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Abstract: Green finance is a sustainable force in promoting green development. China’s social
financing structure determines the key role that green credit plays in sustainable development. Under
the dual pressure of future economic downturn and huge capital gaps, it is worth exploring whether
to continue promoting green credit that conforms to the long-term market mechanism. From the
perspective of Chinese commercial banks, this paper analyzes whether promoting green credit is
compatible with the incentives and their profit maximization goals. To this end, the research in this
paper is based on the following three aspects: (1) Based on financial analysis, this paper reveals
the different pricing of green industries in the capital market and credit market and explains the
mechanism through which green credit policies improve the operating conditions of commercial
banks; (2) combined with the conclusions from the literature and financial analysis, the influence
of different index types on the modeling results is analyzed, and it is determined that the main
reasons causing a decline in the return on assets are the excessive expansion of capital and the
decline in internal resource-use efficiency; (3) a data envelopment model (more accurately, SBM-
DDF) with undesirable outputs is established to dynamically analyze the operating efficiency of
Chinese commercial banks, and the role of green credit in improving efficiency is studied. The main
conclusions of this paper are as follows: if Chinese commercial banks increase their proportion of
green credit, they can not only increase their profit scale but also improve and optimize the allocation
of their internal resources, thus improving their operating efficiency. The main sample of this study
comprises 43 commercial banks in China from 2007 to 2020.

Keywords: green credit; “Two High and One Surplus”; financial results; operating efficiency; SBM-DEA
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1. Introduction

According to the Statistical Review of World Energy (70th edition) released by BP,
by 2020 China’s carbon emissions will account for 30.3% of the global total [1]. The suc-
cess or failure of China’s energy conservation and emission reduction projects will affect
the overall global carbon neutrality. On the other hand, environmental problems are
difficult for many developing countries in the world to avoid during their development
process. As a developing country with a huge economic volume, how China realizes
green, low-carbon, and circular development will provide a model for the economic trans-
formation of the latecomers. Some scholars estimate that in order to achieve the goal of
“carbon peak”, the whole country needs to invest an additional CNY 3–4 trillion every
year, with the fiscal revenue only meeting 10–15% of the capital gap [2,3], and investments
should mainly rely on social financing. By the end of 2020, bank credit financing still
accounted for 61% of total social financing. Therefore, green credit is the most impor-
tant force affecting green finance in China. In fact, CIB Research estimates that green
credit accounts for more than 90% of all green financing. (As of the first half of 2019, the
green credit balance of China’s 21 major banks was CNY 10.6 trillion, and the balance
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of domestic green bonds was only CNY 708.78 billion. The bank mainly issued green
financial bond funds to issue green credit. Excluding the green financial bonds, the balance
of the non-financial enterprise green bonds was only CNY 293.96 billion, less than 3%
of the green credit scale. The balances of the other green financing scales were smaller.
(Source: http://greenfinance.xinhua08.com/a/20191227/1905011.shtml (accessed on
16 March 2022))). On the other hand, since the beginning of the 21st century, China
has faced the problem of environmental pollution during the process of the country’s
development. The government has always emphasized environmental protection and
sustainable development and has frequently introduced policies for industrial structure
adjustments, but these policies have always achieved poor results [4–7]. In essence, the
massive development of high energy consumption and heavy-pollution industries has
benefited from large inflows of credit funds (based on the bank loan data of the listed enter-
prises, Liu Xiliang and Wen Shuyang (2019) also found that “six of the top ten industries
with the amount of credit are highly polluting industries, and the average emission of the
top ten industries with the amount of loan is about twice that of other industries”) [8,9]. The
unbalanced allocation of credit resources objectively promotes the continuous expansion
of industries with high rates of energy consumption and pollution and aggravates the
environmental pollution and environmental costs incurred on the path towards economic
growth. Therefore, the environmental problems caused by the industrial structure [10,11]
can be attributed to the “financial mismatch” status of credit resources.

