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Abstract: In this work, we investigate the oscillatory properties of the neutral differential equation
(r(l)[(s(l)+ p(l)s(g(l)))′]v)′+∑n

i=1 qi(l)sv(hi(l)) = 0, where s ≥ s0. We first present new monotonic
properties for the solutions of this equation, and these properties are characterized by an iterative
nature. Using these new properties, we obtain new oscillation conditions that guarantee that all solu-
tions are oscillate. Our results are a complement and extension to the relevant results in the literature.
We test the significance of the results by applying them to special cases of the studied equation.

Keywords: Emden–Fowler; neutral differential equations; oscillation; non-canonical

MSC: 34C10; 34K11

1. Introduction

It is natural to find an increasing interest in studying the qualitative behavior of
solutions of second-order neutral differential equations (NDE), due to the use of this
equation in the modeling of many important issues in engineering and physical sciences,
such as problems involving lossless transmission lines (as in high-speed computers where
such lines are used to interconnect switching circuits), population dynamics, automatic
control, mixing liquids, and vibrating masses attached to an elastic bar; see Hale [1].

The objective of this paper is to develop a new criterion for determining whether there
are solutions of the second-order NDE with several delays(

r ·
[
(s + p · (s ◦ g))′

]v)′
+

n

∑
i=1

qi · (sv ◦ hi) = 0, l ≥ l0. (1)

Throughout the paper, we assume that:

Hypothesis 1 (H1). v is a ratio of odd positive integer;
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Hypothesis 2 (H2). p, qi ∈ C([l0, ∞), [0, ∞)), p(l) < y(l)/y(g(l)), and qi does not vanish
identically, i = 1, 2, . . ., n;

Hypothesis 3 (H3). r ∈ C([l0, ∞),R+), y(l0) < ∞, where

y(l) :=
∫ ∞

l
r−1/v(ς)dς;

Hypothesis 4 (H4). g ∈ C([l0, ∞),R), hi ∈ C1([l0, ∞),R), g(l) ≤ l, hi(l) ≤ l, h′i(l) > 0
and liml→∞ g(l) = liml→∞ hi(l) = ∞.

First, let us assume that the corresponding function of the solution s is Z := s + p ·
s ◦ g. By a solution of (1), we mean a real-valued function s ∈ C([ls, ∞),R), ls > l0, with
r(l)(Z′(l))v ∈ C1[ls, ∞), and which satisfies Equation (1) on [ls, ∞). We consider only those
solutions s of (1) which satisfy

sup{|s(l)| : l > L} > 0, for all L ≥ ls.

As usual, a solution of (1) is called oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory.

Recently, a research movement was launched that aims to improve and develop
methods for studying the oscillation of solutions of NDEs. These research works can be
categorized in several ways. According to the order, equations of the second-order have
received the most attention, because the development in this type is in turn reflected in the
higher-orders. According to the operators, studies are divided into those with canonical or
non-canonical operators.

Agarwal et al. [2,3] Győri and Ladas [4] presented and summarized many methods,
techniques, and results about the oscillation of solutions of NDEs. Furthermore, the results
in [5–8] contributed to the development of oscillation theory for solutions of second-order
NDEs. The development of the study of oscillations for solutions of equations of higher
orders can be traced through works [9–12]. On the other hand, the development in the
study of the qualitative behavior of solutions of differential equations is reflected in the
study of the qualitative properties of fractional and difference equations, see [13–17].

For second-order equations with y(l0) = ∞, Baculikova and Dzurina [18], Grace et al. [19],
and Moaaz et al. [20,21] developed and improved many results and techniques for studying the
oscillation of certain classes of NDEs. Very recently, Jadlovská [22] introduced more efficient
and effective criteria for oscillation of second order NDEs.

For second-order equations with non-canonical operator y(l0) < ∞, Baculikova [5]
studied the oscillatory properties of a delay equation(

r · s′
)′
+ qi · (s ◦ h) = 0.

The results in [5] completed and improved the results in [23,24]. Han et al. [25], Agarwal
et al. [26] and Bohner et al. [27] discussed the issue of the oscillation of the solutions(

r ·
(
Z′
)v)′

+ qi · (sv ◦ h) = 0,

where Bohner’s results improved Agarwal’s results, as did Agarwal’s results with Han’s results.
In this paper, we obtain new oscillation conditions for the second-order NDE (1) in the

non-canonical case. We derive some qualitative features of the positive solutions of (1).
Moreover, we use the new features to obtain criteria that are of an iterative nature so that
they can be applied more than once while the relevant results fail.



