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Abstract: Quadratic integro-differential equations have been discussed in many works, for instance.
Some analytic results on the existence and the uniqueness of problem solutions to quadratic integro-
differential equations have been investigated in different classes. Various techniques have been
applied such as measure of noncompactness, Schauder’s fixed point theorem and Banach contraction
mapping. Here, we shall investigate quadratic functional integro-differential equations with delay. To
prove the existence of solutions of the quadratic integro-differential equations, we use the technique
of De Blasi measure of noncompactness. Moreover, we study some uniqueness results and continuous
dependence of the solution on the initial condition and on the delay function. Some examples are
presented to verify our results.

Keywords: quadratic integro-differential equation; measure of noncompactness; existence of
monotonic integrable solutions

MSC: 34L30; 34K06

1. Introduction

Quadratic integral equations have gained much attention [1-4] because of their appli-
cation of the real world. The existence of solutions of those equations have been studied
in different classes of function spaces (see [1,2,5-17] and the references therein). For the
theoretical results concerning the existence of solutions, in the classes of continuous or
integrable functions, you can see Bana$ [18-21].

Each of these monographs contains some existence results, and the main objective is to
present a technique to obtain some results concerning various quadratic integral equations.

In this paper, we study the quadratic integro-differential equations by considering the
initial value problem of the implicit quadratic integro-differential equation with delay.

% = f<t, Z'/()¢(t) g(s,x(s))ds), ae. t € (0,1] 1)

satisfying an initial condition
x(0) = xo. @
We present a new quadratic integro-differential, where the derivative of the function

x is multiplied by an integral term involving the function x.
Let ‘;—’; = y(t) then we can deduce that

x(t) = x+ [ y(s)ds ©)
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and (1) can be written as

)= £ (vt [ g (550 + [ vi@ran )as). @

The existence of non-decreasing solutions y € L1[0, 1] of (4) will be studied by the De
Blasi measure of non-compactness. Additionally, we shall prove the continuous dependence
of the solution of the problems (1) and (2) on the delay function and on the functions g.
Consequently, the existence of a solution x € AC[0, 1] of the problems (1) and (2) will
be studied.

2. Research Methods
Let I = [0,1] and suppose that:

(i) ¢:1—1 ¢(t) <tiscontinuous and increasing.

(i) f, g:I xR — R" areCarathéodory functions, which are measurableint € I Vx € R
and continuousin x € R Vt € [, and there exist m; : [ — R, m; € L1(I), i =1,2 and
b; € RT where

1
[f(t, )| < |mi(H)] 4 balx| < [fma || + bylx], |l = /0 [m1(t)|dt;

1
lg(t, )| < [ma(t)] + balx| < [[ma|| +b2|x|, |mal =/O |ma(t)|dt.

Moreover, f is non-decreasing for every non-decreasing x, i.e., for almost all t1,¢, € I
satisfying t; < t; and for all x(t1) < x(ty) implies f(t1,x(t1)) < f(t2, x(t2)).

(iii) Let r, be a positive root of the following equation
bibar® + (|[ma[by + byba|xo| — 1)r + [lma || = 0.
Now, the following lemma can be proved.
Lemma 1. The problems (1) and (2) is equivalent to the coupled system of integral Equations (3) and (4).
Proof. Itis clear that the solution of the problems (1) and (2) is given by the coupled system
of integral Equations (3) and (4).

Conversely, let the solution y € Li(I) of (4) exist, then from (3) and %x(t) , the
solution x € AC[0, 1] of the problems (1) and (2) will exist. [

Now, we have the following existences theorem.

Theorem 1. Suppose the conditions (i)—(iii) hold. If by (||ma| + ba|xo| + bar) < 1, then the
Equation (4) has a solution y € Lq(I), which is non-decreasing.

Proof. Let Q; be a closed ball containing all non-decreasing functions on I by
Q ={yeLi(D): |yl <r}, r = |lmll + [lmz[brr + byba|xolr + brbor?

and define the supper position operator F

Fy(t) = f(t,y(t)./o.(p(t) g(s, X0 + /O.Sy(G)d9> ds), y € Q.

