Investigation of 2D Seismic DDA Method for Numerical Simulation of Shaking Table Test of Rock Mass Engineering
Abstract
:1. Introduction
2. A Brief Description of 2D DDA Method and Its Open-Source Program
2.1. Motion Equations Based on Newmark Integration Scheme
2.2. Open-Source Program of 2D DDA
3. Seismic Wave Pre-Processing Based on Newmark Integration Scheme for DDA Program
3.1. Pre-processing Method
- (a)
- The initial values of acceleration, velocity, and displacement must be zero.
- (b)
- The termination values of acceleration, velocity, and displacement must be equal to −am, −vm, and −dm, respectively, which are the opposite of the termination value of seismic action.
3.2. Example Verification
4. Seismic Input Method in the DDA Program
4.1. Multi-Blocks Newmark Method
4.2. Large Mass Method
4.3. Large Stiffness Method
4.4. Example Verification
5. Simulation of a Shaking Table Test Using the Seismic DDA Method
5.1. A Brief of the Shaking Table Test
5.2. Numerical Simulation
5.3. Results Analysis
5.3.1. Seismic Input Method
5.3.2. Boundary Condition
5.3.3. Comparisons of Responded Acceleration of Rock Mass
5.3.4. Analysis of Propagation Law of Seismic Wave
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.Q.; Sheng, Q.; Li, N.N.; Fu, X.D. The Dynamic Mechanical Properties of a Hard Rock Under True Triaxial Damage-Controlled Dynamic Cyclic Loading with Different Loading Rates: A Case Study. Rock Mech. Rock Eng. 2022, 55, 1–12. [Google Scholar] [CrossRef]
- Song, D.Q.; Chen, Z.; Ke, Y.; Nie, W. Seismic response analysis of a bedding rock slope based on the time-frequency joint analysis method: A case study from the middle reach of the Jinsha River, China. Eng. Geol. 2020, 274, 105731. [Google Scholar] [CrossRef]
- Tavakoli, H.; Kutanaei, S.S.; Hosseini, S.H. Assessment of seismic amplification factor of excavation with support system. Earthq. Eng. Eng. Vib. 2019, 18, 555–566. [Google Scholar] [CrossRef]
- Barbero, M.; Barla, G. Stability Analysis of a Rock Column in Seismic Conditions. Rock Mech. Rock Eng. 2010, 43, 845–855. [Google Scholar] [CrossRef]
- Postma, T.; Jansen, J.D. The Small Effect of Poroelastic Pressure Transients on Triggering of Production-Induced Earthquakes in the Groningen Natural Gas Field. J. Geophys. Res. Solid Earth 2018, 123, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Varghese, R.; Boominathan, A.; Banerjee, S. Investigation of pile-induced filtering of seismic ground motion considering embedment effect. Earthq. Eng. Struct. Dyn. 2021, 50, 3201–3219. [Google Scholar] [CrossRef]
- Pang, R.; Song, L.F. Stochastic Dynamic Response Analysis of the 3D Slopes of Rockfill Dams Based on the Coupling Randomness of Strength Parameters and Seismic Ground Motion. Mathematics 2021, 9, 3256. [Google Scholar] [CrossRef]
- Liu, J.W.; Yong, W.A.; Liu, J.X.; Guo, Z.W. Stable Finite-Difference Methods for Elastic Wave Modeling with Characteristic Boundary Conditions. Mathematics 2020, 8, 1039. [Google Scholar] [CrossRef]
- Shi, G.H.; Goodman, R.E. Two dimensional discontinuous deformation analysis. Int. J. Numer. Anal. Methods Geomech. 1985, 9, 541–556. [Google Scholar] [CrossRef]
- Shi, G.H.; Goodman, R.E. Discontinuous Deformation Analysis—A New Method Forcomputing Stress, Strain And Sliding Of Block Systems. In Proceedings of the The 29th U.S. Symposium on Rock Mechanics (USRMS), Minneapolis, MN, USA, 13–15 June 1988. ARMA-88-0381. [Google Scholar]
- Shi, G.H.; Goodman, R.E. Generalization of two-dimensional discontinuous deformation analysis for forward modelling. Int. J. Numer. Anal. Methods Geomech. 1989, 13, 359–380. [Google Scholar] [CrossRef]
