4, 1, 1) in Figure 2 is the unique graph with minimum distance
Laplacian spectral radius among B̃n,4.

zw v

u 1

u yn-4 zw v

u 1

u yn-4

u 2

G(1, 1, n - 4, 1, 1) G’

Figure 2. The graph G(1, 1, n− 4, 1, 1) ∈ B̃n,4 and graph G′.

Proof. Let G0 = G(1, s, t, k, 1) ∈ B̃n,4 with s + t + k + 2 = n and s, t, k ≥ 1. Without loss of
generality, assume that s ≤ k. We proceed by proving the following three claims, which
will imply the conclusion.

Claim 1. If s ≥ 2 in graph G0, then let G1 = G(1, s− 1, t, k + 1, 1). We claim that ρL(G0) <
ρL(G1).

In graph G0, let V(G0) = {V0, . . . , V4} and Vi be expressed as that in Remark 1. Then
we easily obtain{

Tr(w) = s + 2t + 3k + 4, Tr(vi) = Tr(yi) = 2s + t + 2k + 2,
Tr(ui) = s + 2t + k + 2, Tr(z) = 3s + 2t + k + 4,

(5)

and the distance Laplacian matrix of G0 is

L(G0) =


Tr(w) −J1×s −2J1×t −3J1×k −4
−Js×1 (Tr(vi) + 2)Is − 2Js −Js×t −2Js×k −3Js×1
−2Jt×1 −Jt×s (Tr(ui) + 2)It − 2Jt −Jt×k −2Jt×1
−3Jk×1 −2Jk×s −Jk×t (Tr(yi) + 2)Ik − 2Jk −Jk×1
−4 −3J1×s −2J1×t −J1×k Tr(z)

.

Further, we have

|λIn −L(G0)| = (λ− Tr(vi)− 2)s−1(λ− Tr(ui)− 2)t−1(λ− Tr(yi)− 2)k−1 · |λI5 − R(G0)|, (6)

where

R(G0) =


Tr(w) −s −2t −3k −4
−1 Tr(vi)− 2(s− 1) −t −2k −3
−2 −s Tr(ui)− 2(t− 1) −k −2
−3 −2s −t Tr(yi)− 2(k− 1) −1
−4 −3s −2t −k Tr(z)

. (7)

From the above, we say that the largest eigenvalue of R(G0) is the spectral radius of G0.
In fact, λ1(R(G0)) ≥ Tr(w) from Lemma 3, and Tr(vi) + 2, Tr(yi) + 2 and Tr(ui) + 2 are the
eigenvalues of L(G0) apart from those of R(G0) from (6). Furthermore, Tr(w) > Tr(vi) +
2 = Tr(yi) + 2 and Tr(w) > Tr(ui) + 2 by (5) clearly. Thus, λ1(R(G0)) = ρL(G0) holds.

For graph G1, we obtain the matrices L(G1) and R(G1) by substituting s− 1 and k + 1
for s and k in L(G0) and R(G0), respectively. Analogously, we have λ1(R(G1)) = ρL(G1).
Denote the characteristic polynomials of R(G0) and R(G1) by ψ0(λ) and ψ1(λ), respectively.
Next, we are aimed at proving

ψ1(ρL(G0)) < 0. (8)

By using MATLAB, we obtain

ψ1(λ)− ψ0(λ) = 4(s− k− 1) λ (λ2 − sλ− kλ− 2nλ− 4λ + 6n + sn + kn + n2). (9)
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Let g(λ) = λ (λ2 − sλ− kλ− 2nλ− 4λ + 6n + sn + kn + n2). Then the derivative of
g(λ) is

g′(λ) = 3λ2 − (2s + 2k + 4n + 8)λ + n2 + sn + kn + 6n

with symmetry axis λ̃ = 2n+s+k+4
3 . Since s ≤ k, Trmax = Tr(w) = 2n− s + k in graph G0,

and thus ρL(G0) ≥ Trmax = 2n− s + k from Lemma 4. By simple calculation, we obtain
λ̃ < 2n− s + k, and since n ≥ s + k + 3, we have

g′(2n− s + k) = 5n2 + (5k− 11s− 10)n + 5s2 − 6sk + 8s + k2 − 8k > 0.