Now, let y € Qy, then
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[Fy(t)]

IN

IN

IN

IN

‘f(t,y(t) /(P(t (s, x0+/ 6)do)ds)

¢(t)
|my(t)] + b1y (t) /0 g(s, x0+/ 6)do)ds|

|m1 ‘+b1|]/ |< |H12 |dS+b2/

xo—l—/sy(G)de ds)

o) s
iy (£)] + b |y (¢ |< Imas |ds+b2|x0\/ ds+b2/ /0|y(9)d9ds>
[ma (£)] + by () | ([|m2]| + baxo| + b2 lyll)

and

"1 -1 1
[ IFveiat < [ ()l + by ma] + balsol + bar). [ ly(e)lat
IFyl < llmll+ bar(mal] + bolol + bar)

< lmall + [[mal|brr + biba|xo|r + brbor® = 7.

Now, let {y,} C Qr,and y, — y, then

(1)

Fyu(t) = f(t,yn(t)./o <(s, x0 + /Os yn(G)dG)ds>

and

_ _ 91 ;
lim Fra() = Jim £ (0. [ o0+ [ ma(e)ae)ds).

Applying Lebesgue dominated convergence Theorem [22], then from our assumptions
we get

nh_r}r;lo Fy,(t) = f<t, nh_r)n yn(t)./()¢(t)g(s, xo + /S lim yn(G)dB)ds>
= f(t,y(t) / o g(s, x0+/ 6)do) ds) = Fy(t).

i.e., Fy,(t) — Fy(t) implies the operator F is continuous.
Taking ) be a non empty subset of Q,. Let € > 0 be fixed number and take a
measurable set D C I such that measure D < €. Then, for any y € (3,

1Byl oy < [ IFvOlde < [ ma(e)ldt + bu(lmall + balxol + bar). [ ly(e)lat
But
lim{sup/ |mq(t)|dt : D C I,measD < e} =0,
€—0 JD

then applying the De Blasi measure of noncompactness [23-26].

B(X) = hm (sup (sup [/ |x(t)|dt: D C [a,b], meas D < e})), (5)

xeX

we obtain

B(Fy(t)) < 0+ b1B(y(t)).(Imall + b2|xo| + bar)
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and
BIEQY) < b1p(y(1)).(Im2]| + ba|xo| + bar).
Then implies
X(FQ) < by([[ma|| + ba|xo| + bar)x (),
where y is the Hausdorff measure of noncompactness [23-26], which is defined by
X(X) =inf(r > 0; there exist a finite subset Y of E such that X C Y + B;). (6)

Since by (||mz|| + ba|xg| + bor) < 1, then F is a contraction with regard to x [26] and
has a fixed point y € Q,. Then, there exists a solution y € L (I) for (4). Hence, 3 a solution
x € AC(I) of the problems (1) and (2). O

2.1. Uniqueness of the Solution
Now, assume that:

(ii)* f, g: I x R — R are measurableint € [ Vx € R and satisfy
F(tx)— f(ty)| S bilx—yl, te L xy e R,

§(t,x) —g(t,y)| < bo|x—y|, t €, x,y € R.

Moreover, f is non-decreasing for every non-decreasing x, i.e., for almost all f1,t € I
satisfying t; < t; and for all x(t1) < x(t;) implies f(t1,x(t1)) < f(t2, x(t2)).

From the assumption (ii)* we have
Lf(& )] < 1f(80)] + ba|x]
and
1
[f(& )| < [ma]| +balx|, where [[m] :/0 |ma (8)]dt.

Additionally, we get
8 (£, x)] < |g(t,0)] + balx|

and
1
g(t,x)| < |lma|| + balx|, where |[my]] =/0 |ma(t)|dt.

Remark 1. The assumption (ii)* implies the assumptions (ii).
Theorem 2. Assume that (i) and (ii)* are satisfied. Moreover,
2b1bor + [|ma2||by + brba|xo| < 1.

Then, there exists a unique solution of (1) and (2).