- Ma, M. Development of discontinuous deformation analysis: The first ten years (1986–1996). In Proceedings of the ICADD-3, Third International Conference of Analysis of Discontinuous Deformation, Vail, CO, USA, 3–4 June 1999; pp. 17–32. [Google Scholar]
- MacLaughlin, M.M.; Doolin, D.M. Review of validation of the discontinuous deformation analysis (DDA) method. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 271–305. [Google Scholar] [CrossRef]
- Yagoda-Biran, G.; Hatzor, Y.H. Benchmarking the numerical Discontinuous Deformation Analysis method. Comput. Geotech. 2016, 71, 30–46. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhao, Z.Y.; Ma, S.Q. Simulating stress wave with flat-top partition of unity based high-order discontinuous deformation analysis. Eng. Anal. Bound. Elem. 2018, 91, 110–123. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zheng, L.; Zhang, Y.B.; Wu, J. Numerical Simulation in Rockfall Analysis: A Close Comparison of 2-D and 3-D DDA. Rock Mech. Rock Eng. 2013, 46, 527–541. [Google Scholar] [CrossRef]
- Bakun-Mazor, D.; Hatzor, Y.H.; Dershowitz, W.S. Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks. Int. J. Rock. Mech. Min. 2009, 46, 262–271. [Google Scholar] [CrossRef]
- Fu, X.D.; Sheng, Q.; Zhang, Y.H.; Chen, J.; Zhang, S.K.; Zhang, Z.P. Computation of the safety factor for slope stability using discontinuous deformation analysis and the vector sum method. Comput. Geotech. 2017, 92, 68–76. [Google Scholar] [CrossRef]
- Wu, J.H.; Chen, C.H. Application of DDA to simulate characteristics of the Tsaoling landslide. Comput. Geotech. 2011, 38, 741–750. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Chen, G.Q.; Zheng, L.; Li, Y.G.; Wu, J. Effects of near-fault seismic loadings on run-out of large-scale landslide: A case study. Eng. Geol. 2013, 166, 216–236. [Google Scholar] [CrossRef]
- Fu, X.D.; Sheng, Q.; Li, G.; Zhang, Z.P.; Zhou, Y.Q.; Du, Y.X. Analysis of landslide stability under seismic action and subsequent rainfall: A case study on the Ganjiazhai giant landslide along the Zhaotong-Qiaojia road during the 2014 Ludian earthquake, Yunnan, China. Bull. Eng. Geol. Environ. 2020, 79, 5229–5248. [Google Scholar] [CrossRef]
- Huang, D.; Meng, Q.J.; Song, Y.X.; Cui, S.H.; Cen, D.F. Dynamic process analysis of the Niumiangou landslide triggered by the Wenchuan earthquake using the finite difference method and a modified discontinuous deformation analysis. J. Mt. Sci. 2021, 18, 1034–1048. [Google Scholar] [CrossRef]
- Wang, J.M.; Zhang, Y.B.; Chen, Y.L.; Wang, Q.D.; Xiang, C.L.; Fu, H.Y.; Wang, P.; Zhao, J.X.; Zhao, L.H. Back-analysis of Donghekou landslide using improved DDA considering joint roughness degradation. Landslides 2021, 18, 1925–1935. [Google Scholar] [CrossRef]
- Shyu, K.; Salami, M.R. Stability of bartlett dam. In Proceedings of the 1st International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, CA, USA, 12–14 June 1996; pp. 440–446. [Google Scholar]
- Kong, X.J.; Liu, J. Dynamic failure numeric simulations of model concrete-faced rock-fill dam. Soil Dyn. Earthq. Eng. 2002, 22, 1131–1134. [Google Scholar] [CrossRef]
- Kaidi, S.; Ouahsine, A.; Sergent, P.; Rouainia, M. Analyse des déformations discontinues pour lʼévaluation de la stabilité des digues en enrochements sous chargement sismique. C. R. Mec. 2012, 340, 731–738. [Google Scholar] [CrossRef]
- Hsiung, S.M.; Shi, G.-H. Simulation of Earthquake Effects On Underground Excavations Using Discontinuous Deformation Analysis (DDA). In Proceedings of the DC Rocks 2001, The 38th U.S. Symposium on Rock Mechanics (USRMS), Washington, DC, USA, 7–10 July 2001. ARMA-01-1413. [Google Scholar]
- Zhang, Y.H.; Fu, X.D.; Sheng, Q. Modification of the discontinuous deformation analysis method and its application to seismic response analysis of large underground caverns. Tunn. Undergr. Space Technol. 2014, 40, 241–250. [Google Scholar] [CrossRef]