We now say that g(λ) is strictly increasing for λ ≥ 2n − s + k. Moreover, from
n ≥ s + k + 3, it follows that

g(2n− s + k) = (2n− s + k)(n2 + kn− 3sn− 2n + 4s− 4k− 2sk + 2s2) > 0.

Note that s− k− 1 < 0 in (9). Then we have

ψ1(ρL(G0)) = ψ1(ρL(G0))− ψ0(ρL(G0)) < ψ1(2n− s + k)− ψ0(2n− s + k)
= 4(s− k− 1) · g(2n− s + k) < 0,

which establishes (8).
Applying (8), we can easily prove that ρL(G0) < ρL(G1). Assume on the contrary that

ρL(G0) > ρL(G1) (noting that ρL(G0) 6= ρL(G1) since ψ1(ρL(G0)) < 0 and ψ1(ρL(G1)) =
0). Observing that ψ1(λ) tends to infinity when λ tends to infinity (as the leading coefficient
of ψ1(λ) is 1), we can find a sufficiently large q > ρL(G0) such that ψ1(q) > 0. As ψ1(λ) is
a continuous function, from ψ1(ρL(G0)) < 0 and ψ1(q) > 0, it follows that ψ1(p) = 0 for a
positive number p between ρL(G0) and q, which is a contradiction to the fact that ρL(G1)
is the largest root of ψ1(λ) = 0. Therefore, ρL(G0) < ρL(G1).

Claim 2. Assume G2 = G(1, s− 1, t + 2, k− 1, 1), where k ≥ s ≥ 2 and t ≥ 1. Then we
claim that ρL(G0) > ρL(G2).

Let the unit eigenvector corresponding to ρL(G2) be

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s−1

, x2, . . . , x2︸ ︷︷ ︸
t+2

, x3, . . . , x3︸ ︷︷ ︸
k−1

, x4)
T .

By Rayleigh’s principle,

ρL(G0)− ρL(G2) ≥ xT · (L(G0)−L(G2)) · x
= ∑

{u,v}⊆V(G0)
(dG0(u, v)− dG2(u, v))(x(u)− x(v))2

= 2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 ≥ 0.

(10)

Next, we show that ρL(G0) − ρL(G2) > 0. First, if s = k, then from Lemma 9, it
follows that x1 = −x3 6= 0 and x2 = 0, and thus

ρL(G0)− ρL(G2) ≥ 4(s− 1)x2
1 > 0.

On the other hand, suppose s < k and 2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 = 0 in
(10). Then x1 = x2 = x3. Substitute t + 2 for t in (4), and then x0 = x4 follows by applying
x1 = x3. In addition, by replacing s, k and t with s− 1, k− 1 and t + 2 in (2), respectively,
it gives

ρL(G2) · x0 = 2n · x0,
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and hence x0 = 0 for the reason that ρL(G2) ≥ TrG2(w) = 2n + k − s > 2n. Recalling
that x0 + (s− 1)x1 + (t + 2)x2 + (k− 1)x3 + x4 = 0, we have x1 = x2 = x3 = 0, and then
eigenvector x is the zero vector, a contradiction. Hence, if s < k, then

2(s− 1)(x1 − x2)
2 + 2(k− 1)(x3 − x2)

2 > 0.

In summary, ρL(G0)− ρL(G2) > 0 holds.

Claim 3. If s = k− 1(≥ 1) in graph G0, then let G3 = G(1, s, t + 1, k− 1, 1). We claim that
ρL(G0) > ρL(G3).

Let the unit eigenvector corresponding to ρL(G3) be

x = (x0, x1, . . . , x1︸ ︷︷ ︸
s

, x2, . . . , x2︸ ︷︷ ︸
t+1

, x3, . . . , x3︸ ︷︷ ︸
k−1=s

, x4)
T .

Then by Rayleigh’s principle and Lemma 9,

ρL(G)− ρL(G3) ≥ xT · (L(G)−L(G3)) · x
= ∑

{u,v}⊆V(G)
(dG(u, v)− dG3(u, v))(x(u)− x(v))2

= (x0 − x2)
2 + s(x1 − x2)− t(x2 − x2)

2 + s(x2 − x3)
2 − (x2 − x4)

2

= 2s · x2
1 > 0.