Mathematics 2022, 10, 1356 3 of 11

2. Main Results

For the sake of brevity, we define the class S of all eventually positive solutions (1).
We also define h(l) := max{hi(l), i = 1, . . ., n, } and

Q(l) :=
n

∑
i=1

qi(l)
(

1− p(hi(l))
y(g(hi(l)))
y(hi(l))

)v

.

Lemma 1. Suppose that s ∈ S. Then Z satisfies one of the following two cases, eventually:

(P1) Z and Z′ are positive, and
(
r(Z′)v

)′ is negative;
(P2) Z is positive, Z′ and

(
r(Z′)v

)′ are negative.

Proof. Let s ∈ S. In view of (H4), there is a l1 > l0 with s ◦ hi > 0 and s ◦ g > 0, for l > l1.
Then, Z(l) > 0, for all l > l1. From (1), we have(

r ·
(
Z′
)v)′

= −
n

∑
i=1

qi · (sv ◦ hi) < 0.

Hence, we get that r(Z′)v is decreasing, and so r(Z′)v > 0 or r(Z′)v < 0, eventually.
Thus, the proof is complete.

Lemma 2. Suppose that s ∈ S. If

∫ ∞

l0

1
r1/v(u)

(∫ u

l0
Q(ς)dς

)1/v
du = ∞, (2)

then, Z is decreasing and satisfies the following:

(a) r1/v(l)Z′(l)y(l) + Z(l) > 0;
(b) Z(l)/y(l) is increasing;
(c)

(
r(l)(Z′(l))v

)′ ≤ −Q(l)Zv(h(l));
(d) liml→∞ Z(l) = 0.

Proof. Let s ∈ S. Suppose the contrary that Z is an increasing function for l ≥ l1 ≥ l0.
Then there is a constant k > 0 with Z(l) ≥ k and Z(hi(l)) ≥ k, eventually, for i = 1, 2, . . ., n.
In view of the definition of Z, we have

s = Z− p · (s ◦ g) > Z− p · (Z ◦ g)

> (1− p)Z.

Then, (1) becomes(
r ·
(
Z′
)v)′ ≤ − n

∑
i=1

qi · (1− (p ◦ hi))
v · (Zv ◦ hi). (3)

Since y′(l) < 0 and g(l) ≤ l, we find

y(g(hi(l)))
y(hi(l))

≥ 1,

and then

1− p(hi(l)) ≥ 1− y(g(hi(l)))
y(hi(l))

p(hi(l)). (4)



Mathematics 2022, 10, 1356 4 of 11

Combining (3) and (4), and integrating the inferring inequality from l1 to ∞, we
conclude that

r(l1)
(
Z′(l1)

)v ≥
∫ ∞

l1

n

∑
i=1

qi(ς)

(
1− p(hi(ς))

y(g(hi(ς)))

y(hi(ς))

)v

Zv(hi(ς))dς

≥ kv
∫ ∞

l1

n

∑
i=1

qi(ς)

(
1− p(hi(ς))

y(g(hi(ς)))

y(hi(ς))

)v

dς

≥ kv
∫ ∞

l1
Q(ς)dς, (5)

It follows from (2) and (H3) that
∫ l

l1
Q(ς)dς must be unbounded. Thus,

∫ ∞

l1
Q(ς)dς = ∞. (6)

which with (5) gives a contradiction.
(a): Next, we have

−Z(t) ≤
∫ ∞

l

1
r1/v(ς)

r1/v(ς)Z′(ς)dς

≤ r1/v(l)Z′(l)
∫ ∞

l

1
r1/v(ς)

dς

= r1/v(l)Z′(l)y(l).

(b): From the last inequality, we obtain(
Z

y

)′
=

r1/vZ′y+ Z

r1/vy2 > 0.

(c): Since Z(l)/y(l) is increasing, we find

Z(g(l)) ≤ y(g(l))
y(l)

Z(l).

Hence, we arrive at

s = Z− p · (s ◦ g) > Z− p · (Z ◦ g)

> Z

(
1− p · (y ◦ g)

y

)
.