- Ma, M.Y.; Yeung, M.R. Seismic response of a waste repository by discontinuous deformation analysis. In Proceedings of the Second International Conference on Discrete Element Methods, MIT, Cambridge, MA, USA, 17–18 March 1993; pp. 499–509. [Google Scholar]
- Nishiyama, S.; Ohnishi, Y.; Yanagawa, T.; Seki, F.; Ikeya, S. Study on stability of retaining wall of masonry type by using discontinuous deformation analysis. In Proceedings of the ISRM international symposium 3rd ARMS. Millpress, Kyoto, Japan, 30 November–2 December 2004; pp. 1221–1226. [Google Scholar]
- Kamai, R.; Hatzor, Y.H. Numerical analysis of block stone displacements in ancient masonry structures: A new method to estimate historic ground motions. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1321–1340. [Google Scholar] [CrossRef]
- Yagoda-Biran, G.; Hatzor, Y.H. Constraining paleo PGA values by numerical analysis of overturned columns. Earthq. Eng. Struct. Dyn. 2010, 39, 463–472. [Google Scholar] [CrossRef]
- Bao, H.R.; Yagoda-Biran, G.; Hatzor, Y.H. Site response analysis with two-dimensional numerical discontinuous deformation analysis method. Earthq. Eng. Struct. Dyn. 2014, 43, 225–246. [Google Scholar] [CrossRef]
- Akao, S.; Ohnishi, Y.; Nishiyama, S.; Nishimura, T. Comprehending DDA for a block behavior under dynamic condition. In Proceedings of the Eighth International Conference on Analysis of Discontinuous Deformation: Fundamentals and Applications to Mining and Civil Engineering, Beijing, China, 14–19 August 2007; pp. 135–140. [Google Scholar]
- Sasaki, T.; Hagiwara, I.; Sasaki, K.; Ohnishi, Y.; Ito, H. Fundamental studies for dynamic response of simple block structures by DDA. In Proceedings of the Eighth International Conference on the Analysis of Discontinuous Deformation, Beijing, China, 14–19 August 2007; pp. 141–146. [Google Scholar]
- Shimaoka, K.; Koyama, T.; Nishiyama, S. The Earthquake response analysis of rock slopes by Discontinuous Deformation Analysis(DDA). In Proceedings of the International Mini-Symposium for Numerical Discontinuous Analyses, Kona, HI, USA, 21 November 2008; pp. 31–40. [Google Scholar]
- Irie, K.; Koyama, T.; Nishiyama, S.; Yasuda, Y.; Ohnishi, Y. A numerical study on the effect of shear resistance on the landslide by Discontinuous Deformation Analysis (DDA). Geomech. Geoeng. 2012, 7, 57–68. [Google Scholar] [CrossRef]
- Feng, X.X.; Jiang, Q.H.; Zhang, H.C.; Zhang, X.B. Study on the dynamic response of dip bedded rock slope using discontinuous deformation analysis (DDA) and shaking table tests. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 411–427. [Google Scholar] [CrossRef]
- Shi, G.H. Three Dimensional Discontinuous Deformation Analyses. In Proceedings of the DC Rocks 2001, The 38th U.S. Symposium on Rock Mechanics (USRMS), Washington, DC, USA, 7–10 July 2001. ARMA-01-1421. [Google Scholar]
- Shi, G.H. Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chin. J. Rock Mech. Eng. 2006, 25, 2161–2170. [Google Scholar]
- Shi, G.H. Contact theory and algorithm. Sci. China Technol. Sci. 2021, 64, 1775–1790. [Google Scholar] [CrossRef]
- Newmark, N.M. A Method of Computation for Structural Dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Belytschko, T. An overview of semidiscretization and time integration procedures. In Computational Methods for Transient Analysis(A 84-29160 12-64); North-Holland: Amsterdam, The Netherlands, 1983; pp. 1–65. [Google Scholar]
- MacLaughlin, M.M.; Doolin, D.M. DDA for Windows—Version 1.1 for Windows 95 and NT. 1998. Available online: http://computing.civil.gla.ac.uk/packages/dda/manual/ddamanual.html#analysis (accessed on 1 March 2022).