Now we are in a position to complete the proof of the theorem.
For graph G0 = G(1, s, t, k, 1) ∈ B̃n,4, suppose k ≥ s. If k ≥ 2 and (k− s) ≡ 0(mod 2),

then by Claim 1,

ρL(G0) ≥ ρL(G(1, s +
k− s

2
, t, k− k− s

2
, 1)) = ρL(G(1,

s + k
2

, t,
s + k

2
, 1))

with equality if and only if s = k. Furthermore, from Claim 2, we have

ρL(G(1,
s + k

2
, t,

s + k
2

, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

On the other side, if k ≥ 3 and (k− s) ≡ 1(mod 2), then by Claim 1,

ρL(G0) ≥ ρL(G(1, s +
k− s− 1

2
, t, k− k− s− 1

2
, 1)) = ρL(G(1,

s + k− 1
2

, t,
s + k + 1

2
, 1)),

with equality if and only if k− s = 1. Moreover, from Claim 3,

ρL(G(1,
s + k− 1

2
, t,

s + k + 1
2

, 1)) > ρL(G(1,
s + k− 1

2
, t + 1,

s + k− 1
2

, 1)).

Finally, from Claim 2, it follows that

ρL(G(1,
s + k− 1

2
, t + 1,

s + k− 1
2

, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

For the case of s = 1 and k = 2, from Claim 3, it is straightforward that

ρL(G(1, 1, n− 5, 2, 1)) > ρL(G(1, 1, n− 4, 1, 1)).

This completes the proof.
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From Theorem 1 and Lemma 5, we indicate that if G ∈ Bn,d is not a spanning subgraph
of G(1, 1, n− 4, 1, 1), then ρL(G) > ρL(G(1, 1, n− 4, 1, 1)). In addition, if s = k = 1 and
t = n− 4 in (7), then we obtain λ1(R0) = 4 + 1

2 (3n +
√

n2 + 16) by using MATLAB, i.e.,

ρL(G(1, 1, n− 4, 1, 1)) = 4 +
1
2
(3n +

√
n2 + 16).

Thus, we have the following theorem.

Theorem 2. Let G ∈ Bn,d. Then ρL(G) ≥ 4 + 1
2 (3n +

√
n2 + 16) with equality if and only if

G = G(1, 1, n− 4, 1, 1).

Proof. Denote the graph G(1, 1, n− 4, 1, 1)− evu1 by G′ (see Figure 2). First, we show that

ρL(G′) > ρL(G(1, 1, n− 4, 1, 1)). Take a 2× 2 principal submatrix M =

(
Tr(w) −4
−4 Tr(z)

)
=(

2n + 2 −4
−4 2n

)
from L(G′). By simple calculation, λ1(M) > 2n + 5 > 4 + 1

2 (3n +
√

n2 + 16). From Lemma 4, it follows that

ρL(G′) ≥ λ1(M) > 2n + 5 > 4 +
1
2
(3n +

√
n2 + 16) = ρL(G(1, 1, n− 4, 1, 1)).

Thus, we say that for any spanning subgraph H 6= G(1, 1, n− 4, 1, 1) of G(1, 1, n−
4, 1, 1), ρL(H) > ρL(G(1, 1, n− 4, 1, 1)) from Lemma 5.

Hence, now, it is clear from Theorem 1 and the above result that for any graph G ∈ Bn,d,

ρL(G) ≥ ρL(G(1, 1, n− 4, 1, 1)) = 4 +
1
2
(3n +

√
n2 + 16)

with equality if and only if G = G(1, 1, n− 4, 1, 1).

4. Conclusions

In this paper, a lower bound of the distance Laplacian spectral radius of the n-vertex
bipartite graphs with diameter 4 is obtained. The method used here is helpful for solving
the general case and we conjecture that the graph G(1, . . . , 1, n− d, 1, . . . , 1) is the unique
one minimizing the distance Laplacian spectral radius among n-vertex bipartite graphs
with even diameter d ≥ 4.
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