Thus, from (1), we arrive at(
r(l)

(
Z′(l)

)v)′ ≤ −
n

∑
i=1

qi(l)
(

1− p(hi(l))
y(g(hi(l)))
y(hi(l))

)v

Zv(hi(l))

≤ −Zv(h(l))
n

∑
i=1

qi(l)
(

1− p(hi(l))
y(g(hi(l)))
y(hi(l))

)v

≤ −Q(l)Zv(h(l)). (7)

(d) : Now, since Z is positive and decreasing for l ≥ l1, we have that liml→∞ Z(l) =
κ ≥ 0. If κ 6= 0, then Z(l) ≥ κ, for t ≥ t2 ≥ t1. Then, integrating (a) from l1 to l, we arrive at

r(l)
(
Z′(l)

)v ≤ r(l1)
(
Z′(l1)

)v − ∫ l

l1
Q(ς)Zv(h(ς))dς

≤ −κv
∫ l

l1
Q(ς)dς,
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and so

Z′(l) ≤ −κv
1

r1/v(l)

(∫ l

l1
Q(ς)dς

)1/v

.

Integrating this inequality from l1 to ∞, we get

Z(l1) ≥ κv
∫ ∞

l1

1
r1/v(u)

(∫ u

l1
Q(ς)dς

)1/v
du,

which contradicts to (2). Therefore, κ = 0.
Hence, the proof is complete.

Next, we show new monotonic properties for solutions of (1).

Lemma 3. Suppose that s ∈ S. If there is a δ ∈ (0, 1) with

r1/v(l)yv+1(l)Q(l) > vδv, (8)

then

(a0) Z(l)/yδ(l) is decreasing;
(b0) liml→∞ Z(l)/yδ(l) = 0;
(c0) Z(l)/y1−δ(l) is increasing.

Proof. Let s ∈ S. From (8), we note that

∫ ∞

l0

1
r1/v(u)

(∫ u

l0
Q(ς)dς

)1/v
du ≥ vδv

∫ ∞

l0

1
r1/v(u)

(∫ u

l1

dς

r1/v(ς)yv+1(ς)

)1/v
du

= δv
∫ ∞

l0

1
r1/v(u)

(
y−v(u)− yv(l1)

)1/vdu.

From the fact that liml→∞ y(l) = 0, there exists a t1 ≥ t0 such that y−v(u)− yv(l1) ≥
λy−v(u) for λ ∈ (0, 1). Thus,

∫ ∞

l0

1
r1/v(u)

(∫ u

l0
Q(ς)dς

)1/v
du ≥ λδv

∫ ∞

l0

1
r1/v(u)y(u)

du

= λδv lim
u→∞

ln
y(l0)
y(u)

→ ∞.

Hence, From Lemma 2, we have (a), (b), (c) and (d) hold.
(a0): Integrating (c) from l1 to l, we obtain

−r(l)
(
Z′(l)

)v > −r(l1)
(
Z′(l1)

)v
+
∫ l

l1
Q(ς)Zv(h(ς))dς

> −r(l1)
(
Z′(l1)

)v
+ Zv(l)

∫ l

l1
Q(ς)dς.

Using (8), we get

−r(l)
(
Z′(l)

)v > −r(l1)
(
Z′(l1)

)v
+ vδvZv(l)

∫ l

l1

1
r1/v(ς)yv+1(ς)

dς

≥ −r(l1)
(
Z′(l1)

)v
+ δv

Zv(l)
yv(l)

− δv
Zv(l)
yv(l1)

. (9)



Mathematics 2022, 10, 1356 6 of 11

From (d), there is a l2 ∈ [l1, ∞) such that

−r(l1)
(
Z′(l1)

)v − δv
Zv(l)
yv(l1)

≥ 0, l ≥ l2,

and so, (9) becomes

− r1/v(l)Z′(l) ≥ δ
Z(l)
y(l)

. (10)

Consequently,

(
Z(l)
yδ(l)

)′
=

yδ−1(l)
[
r1/v(l)y(l)Z′(l) + δZ(l)

]
r1/v(l)y2δ(l)

≤ 0.

(b0): Since Z/yδ is positive and decreasing, liml→∞ Z(l)/yδ(l) = κ > 0. If κ 6= 0, then
Z(l)/yδ(l) > κ > 0 eventually. Now, we define

Ω(l) =
(

r1/v(l)Z′(l)y(l) + Z(l)
)
y−δ(l).

In view of (a), we note that Ω(l) > 0 and

Ω′ =
(

r1/vZ′
)′
y1−δ − (1− δ)Z′y−δ(l) + Z′y−δ + δZ

y−1−δ

r1/v

=
1
v

(
r
(
Z′
)v)′(r1/vZ′

)1−v
y1−δ + δZ′y−δ(l) + δZ

y−1−δ

r1/v

≤ −1
v

(
r1/vZ′

)1−v
y1−δQ(ς)Zv(h(ς)) + δZ′y−δ(l) + δZ

y−1−δ

r1/v

≤ −1
v

(
r1/vZ′

)1−v
y1−δZv(l)Q(l) + δZ′y−δ + δZ

y−1−δ

r1/v .