Proof. From Remark 1, the assumptions of Theorem 1 are satisfied and the solution of (4)
exists. Let y1,y» be two solutions in Q, of the integral Equation (4), then
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*) s
) =] = | [ gx+ [ o))

(t) s
— S [ g+ [ n@)a0)ds)

o(t)

IN

(t) s
o) [ g0+ [ wa(@)do)ds - (o). [

(t s
w0 [ st [ na@)a0)as (o). [

S
gl x0+ [ 11(@)0)ds

(1)

IN

by

g(s,x0+/0 y1(0)d0)ds

+  ya(t). /W) g(s,x0 + /S y1(0)de)ds — vy (t). /O(p(t) g(s, x0 + /OS y1(0)de)ds

< biba|ya(t) / /\]/2 0)]d6ds + b1 |y2(t) — y1(£)[-([m2ll + b2|xo] + b lya ).
Then,
1 1
[ )= p0lat < biballyz — vl [ lya(0)de+ byl + balol + ). [ lya(6) (6]t
and

ly2 —y1ll < bibally2 — yallr + ([[m2||by + b1ba|xo| + b1bar) [ly2 — ya |-
Hence,
ly2 = y1ll(1 = (2b1bar + [[mal|by + b1ba|x0[)) <O,

then y; = y» and the solution of (4) is unique. As a result, the uniqueness of the solution of
(1) and (2) is proved. O

2.2. Continuous Dependence

Theorem 3. Suppose the conditions of Theorem 2 hold, then the unique solution of the problems
(1) and (2) depends continuously on the parameter x.

Proof. Givend > 0and |xg — x| < 6 and let x* be the solution of (1) and (2) corresponding
to initial value x;, then

X(t) —x*(1)] = \x0+/ s)ds — xf — /y 5)ds|

\xo—x5‘|+/0 y(s) =y (s)| < o+ lly =yl

IN

However,
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/Iy

IN

IN

IN

Hew! / " g0+ [ v@raonds)

Qy s%+/ wdQ’

b (o) |/“ o+ [ @10y~ )] [ gls,75+ [ v ©1ae)
(ol [ gts, 0+ [ lvae) - ol [ g,z + [ @)
(o). /04’( (o5t + [ Iy ©)la0) — 1y (1) / st + [ v @)ao)
b1b2|y<t>|( [ 10— xitas+ [ [ 1y0) v w)1as)

inly(t) 0. [ tma(s) + bl + |||)ds

bibaly()[(0 + lly =y 1) + baly(t) — y* ()| (lm2| + ba|xg| 4 bar).
Then,

1 1
(Bt < biba(0+ [y =y ). [ ly(Oldt+ba(mall + balxs] +bar). [ ly(t) v (1)

and
ly=y*ll < bibard + bibor|ly — y* || + (|lm2l[by + bib2|xg| + bibar) |ly — v |-
Hence,
Iy =11 (1 = @nbar + o+ bt} ) < butars,
then
* b1b2r5
— < —¢
Hy Y ” - 1- (2b1b21’+ Hm2||b1 + b1b2|x8\) 1
and
[x—x*c < d+e =¢
O

Theorem 4. Suppose that the conditions of Theorem 2 hold, then the unique solution of the problems
(1) and (2) depends continuously on g.

Proof. Given § > 0 and |g(t, x(¢)) — g"(t,x(t))| < 6 and let x* be the solution of (1) and
(2) corresponding to ¢*(t, x(t)), then
x0+/ ds—xo—/y )ds

y(&) =y (O] < lly =y

[x(t) =" (B)] =

IN

However,
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() —y ()] = ‘f(t,y(t)./ sxo—i—/ 6)d6) ds)
- (t,y s,x0+/ y*(@)d@)ds)
< b (ol [ st + [ lv@laonas -y o [* g 0+ [l @laons)
< wn(wol [ s+ [v@os— ol [ 60+ [ @l
<P(
ol [ g s [ Iy @ldeyds — 1y |/ s+ [y (6)ld6)ds
< bl(w)\. [ (g<s,xo+ [ wi©ld) s+ [y 0)1d0) ) s
ly(t) — |/ sx0+/ 1y (0)]d6)ds
< bily ()|5+b1|y() y* (O)]-(lma | + b2|xol + b2 [ly™ )
Then,
1 1 .
/ ) =y Ol < 016 [ Iyl + by (lmall + balxo] + bar). [ () =y (1)
an
ly—y*ll < bior +bi(|[mal| + ba|xo| + bor)[ly — y* ||
< byrd + (|[mallby + biba|xo| + bibar) |ly — y* || + bibar|ly — v
Hence,
Iy =71l (1= @brtar + s + brbafza) ) < b,
then
% blré
_ < e
”y Y H - 1- (2b1b27’+ ||m2]|b1+b1b2|x0|)
and
[x—x"c < e
O

Theorem 5. Suppose that the conditions of Theorem 2 hold, then the unique solution of the problems
(1) and (2) depends continuously on the delay function ¢.

