Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geise, A.; Kuczmarska, M.; Pawlowski, J. Corporate Failure Prediction of Construction Companies in Poland: Evidence from Logit Model. Eur. Res. Stud. J. 2021, 24, 99–116. [Google Scholar] [CrossRef]
- Brozyna, J.; Mentel, G.; Pisula, T. Statistical Methods of the Banrkuptcy Prediction in the Logistic Sector in Poland and Slovakia. Transform. Bus. Econ. 2016, 15, 93–114. [Google Scholar]
- Balina, R.; Juszczyk, S. Forecasting Bankruptcy Risk of International Commercial Road Transport Companies. Int. J. Manag. Enterp. Dev. 2014, 13, 1–20. [Google Scholar] [CrossRef]
- Pisula, T. The Usage of Scoring Models to Evaluate the Risk of Bankruptcy on the Example of Companies from the Transport Sector. Sci. J. Rzesz. Univ. Technol. Ser. Manag. Mark. 2012, 19, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Jakubík, P.; Teply, P. The Prediction of Corporate Bankruptcy and Czech Economy’s Financial Stability through Logit Analysis; IES Working Paper No. 19/2008; Institute of Economic Studies (IES), Charles University in Prague: Prague, Czech Republic, 2008. [Google Scholar]
- Indriyanti, M. The Accuracy of Financial Distress Prediction Models: Empirical Study on the World’s 25 Biggest Tech Companies in 2015–2016 Forbes’s Version. KnE Soc. Sci. 2019, 3, 442–450. [Google Scholar] [CrossRef]
- Sun, J.; Li, H.; Huang, Q.-H.; He, K.-Y. Predicting Financial Distress and Corporate Failure: A Review from the State-of-the-Art Definitions, Modeling, Sampling, and Featuring Approaches. Knowl.-Based Syst. 2014, 57, 41–56. [Google Scholar] [CrossRef]
- Taffler, R.J. The Assessment of Company Solvency and Performance Using a Statistical Model. Account. Bus. Res. 1983, 13, 295–308. [Google Scholar] [CrossRef]
- Fulmer, J.G.; Moon, J.E.; Gavin, T.A.; Erwin, M.J. A Bankruptcy Classification Model for Small Firms. J. Com. B Len. 1984, 66, 25–37. [Google Scholar]
- Altman, E.I.; Iwanicz-Drozdowska, M.; Laitinen, E.K.; Suvas, A. Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model. J. Int. Financ. Manag. Account. 2017, 28, 131–171. [Google Scholar] [CrossRef]
- Springate, G.L.V. Predicting the Possibility of Failure in a Canadian Firm: A Discriminant Analysis; Simon Fraser University: Burnaby, BC, Canada, 1978. [Google Scholar]
- Kovacova, M.; Kliestikova, J. Modelling Bankruptcy Prediction Models in Slovak Companies. SHS Web Conf. 2017, 39, 01013. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.F.; Winakor, A.H. Changes in the Financial Structure of Unsuccessful Industrial Corporations. Bull. Univ. Ill. Urbana-Champaign Campus Bur. Bus. Res. 1935, 51, 44. [Google Scholar]
- FitzPatrick, P.J. A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies. Certif. Public Account. 1932, 6, 727–731. [Google Scholar]
- Ramser, J.R.; Foster, L.O. A Demonstration of Ratio Analysis; Bulletin 40; Bureau of Business Research, University of Illinois: Urbana, IL, USA, 1931. [Google Scholar]
- Merwin, C.L. Financing Small Corporations in Five Manufacturing Industries, 1926–1936; NBER Books; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1942. [Google Scholar]
- Altman, E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Beaver, W.H. Financial Ratios As Predictors of Failure. J. Account. Res. 1966, 4, 71–111. [Google Scholar] [CrossRef]