- Ohnishi, Y.; Chen, G.G.; Miki, S. Recent development of DDA in rock mechanics. Proc. ICADD 1995, 1, 26–47. [Google Scholar]
- Ke, T.C.; Goodman, R.E. Discontinuous Deformation Analysis and ‘The Artificial Joint Concept’. In Proceedings of the 1st North American Rock Mechanics Symposium, Austin, TX, USA, 1–3 June 1994. ARMA-1994-0599. [Google Scholar]
- Lin, C.T.; Amadei, B.; Jung, J.; Dwyer, J. Extensions of discontinuous deformation analysis for jointed rock masses. Int. J. Rock. Mech. Min. 1996, 33, 671–694. [Google Scholar] [CrossRef]
- Doolin, D.M.; Sitar, N. DDAML—Discontinuous deformation analysis markup language. Int. J. Rock. Mech. Min. 2001, 38, 467–474. [Google Scholar] [CrossRef]
- He, C.Y. Redevelopment of DDA program and its application. Rock Soil Mech. 2008, 29, 166–170. [Google Scholar]
- Zheng, H.; Jiang, W. Discontinuous deformation analysis based on complementary theory. Sci. China Ser. E Technol. Sci. 2009, 52, 2547–2554. [Google Scholar] [CrossRef]
- Khan, M. Investigation of Discontinuous Deformation Analysis for Application in Jointed rRock Masses. Ph.D. Thesis, Department of Civil Engineering, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Zhao, G.F.; Khalili, N.; Zhao, X.; Tu, X.B. Development of Graphic User Interface for Discontinues Deformation Analysis (DDA); CRC Press: Boca Raton, FL, USA, 2012; pp. 175–180. [Google Scholar]
- Jiao, Y.Y.; Zhang, X.L.; Zhao, J. Two-Dimensional DDA Contact Constitutive Model for Simulating Rock Fragmentation. J. Eng. Mech-Asce. 2012, 138, 199–209. [Google Scholar] [CrossRef]
- Cheng, X.L.; Miao, Q.H.; Wang, Y.; Xiao, J. Design and implementation of software architecture for DDA. In Proceedings of the 11th International Conference on Discontinuous Deformation Analysis, Fukuoka, Japan, 27 August 2013; pp. 147–152. [Google Scholar]
- Boyce, W.H. Integration of Accelerograms. Bull. Seismol. Soc. Am. 1970, 60, 261–263. [Google Scholar] [CrossRef]
- Boore, D.M.; Stephens, C.D.; Joyner, W.B. Comments on Baseline Correction of Digital Strong-Motion Data: Examples from the 1999 Hector Mine, California, Earthquake. Bull. Seismol. Soc. Am. 2002, 92, 1543–1560. [Google Scholar] [CrossRef]
- Chiu, H.C. A Compatible Baseline Correction Algorithm for Strong-Motion Data. Terr. Atmospheric Ocean. Sci. 2012, 23, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.J.; Zhao, Z.Y. A detailed investigation of block dynamic sliding by the discontinuous deformation analysis. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 2373–2393. [Google Scholar] [CrossRef]
- Fu, X.D.; Sheng, Q.; Zhang, Y.H.; Zhou, Y.Q.; Dai, F. Boundary setting method for the seismic dynamic response analysis of engineering rock mass structures using the discontinuous deformation analysis method. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 1693–1712. [Google Scholar] [CrossRef]
- Fu, X.D.; Sheng, Q.; Zhang, Y.H.; Chen, J.; Leng, X.L. Extension of the Discontinuous Deformation Analysis Method to Simulate Seismic Response of a Large Rock Cavern Complex. Int. J. Geomech. 2017, 17, E4016008. [Google Scholar] [CrossRef]
- Liu, X.M.; Sheng, Q.; Chen, J.; Ke, W.H.; Yang, J.H. Seismic shaking table test for large-scale underground cavern group (II): Test scheme. Rock Soil Mech. 2015, 80, 155–170. [Google Scholar]