Using (8) and (10), we get

Ω′ ≤ −
(

δZ

y

)1−v
y1−δ δv

r1/vyv+1Z
v(l) + δZ′y−δ + δZ

y−1−δ

r1/v

≤ δZ′y−δ(l)

≤ − δ3

r1/vy

Z

yδ(l)
.

Using the fact that Z(l) > yδ(l)κ, we have

Ω
′
(l) 6 − δ2κ

r1/v(l)y(l)
< 0.

Integrating this inequality from l1 to l, we find

Ω(l1) ≥ δκ ln
y(l1)
y(l)

→ ∞ as l → ∞,

which is a contradiction. Thus, κ = 0.
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(c0): Finally, we have(
r1/v(l)Z′(l)y(l) + Z(l)

)′
=

(
r1/v(l)Z′(l)

)′
y(l)

=
1
v

(
r(l)

(
Z′(l)

)v)′(r1/v(l)Z′(l)
)1−v

y(l)

≤ −1
v

Q(l)Zv(l)
(

r1/v(t)Z′(t)
)1−v

y(t)

≤ −βv
0

1
r1/v(l)y1+v(l)

Zv(l)
(
−β0

Z(t)
y(t)

)1−v
y(t)

≤ −βv
0

1
r1/v(t)yv(l)

(Z(l))v
(

β0
Z(l)
y(l)

)1−v

≤ −β0

r1/v(l)y(l)
Z(l).

Integrating the last inequality from l to ∞, we get

r1/v(t)Z′(t)y(t) + Z(t) ≥ β0

∫ ∞

l

1
r1/v(ς)

Z(ς)

y(ς)
dς

≥ β0
Z(l)
y(l)

∫ ∞

l

1
r1/v(ς)

dς

≥ β0Z(l).

Thus,
r1/v(l)y(l)Z′(l) + (1− δ)Z(l) > 0,

and hence (
Z(l)

y1−δ(l)

)′
=

y−δ(l)
[
r1/v(l)y(l)Z′(l) + (1− δ)Z(l)

]
r1/v(l)y2−2δ(l)

> 0.

Hence, the proof is complete.

Theorem 1. Suppose that there is a δ ∈ (0, 1) with (8) holds. If

δ >
1
2

, (11)

then, (1) is oscillatory.

If δ ≤ 1
2 , then we can improve the results given in Lemma 3. Since y is decreasing,

there is a constant λ ≥ 1 with
y(h(l))
y(l)

≥ λ. (12)

We introduce the constant δ1 > δ as follows:

δ1 = λδ v

√
δ

1− δ
. (13)

Lemma 4. Suppose that s ∈ S and there is a δ ∈ (0, 1) with (8) holds. If (12) holds, then

(a1) Z(l)/yδ1(l) is decreasing;
(b1) liml→∞ Z(l)/yδ1(l) = 0;
(c1) Z(l)/y1−δ1(l) is increasing.

Proof. Let s ∈ S. From Lemma 2, we have (a), (b), (c) and (d) hold. Furthermore, it
follows from Lemma 3 that (a0), (b0) and (c0) hold.
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(a1): Integrating (1) from l1 to l, we get

−r(l)
(
Z′(l)

)v > −r(l1)
(
Z′(l1)

)v
+
∫ l

l1
Q(ς)Zv(h(ς))dς.

By using the fact that Z(l)/yδ(l) is decreasing, we have

−r(l)
(
Z′(l)

)v > −r(l1)
(
Z′(l1)

)v
+
∫ l

l1

(
Z(ς)

yδ(ς)

)v

yvδ(h(ς))Q(ς)dς

> −r(l1)
(
Z′(l1)

)v
+

(
Z(l)
yδ(l)

)v ∫ l

l1
yvδ(h(ς))Q(ς)dς.