- Ohlson, J.A. Financial Ratios and the Probabilistic Prediction of Bankruptcy. J. Account. Res. 1980, 18, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, M.E. Methodological Issues Related to the Estimation of Financial Distress Prediction Models. J. Account. Res. 1984, 22, 59–82. [Google Scholar] [CrossRef]
- Pavlicko, M.; Durica, M.; Mazanec, J. Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries. Mathematics 2021, 9, 1886. [Google Scholar] [CrossRef]
- Liang, D.; Tsai, C.-F.; Wu, H.-T. The Effect of Feature Selection on Financial Distress Prediction. Knowl.-Based Syst. 2015, 73, 289–297. [Google Scholar] [CrossRef]
- Valaskova, K.; Kliestik, T.; Kovacova, M.; Radisic, M.; Mirica, C.-O. Bankruptcy Prediction in Specific Economic Conditions of Slovakia: Multiple Discriminant Analysis. In Vision 2020: Sustainable Economic Development and Application of Innovation Management, Proceedings of the 32nd International Business Information Management Association Conference, Seville, Spain, 15–16 November 2018; Soliman, K.S., Ed.; International Business Information Management Assoc-Ibima: Norristown, PA, USA, 2018; pp. 6786–6798. [Google Scholar]
- Neumaier, I.; Neumaierová, I. Try to calculate your index IN95. Terno 1995, 5, 7–10. [Google Scholar]
- Jakubík, P.; Teplý, P. The JT Index as an Indicator of Financial Stability of Corporate Sector. Prague Econ. Pap. 2011, 20, 157–176. [Google Scholar] [CrossRef]
- Karas, M.; Režňáková, M. A Parametric or Nonparametric Approach for Creating a New Bankruptcy Prediction Model: The Evidence from the Czech Republic. Int. J. Math. Models Methods Appl. Sci. 2014, 8, 214–223. [Google Scholar]
- Vochozka, M.; Straková, J.; Váchal, J. Model to Predict Survival of Transportation and Shipping Companies. Naše More 2015, 62, 109–113. [Google Scholar] [CrossRef]
- Chrastinová, Z. Methods of Assessing Economic Creditworthiness and Predicting the Financial Situation of Agricultural Enterprises; VUEPP: Bratislava, Slovakia, 1998; ISBN 978-80-8058-022-3. [Google Scholar]
- Gurčík, L. G-index—The financial situation prognosis method of agricultural enterprises. Agric. Econ. Zemědělská Ekon. 2012, 48, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Hurtošová, J. Construction of a Rating Model, a Tool for Assessing the Creditworthiness of a Company [Konštrukcia Ratingového Modelu, Nástroja Hodnotenia Úverovej Spôsobilosti Podniku]. Ph.D. Thesis, Economic University in Bratislava, Bratislava, Slovakia, 2009. [Google Scholar]
- Mihalovič, M. Performance Comparison of Multiple Discriminant Analysis and Logit Models in Bankruptcy Prediction. Econ. Sociol. 2016, 9, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Jenčová, S.; Štefko, R.; Vašaničová, P. Scoring Model of the Financial Health of the Electrical Engineering Industry’s Non-Financial Corporations. Energies 2020, 13, 4364. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T. Logit and Probit Application for the Prediction of Bankruptcy in Slovak Companies. Equilib. Q. J. Econ. Econ. Policy 2017, 12, 775–791. [Google Scholar] [CrossRef]
- Štefko, R.; Horváthová, J.; Mokrišová, M. Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses. J. Risk Financial Manag. 2020, 13, 212. [Google Scholar] [CrossRef]