- Fu, X.D.; Sheng, Q.; Zhang, Y.H.; Chen, J. Application of the discontinuous deformation analysis method to stress wave propagation through a one-dimensional rock mass. Int. J. Rock. Mech. Min. 2015, 80, 155–170. [Google Scholar] [CrossRef]
Code Version | Language | Developer | Remarks |
---|---|---|---|
DDA’1986 | BASIC | Shi G.H. | The first DDA code |
DDA’1989 | C/PC | Shi G.H. | The first C DDA code |
DDA’1992 | C/UNIX | Shi G.H. | The first X-windows DDA code |
DDA’1994 | C/UNIX | Shi G.H. | Cohesion, tensile strength and auto stiffness |
DDA’1995 | C/UNIX | Shi G.H. | Correction of shear lock and rotation problem |
DDA/W’1995 | C/Win | MacLaughlin and Doolin [44] | The first DDA/Win DDA code |
DDA/WT’1995 | C/SUN | Ohnishi et al. [45] | Advanced, new functions, only on SUN |
DDA/AJ’1994 | FORTRAN | Ke and Goodman [46] | Artificial joint |
DDA/SB’1995 | FORTRAN | Lin et al. [47] | Sub-block, breakable block |
DDAML’2001 | XML | Doolin and Sitar [48] | Processing input files with XML |
HDDA’2008 | C, C++/Win | He [49] | Input CAD; enrich post-processing function |
CDDA’2009 | C/Win | Zheng and Jiang [50] | Complementary theory |
DDA-SC’2010 | C/Win | Khan [51] | Deformation joint model |
DDA/Zhao’2012 | C++/Win | Zhao et al. [52] | GUI based on shell concept |
DDARF’2012 | C, C++/Win | Jiao et al. [53] | Boundary or internal cracking algorithm |
easyDDA’2013 | C, C++/Win | Cheng et al. [54] | An easy-to-use GUI software |
Time/s | Acceleration/(m/s2) | Velocity/(m/s) | Displacement/m | |||
---|---|---|---|---|---|---|
Initial | Correction | Initial | Correction | Initial | Correction | |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | −0.114560 | −0.112080 | 0.081587 | 0.089092 | 0.025958 | 0.039160 |
10 | 0.432663 | 0.435038 | −0.088690 | −0.068190 | −0.227670 | −0.144980 |
15 | −0.01504 | −0.014340 | −0.139280 | −0.110660 | −0.175540 | 0.032970 |
20 | −0.03556 | −0.037090 | −0.105020 | −0.078490 | −0.144660 | 0.206531 |
25 | 0.184509 | 0.181186 | 0.027189 | 0.041156 | −0.198760 | 0.258175 |
30 | 0.448024 | 0.444370 | −0.086800 | −0.091100 | −0.207480 | 0.275434 |
35 | −0.054380 | −0.05590 | 0.019649 | 0.001206 | −0.391630 | 0.030864 |
40 | −0.004090 | 0 | 0.013603 | 0 | −0.330420 | 0 |
Materials | Density/(kg/m3) | Young’s Modulus/MPa | Poisson’s Ratio |
---|---|---|---|
Rock mass | 2800 | 172 | 0.25 |
Polystyrene foam board | 15 | 4.13 | 0.07 |
Steel | 7800 | 21,000 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Kang, J.; Sheng, Q.; Zheng, L.; Du, W.; Ding, H. Investigation of 2D Seismic DDA Method for Numerical Simulation of Shaking Table Test of Rock Mass Engineering. Mathematics 2022, 10, 1330. https://doi.org/10.3390/math10081330
Fu X, Kang J, Sheng Q, Zheng L, Du W, Ding H. Investigation of 2D Seismic DDA Method for Numerical Simulation of Shaking Table Test of Rock Mass Engineering. Mathematics. 2022; 10(8):1330. https://doi.org/10.3390/math10081330
Chicago/Turabian StyleFu, Xiaodong, Jingyu Kang, Qian Sheng, Lu Zheng, Wenjie Du, and Haifeng Ding. 2022. "Investigation of 2D Seismic DDA Method for Numerical Simulation of Shaking Table Test of Rock Mass Engineering" Mathematics 10, no. 8: 1330. https://doi.org/10.3390/math10081330
APA StyleFu, X., Kang, J., Sheng, Q., Zheng, L., Du, W., & Ding, H. (2022). Investigation of 2D Seismic DDA Method for Numerical Simulation of Shaking Table Test of Rock Mass Engineering. Mathematics, 10(8), 1330. https://doi.org/10.3390/math10081330