Proof. Givend > 0 and |¢(t) — ¢*(t)| < 6 and let x* satisfies

x*(t) = xo + /Ot Yy (s)ds
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then

and

[x() = x*(#)]

\x0+/ ds—xo—/y s)ds|

y(®) =y (O] < lly =y

IN

However,

IN

IN IN

+ IN

_I_

IN

N+

+ IN +

'f(t,y(t)./ 3(s, xo+/ 6)d6) ds)

*

f(bro. /f gtk [y @)
v [ s x0+ [ yieraoras —y ()/(P*(t)gsonr/]/ (0)d0)ds
(ol [ gtsm+ [ v@laos — ol [ gm0+ [ @l
Ol [ g+ [l @i -1y o) [ gton0+ [l
b1(|y<>|(/0'¢“)gsxo+/ @y — " gls.x0+ [ @)laons)
o[ st [ v @)lde)s

o0 e s
b1|y<>|( I o0+ [ w@laoras — [ gts,x0+ [y (6)ldeyds
9() \ ¢*(t) *

[ st [y @aeis = [* 7 gtsmr [y @)lae)as)

bily(t) =y (B)]-(lall + ba|xo| + bzlly*ll))

P(t) s . ¢(t) s
bty (b [ [ wie) —y @lass+ [7 o500+ Iy @)ldeyas)

b|y(t B[ (lmal| + b2|xo| + bar)

(
(
bily()|{ b2lly — y* [l + (llma2l| + b2lxo] + baly"[1)|¢p — <P*|>
(
|

by

brly(t B[ ([[mz || + b2|x0| + bar)
bibally — y* Iy ()| + [y(t)[([lma]|by + byba|xo| + b1bar)é
ly(t) —y* (t)[(|m2]|by 4 biba|xo| + bibyr).

Then

IN

1
bubally — | [ ly(o)la

1
(Imallen + bralo| + babar)o [ [y(e)lat

[ vty olas

_|_

1
(Imalby + babalol + bxar) [ ly(t) =y (8)lds

+

ly=y'll < biborlly =yl + ([lm2llby + byba|xo| + b1bor)ré + ||y — y*|[([[m2]|by 4 brba|xo| + b1bor).
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Hence,

w—ww@—QMMHWmﬂm+mmuw) < (lImallbr + bibalo| + bibar)ro,

then
ly -yl < ([m2[[b1 + b1ba|xo| + bybor)rd
1 — (2b1byr + |[ma||by + byba|x0])
and
[x—x"c < e
O
3. Examples

Example 1. Let the following differential equation

dx £ 1dx /s 1
S rim | <4+2|x(s)|)ds. te (0,1]. ?)

satisfying the initial data
x(0) =1. 8)
Then

dx ¥ B 1dx (s 1
f(t,x)—1111(1‘)+bl(dt./O (m(s)+b2|x(s)|)ds) :%+§E' A <4+2|x(s)|)ds. tel, > 1

8(tx(0) = ma(t) + ba(|x(0)]) = S + XD, 9() =18 tel p>1

Easily we can verify all conditions of Theorem 1. Then, the initial value problems (7) and (8)
has a solution.

Example 2. Let the following differential equation

dx 3t ldx (s 1
dt 40 44t Jo

3+2|x(s))ds. te (0,1]. ©)
with initial data
x(0) =1. (10)

Then,

_|_|x(s)|>ds. tel, p>1

g(tx(t)) = §+ %x(t), pt)y=t;F tel, p>1.

Obviously we can verify all conditions of Theorem 1. Then, the initial value problems (9) and
(10) has a solution.

4. Conclusions

In this paper, we have studied a delay quadratic functional integro-differential Equa-
tion (1). We have investigated the solvability of the problem (1) and (2) by applying the
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technique of measure of non-compactness. Then, we have established some uniqueness
results and continuous dependence of solution on some initial data and the functions g, ¢.
Finally, two examples have been introduced to demonstrate our results.
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