- Lozinskaia, A.; Merikas, A.; Merika, A.; Penikas, H. Determinants of the Probability of Default: The Case of the Internationally Listed Shipping Corporations. Marit. Policy Manag. 2017, 44, 837–858. [Google Scholar] [CrossRef]
- Berent, T.; Bławat, B.; Dietl, M.; Krzyk, P.; Rejman, R. Firm’s Default—New Methodological Approach and Preliminary Evidence from Poland. Equilibrium 2017, 12, 753–773. [Google Scholar] [CrossRef] [Green Version]
- Noga, T.; Adamowicz, K. Forecasting Bankruptcy in the Wood Industry. Eur. J. Wood Wood Prod. 2021, 79, 735–743. [Google Scholar] [CrossRef]
- Hajdu, O.; Virág, M. A Hungarian Model For Predicting Financial Bankruptcy. Társad. És Gazd. Közép-És Kelet-Európában Soc. Econ. Cent. East. Eur. 2001, 23, 28–46. [Google Scholar]
- Virág, M.; Kristóf, T. Neural Networks in Bankruptcy Prediction—A Comparative Study on the Basis of the First Hungarian Bankruptcy Model. Acta Oeconomica 2005, 55, 403–426. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, E.; Suvas, A. International Applicability of Corporate Failure Risk Models Based on Financial Statement Information: Comparisons across European Countries. J. Financ. Econ. 2013, 1, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Grünberg, M.; Lukason, O. Predicting Bankruptcy of Manufacturing Firms. Int. J. Trade Econ. Financ. 2014, 5, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Delina, R.; Packová, M. Validation of Predictive Bankruptcy Models in the Conditions of the Slovak Republic [Validácia Predikčných Bankrotových Modelov v Podmienkach SR]. Ekon. Manag. 2013, 16, 101–112. [Google Scholar]
- Harumova, A.; Janisova, M. Rating Slovak Enterprises by Scoring Functions. Ekon. Cas. 2014, 62, 522–539. [Google Scholar]
- Gulka, M. Bankruptcy prediction model of commercial companies operating in the conditions of the Slovak Republic [Model predikcie úpadku obchodných spoločností podnikajúcich v podmienkach SR]. Forum Stat. Slovacum 2016, 12, 16–22. [Google Scholar]
- Durica, M.; Valaskova, K.; Janošková, K. Logit Business Failure Prediction in V4 Countries. Eng. Manag. Prod. Serv. 2019, 11, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Kovacova, M.; Kliestik, T.; Valaskova, K.; Durana, P.; Juhaszova, Z. Systematic Review of Variables Applied in Bankruptcy Prediction Models of Visegrad Group Countries. Oeconomia Copernic. 2019, 10, 743–772. [Google Scholar] [CrossRef] [Green Version]
- Prusak, B. Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries. Int. J. Financ. Stud. 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Durica, M.; Frnda, J.; Svabova, L. Decision Tree Based Model of Business Failure Prediction for Polish Companies. Oeconomia Copernic. 2019, 10, 453–469. [Google Scholar] [CrossRef]
- Adamko, P.; Kliestik, T. Proposal for a Bankruptcy Prediction Model with Modified Definition of Bankruptcy for Slovak Companies. In Proceedings of the 2nd Multidisciplinary Conference, Madrid, Spain, 2–4 November 2016; pp. 1–7. [Google Scholar]
- Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y. The Truth of the F-Measure. Sch. Comput. Sci. 2007, 5. Available online: https://www.cs.odu.edu/~mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf (accessed on 18 January 2022).