From (8) and (12), Ze get

−r(l)
(
Z′(l)

)v > −r(l1)
(
Z′(l1)

)v
+ vδλvδ

(
Z(l)
yδ(l)

)v ∫ l

l1

1
r1/v(ς)yv+1(ς)

yvδ(ς)dς

> −r(l1)
(
Z′(l1)

)v
+ vδλvδ

(
Z(l)
yδ(l)

)v ∫ l

l1

y−1−v+vδ(ς)

r1/v(ς)
dς

> −r(l1)
(
Z′(l1)

)v
+

δλvδ

(1− δ)

(
Z(l)
yδ(l)

)v[
yvδ−v(l)− yvδ−v(l1)

]
> −r(l1)

(
Z′(l1)

)v − δv1 y
vδ−v(l1)

(
Z(l)
yδ(l)

)v

+ δv1
Zv(l)
yv(l)

.

Using (b0), there is l2 ∈ [l1, ∞) such that

−r(l1)
(
Z′(l1)

)v − δv1 y
vδ−v(l1)

(
Z(l)
yδ(l)

)v

≥ 0, for l ≥ l2,

and so

−r(l)
(
Z′(l)

)v > δv1
Zv(l)
yv(l)

,

or
r1/v(l)y(l)Z′(l) + δ1Z(l) ≤ 0. (14)

Consequently

(
Z(l)
yδ1(l)

)′
=

yδ1−1(l)
[
r1/v(l)y(l)Z′(l) + δ1Z(l)

]
r1/v(l)y2δ1(l)

6 0,

so Z(l)/yδ1(l) is decreasing.
Proceeding exactly as in the proof of Lemma 3, we can verify that (b1) and (c1) hold.

If δ1 ≤ 1/2, we can repeat the above process and define δ2 as follows

δ2 = λδ1 v

√
δ

1− δ1
.

In general, if δi ≤ 1/2 for i = 1, 2, . . ., n− 1, we can define

δn = λδn−1 v

√
δ

1− δn−1
. (15)

Moreover, proceeding exactly as in the proof of Lemma 4, we can verify that

(an) Z(l)/yδn(l) is decreasing;
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(bn) liml→∞ Z(l)/yδn(l) = 0;
(cn) Z(l)/y1−δn(l) is increasing.

Theorem 2. Suppose that there exists a δ ∈ (0, 1) such that (8) holds. If there is a n ∈ N such that

δn >
1
2

, (16)

then (1) is oscillatory.

Example 1. Consider the following NDE(
l4/3(Z′(l))1/3

)′
+ q0

(
s1/3

(
1
3

l
)
+ s1/3

(
1
4

l
)
+ s1/3

(
1
5

l
))

= 0, l ≥ 1, (17)

where Z(l) = s(l) + 1
16 s
(

1
2 l
)

. It is easy to see that v = 1
3 , p(l) = 1

16 , r(l) = l4/3, qi = q0,

g(l) = 1
2 l, h1(l) = 1

3 l, h2(l) = 1
4 l, h3(l) = 1

5 l, and h(l) = 1
3 l. Then, we have y(l) = 1

3l3 ,

Q(l) = 3q0
21/3 , δ = 9

2 q3
0, and λ = 27.

If we let q0 = 0.5, then δ = 0.5625 and condition (11) holds.
For q0 = 0.3, we have

δ = 0.1215, δ1 = 0.26746, and δ2 = 0.74630,

and (16) holds for n = 2, that is for a = 0.3 (17) is oscillatory.
For a = 0.25, we have

δ = 0.0703125, and δ6 = 0.69141,

and (16) holds for n = 6, that is for a = 0.3 (17) is oscillatory.

Example 2. Consider the following NDEl6/5

[(
s(l) + p0s

(
1
2

l
))′]1/5

′ + n

∑
i=1

γis1/5(hi(l)) = 0, l ≥ 1. (18)

where γi < 0 and p0 < 1/32. Clearly v = 1
5 , p(l) = p0, qi(l) = qi > 0, r(l) = l6/5, g(l) = 1

2 l.
Then, we have y(l) = 1

5l5 ,

Q(l) = (1− 32p0)
1/5

n

∑
i=1

γi,

and

δ =
1
5
(1− 32p0)

(
n

∑
i=1

γi

)5

.

By Theorem 1 we have that Equation (18) is oscillatory if

2
5
(1− 32p0)

(
n

∑
i=1

γi

)5

> 1.

3. Conclusions

In this paper, in the non-canonical case, we investigated the oscillatory behavior of
a class of second-order NDEs. We obtained a new condition β0 > 1/2 that guarantees
the oscillation of all solutions. In addition, we used an iterative approach to improve
this condition if it is not met. Finally, we applied our results to some special cases of the
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studied equation. As future work, it would be interesting to extend the results obtained to
even-order equations, as well as to the advanced cases.
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