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-54835-6. [Google Scholar]
- Chow, J.C.K. Analysis of Financial Credit Risk Using Machine Learning. Ph.D. Thesis, Aston University, Birmingham, UK, 2017. [Google Scholar]
- Pestov, V. Is the K-NN Classifier in High Dimensions Affected by the Curse of Dimensionality? Comput. Math. Appl. 2013, 65, 1427–1437. [Google Scholar] [CrossRef]
- D’Haultfœuille, X.; Iaria, A. A Convenient Method for the Estimation of the Multinomial Logit Model with Fixed Effects. Econ. Lett. 2016, 141, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Frölich, M. Non-parametric Regression for Binary Dependent Variables. Econ. J. 2006, 9, 511–540. [Google Scholar] [CrossRef]
- Sopitpongstorn, N.; Silvapulle, P.; Gao, J. Local Logit Regression for Recovery Rate; Social Science Research Network: Rochester, NY, USA, 2017. [Google Scholar]
- Valencia, C.; Cabrales, S.; Garcia, L.; Ramirez, J.; Calderona, D. Generalized Additive Model with Embedded Variable Selection for Bankruptcy Prediction: Prediction versus Interpretation. Cogent Econ. Financ. 2019, 7, 1597956. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G. A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm. Math. Probl. Eng. 2013, 2013, e753251. [Google Scholar] [CrossRef]
- Adamko, P.; Klieštik, T.; Kováčová, M. An GLM Model for Prediction of Crisis in Slovak Companies. In Economics and Management: How to Cope With Disrupted Times, Proceedings of the 2nd International Scientific Conference—EMAN 2018, Ljublana, Slovenia, 22 March 2018; Association of Economists and Managers of the Balkans: Belgrade, Serbia, 2018; pp. 223–228. [Google Scholar]
- Lukason, O.; Laitinen, E.K. Failure of Exporting and Non-Exporting Firms: Do the Financial Predictors Vary? Rev. Int. Bus. Strategy 2018, 28, 317–330. [Google Scholar] [CrossRef]
- Kliestik, T.; Vrbka, J.; Rowland, Z. Bankruptcy Prediction in Visegrad Group Countries Using Multiple Discriminant Analysis. Equilibrium 2018, 13, 569–593. [Google Scholar] [CrossRef]
- Lukason, O.; Laitinen, E.K.; Suvas, A. Failure Processes of Young Manufacturing Micro Firms in Europe. Manag. Decis. 2016, 54, 1966–1985. [Google Scholar] [CrossRef]
- Frank, M.Z.; Goyal, V.K. The Profits–Leverage Puzzle Revisited. Rev. Financ. 2015, 19, 1415–1453. [Google Scholar] [CrossRef] [Green Version]
- Alnori, F. Exploring Nonlinear Linkage between Profitability and Leverage: US Multinational versus Domestic Corporations. J. Int. Financ. Manag. Account. 2021, 32, 311–335. [Google Scholar] [CrossRef]
- Stryckova, L. The Relationship Between Company Returns and Leverage Depending on the Business Sector: Empirical Evidence from the Czech Republic. J. Compet. 2017, 9, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.T.; Hoang, L.T.; Phi, T.K.; Nguyen, M.T.; Phan, M.Q. The Influence of the Debt Ratio and Enterprise Performance of Joint Stock Companies of Vietnam National Coal and Mineral Industries Holding Corp. J. Asian Financ. Econ. Bus. 2020, 7, 803–810. [Google Scholar] [CrossRef]
Financial Variables (Expressed by Formula) | Total Number | Authors |
---|---|---|
current assets/ current liabilities | 5 | Pisula (2012) [4], Harumova and Janisova (2014) [43], Brozyna et al. (2016) [2], Kovacova and Kliestik (2017) [33], Durica et al. (2019) [45] |
equity/total assets | 5 | Hurtošová (2009) [30], Grünberg and Lukason (2014) [41], Gulka (2016) [44], Kovacova and Kliestik (2017) [33], Geise et al. (2021) [1] |
total debt/total assets | 4 | Pisula (2012) [4], Kovacova and Kliestik (2017) [33], Durica et al. (2019) [45], Geise et al. (2021) [1] |
current assets/total assets | 4 | Virág and Kristóf (2005) [39], Balina and Juszczyk (2014) [3], Grünberg and Lukason (2014) [41], Geise et al. (2021) [1] |
(current assets-inventory)/ current liabilities | 2 | Virág and Kristóf (2005) [39], Jenčová et al. (2020) [32] |
cash and cash equivalents/ short-term liabilities | 2 | Brozyna et al. (2016) [2], Vochodzka et al. (2015) [27] |
sales/total assets | 2 | Harumova and Janisova (2014) [43], Durica et al. (2019) [45] |
(inventory/sales)*360 | 2 | Hurtošová (2009) [30], Jakubík and Teplý (2011) [25] |
total debt/equity | 2 | Jakubík and Teplý (2011) [25], Balina and Juszczyk (2014) [3] |
cash flow/total debt | 2 | Virág and Kristóf (2005) [39], Delina and Packová (2013) [42] |
EBITDA/sales | 2 | Harumova and Janisova (2014) [43], Jenčová et al. (2020) [32] |
№ | ID | Type | Financial Variable | Formula |
---|---|---|---|---|
1 | X01 | activity | asset turnover ratio | sales/total assets |
2 | X16 | activity | current assets to sales ratio | current assets/sales |
3 | X18 | activity | inventory to sales ratio | inventories/sales |
4 | X32 | activity | net assets turnover ratio | net sales/total assets |
5 | X38 | activity | total liabilities to sales ratio | total liabilities/sales |
6 | X06 | leverage | debt to EBITDA ratio | total liabilities/EBITDA |
7 | X10 | leverage | debt ratio | total liabilities/total assets |
8 | X11 | leverage | current assets to total assets ratio | current assets/total assets |
9 | X14 | leverage | solvency ratio | cash flow/total liabilities |
10 | X15 | leverage | short-term debt ratio | current liabilities/total assets |
11 | X21 | leverage | long-term debt ratio | non-current liabilities/total assets |
12 | X02 | liquidity | current ratio | current assets/current liabilities |
13 | X12 | liquidity | cash to total assets ratio | cash and cash equivalents/total assets |
14 | X22 | liquidity | cash ratio | cash and cash equivalents/current liabilities |
15 | X23 | liquidity | operating cash flow ratio | cash flow/current liabilities |
16 | X26 | liquidity | quick ratio | (current assets—stock)/current liabilities |
17 | X36 | liquidity | net working capital | current assets—current liabilities |
18 | X04 | profitability | ROE | net income/shareholder’s equity |
19 | X05 | profitability | EBITDA margin | EBITDA/sales |
20 | X07 | profitability | ROA | net income/total assets |
21 | X09 | profitability | ROTA | EBIT/total assets |
22 | X13 | profitability | Cash ROA | cash flow/total assets |
23 | X19 | profitability | free cash flow to sales ratio | cash flow/sales |
24 | X20 | profitability | net profit margin | net income/sales |
25 | X28 | profitability | ROE (of EBIT) | EBIT/shareholder’s equity |
26 | X31 | profitability | cash flow to operating revenue ratio | cash flow/EBIT |
27 | X35 | profitability | EBIT margin | EBIT/sales |
Country | The Year 2017 | The Year 2018 | ||||||
---|---|---|---|---|---|---|---|---|
Number | % | Number | % | |||||
Non-Failed | Failed | Non-Failed | Failed | Non-Failed | Failed | Non-Failed | Failed | |
SK | 122,946 | 32,178 | 79.26 | 20.74 | 122,846 | 32,278 | 79.19 | 20.81 |
CZ | 76,634 | 20,845 | 78.62 | 21.38 | 76,633 | 20,846 | 78.61 | 21.39 |
PL | 59,780 | 8 487 | 87.57 | 12.43 | 59,579 | 8 688 | 87.27 | 12.73 |
HU | 298,713 | 47,999 | 86.16 | 13.84 | 299,189 | 47,523 | 86.29 | 13.71 |
Total | 558,073 | 109,509 | 83.60 | 16.40 | 558,247 | 109,335 | 83.62 | 16.38% |
Model Composition | Non-Failed | Failed | Size of Balanced Sample in the Fold | ||||||
---|---|---|---|---|---|---|---|---|---|
Pass | Discard | Discard [%] | Pass | Discard | Discard [%] | Total | Training Sub-Sample | Validation Sub-Sample | |
X10 | 551,191 | 6882 | 1.23 | 107,577 | 1932 | 1.76 | 215,154 | 172,123 | 43,031 |
X10–X07 | 530,645 | 27,428 | 4.91 | 103,307 | 6202 | 5.66 | 206,614 | 165,291 | 41,323 |
X10 … X15 | 530,627 | 27,446 | 4.92 | 103,006 | 6503 | 5.94 | 206,012 | 164,810 | 41,202 |
X10 … X04 | 528,027 | 30,046 | 5.38 | 101,336 | 8173 | 7.46 | 202,672 | 162,138 | 40,534 |
X10 … X27 | 436,550 | 121,523 | 21.78 | 52,597 | 56,912 | 51.97 | 105,194 | 84,155 | 21,039 |
X10 … X25 | 352,144 | 205,929 | 36.90 | 48,531 | 60,978 | 55.68 | 97,062 | 77,650 | 19,412 |
X10 … X23 | 268,616 | 289,457 | 51.87 | 26,920 | 82,589 | 75.42 | 53,840 | 43,072 | 10,768 |
X10 … X11 | 253,060 | 305,013 | 54.65 | 23,388 | 86,121 | 78.64 | 46,776 | 37,421 | 9355 |
GLM No. | ACC | F1 Score | MCC | AUC | β0 | β1 | β2 | AUC Rank | MCC Rank | Total Rank |
---|---|---|---|---|---|---|---|---|---|---|
4. | 0.8947 | 0.8871 | 0.7966 | 0.9478 | −1.7661 | −0.5523 | 1.7696 | 2 | 1 | 1 |
24. | 0.8825 | 0.8720 | 0.7754 | 0.9482 | −1.6368 | −0.5797 | 1.6073 | 1 | 6 | 2 |
48. | 0.8828 | 0.8725 | 0.7757 | 0.9468 | −1.6535 | −0.5734 | 1.6269 | 10 | 5 | 3 |
22. | 0.8777 | 0.8656 | 0.7681 | 0.9468 | −1.5586 | −0.5802 | 1.5052 | 7 | 10 | 4 |
37. | 0.8869 | 0.8780 | 0.7823 | 0.9461 | −1.7207 | −0.5044 | 1.7184 | 17 | 4 | 5 |
40. | 0.8900 | 0.8822 | 0.7871 | 0.9459 | −1.7719 | −0.5747 | 1.7792 | 20 | 3 | 6 |
11. | 0.8743 | 0.8615 | 0.7617 | 0.9468 | −1.5910 | −0.5597 | 1.5420 | 11 | 12 | 7 |
7. | 0.8707 | 0.8569 | 0.7554 | 0.9468 | −1.5255 | −0.5993 | 1.4640 | 8 | 16 | 8 |
17. | 0.8738 | 0.8609 | 0.7609 | 0.9468 | −1.5368 | −0.6397 | 1.4771 | 12 | 14 | 9 |
45. | 0.8659 | 0.8503 | 0.7483 | 0.9469 | −1.4876 | −0.5928 | 1.4108 | 5 | 24 | 10 |
… | … | … | … | … | … | … | … | … | … | … |
Financial Variable | Type | ID | Coefficient | Type of Statistic | Estimate | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
Intercept | - | - | β0 | Average | −1.554 | 0.012 | −127.509 | 0.000 |
Maximum | −1.080 | 0.014 | −105.480 | 0.000 | ||||
Minimum | −1.900 | 0.010 | −139.950 | 0.000 | ||||
ROA | profitability | X07 | β1 | Average | −0.574 | 0.016 | −34.910 | <0.001 |
Maximum | −0.469 | 0.018 | −28.916 | <0.001 | ||||
Minimum | −0.653 | 0.015 | −41.890 | <0.001 | ||||
Debt ratio | leverage | X10 | β2 | Average | 1.500 | 0.012 | 120.313 | 0.000 |
Maximum | 1.943 | 0.015 | 132.870 | 0.000 | ||||
Minimum | 0.904 | 0.009 | 99.748 | 0.000 |
Model | Accuracy | Sensitivity | Specificity | F1 Score | MCC | AUC |
---|---|---|---|---|---|---|
Slovakia | 0.9182 | 0.7967 | 0.9501 | 0.8021 | 0.7506 | 0.9434 |
Czechia | 0.9341 | 0.8151 | 0.9665 | 0.8411 | 0.8003 | 0.9477 |
Poland | 0.9485 | 0.7829 | 0.9727 | 0.7948 | 0.7655 | 0.9509 |
Hungary | 0.9481 | 0.8240 | 0.9678 | 0.8131 | 0.7830 | 0.9542 |
Visegrad group | 0.9391 | 0.8110 | 0.9642 | 0.8136 | 0.7773 | 0.9507 |
Authors | Year | Country | Formula for Exponent | Variables |
---|---|---|---|---|
Zmijewski marked: Zmijewski | 1984 | USA | net income/total assets (X07), total liabilities/total assets (X10), current assets/current liabilities (X02) | |
Durica, Valaskova and Janoskova marked: Durica | 2019 | V4 | sales/total assets (X01), current assets/total assets (X11), current liabilities/total assets (X15), total liabilities/total assets (X10), cash and cash equivalents/total assets (X12), inventories/sales (X18), non-current liabilities/total assets (X21), current assets/current liabilities (X02), (current assets—stock)/current liabilities (X26), EBIT/total assets (X09), EBIT/shareholder’s equity (X28), EBIT/sales (X35), current assets—current liabilities (X36), dummy variables: Czech Rep. (CZ), Hungary (HU), Poland (PL), Small size company (SS), Large or very large company (LS) | |
Kliestik, Vrbka and Rowland marked: Kliestik | 2018 | V4 | current assets/current liabilities (X02), net income/shareholder´s equity (X04), net income/total assets (X07), total liabilities/total assets (X10), current assets/total assets (X11), cash and cash equivalents/total assets (X12), current liabilities/total assets (X15), cash and cash equivalents/current liabilities (X22), EBIT/total assets (X09), EBIT/shareholder’s equity (X28), EBIT/sales (X35), dummy variables: Czech Republic (CZ), Slovak Republic (SK) | |
Lukason and Laitinen marked: Lukason | 2018 | FR | cash and cash equivalents/current liabilities (X22), cash flow/total liabilities (X14), total liabilities/total assets (X10), sales/total assets (X01), EBIT/total assets (X09) | |
Adamko, Kliestik and Kovacova marked: Adamko | 2018 | SK | current assets/total assets (X11), current liabilities/total assets (X15), EBIT/total assets (X09), total liabilities/ total assets (X10), cash flow/total liabilities (X14) | |
Proposed Logit Model | 2021 | V4 | net income/total assets (X07), total liabilities/ total assets (X10) |
Model | Number of Predictors | Accuracy | Sensitivity | Specificity | F1 Score | MCC | AUC |
---|---|---|---|---|---|---|---|
Zmijewski | 3 | 0.8456 | 0.9309 | 0.8289 | 0.6638 | 0.6162 | 0.9447 |
Durica | 17 | 0.7855 | 0.8431 | 0.7742 | 0.5628 | 0.4870 | 0.8822 |
Kliestik | 13 | 0.7032 | 0.9290 | 0.6589 | 0.5062 | 0.4386 | 0.9030 |
Lukason | 5 | 0.8326 | 0.9052 | 0.8184 | 0.6392 | 0.5843 | 0.9238 |
Adamko | 4 | 0.8481 | 0.8592 | 0.8459 | 0.6494 | 0.5880 | 0.9196 |
Logit Model | 2 | 0.9391 | 0.8110 | 0.9642 | 0.8136 | 0.7773 | 0.9507 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlicko, M.; Mazanec, J. Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group. Mathematics 2022, 10, 1302. https://doi.org/10.3390/math10081302
Pavlicko M, Mazanec J. Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group. Mathematics. 2022; 10(8):1302. https://doi.org/10.3390/math10081302
Chicago/Turabian StylePavlicko, Michal, and Jaroslav Mazanec. 2022. "Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group" Mathematics 10, no. 8: 1302. https://doi.org/10.3390/math10081302
APA StylePavlicko, M., & Mazanec, J. (2022). Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group. Mathematics, 10(8), 1302. https://doi.org/10.3390/math10081302