Therefore, green development must rely on optimizing the function of the financial
allocation of resources, and green credit will be the most key link. In fact, the Chinese
government has taken full action. For example, financial institutions, especially commercial
banks, are asked to disclose environmental information, with banking financial institutions
being required to regularly disclose financial information on their social and environmental
responsibilities and on their support for energy conservation and emission reduction as
well as to constantly refine their statistical standards for green credit information. In terms
of financial discounts for eligible green credit, green credit and green bonds should become
eligible collateral for re-lending by commercial banks. Local governments are also rolling
out policies to support green finance. For example, Zhejiang province took the lead by
issuing the Guiding Opinions on Financial Support to Achieve Peak Carbon Neutrality,
established a positive list of credit supports for green and low-carbon development, and
set up “zero carbon” pilot units and low-carbon industrial parks. In addition, a series of
measures have been introduced, such as setting up carbon accounts for key enterprises
and public institutions with carbon emissions and fostering regional environmental rights
trading markets. Since 2016, Xiamen has offered different degrees of incentives, loan
discounts, and risk-sharing compensation to the financial industry based on the scale of
green credit.

The essence of green credit is to solve the externalities of the environment and finance
for the green transformation of the economy. Its role in environmental protection is self-
evident, and the relevant economic research focuses more on the market mechanism of
green credit. In the short term, green development policies will have a certain impact
on the national economy, especially in some traditional industries with high levels of
pollution and energy consumption. For developing countries, such industries are the pillar
of their national economy in the early stages of development. Additionally, the role of
green credit through financial leverage has further increased the influence of this impact.
On the other hand, the global economy is under downward pressure due to the impact
of COVID-19, while it is also being buffeted by various extreme events that have severely
affected financial stability. In this context, should we strengthen our confidence and further
promote economic transformation with green credit? Are green credit policy incentives
compatible in the market economy? Before answering these questions, we must further
clarify the market operation mechanism of green credit. This paper studies the market logic
of green credit from the perspective of Chinese commercial banks and tries to determine
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the long-term market effect of green credit from the starting point of whether green credit
is in line with the interests of commercial banks.

2. Related Literature

The so-called green credit policy refers to a series of policies that allow commercial
banks, policy banks, and other financial institutions to offer preferential interest rates for
loans to enterprises or institutions that are engaged in ecological protection and the develop-
ment and utilization of new sources of energy and that develop and produce anti-pollution
facilities; meanwhile, the policy also includes a high, punishment interest rate that is imple-
mented to limit loans for the investment and working capital of new projects carried out by
polluting means of production and enterprises. The purpose is to guide the flow of funds
and loans into the enterprises and institutions that promote the national environmental
protection cause and to appropriately withdraw from the enterprises and projects that
destroy and pollute the environment to realize the “green allocation” of funds [12]. The
capital allocation function of green credit means that the role of environmental governance
can be carried out from the initial stages of the production process and can run through
the whole production stage; that is, the incentive and restraint effect of green credit has
the characteristics of initial governance and whole-cycle governance [13]. The earliest
official proposals for green credit date back to the early 1990s, when the United Nations
Environmental Program Finance Initiative (UNEPFI) issued the “Statement by Financial
Institutions on the Environment and Sustainable Development” [14], which stressed the
need to incorporate environmental factors into standard risk-assessment processes. Its main
goal was to require the banking industry to consider environmental factors in its manage-
ment activities and to encourage the private sector to invest in environmentally beneficial
technologies and services. The Equator Principles, advocated for by the World Bank Group,
provide a framework for environmental and social-risk assessment in project financing,
including the risk classification of different types of projects, and list topics related to
environmental assessment processes, monitoring, and follow-up guidance. At present,
56 financial institutions around the world, including Citigroup, Standard Chartered, and
HSBC, have become Equator Principle Financial Institutions (“EPFIs”), accounting for more
than 90% of the global project financing market. By the end of 2021, nine Chinese mainland
commercial banks had incorporated the Equator Principles, which are also the practical
blueprint for green credit in China’s banking industry (From the Preamble of the Equator
Principles, www.equator-principles.com (accessed on 16 March 2022)).

Much of the research on green credit is based on a corporate perspective. Chinese
enterprises are usually highly dependent on external financing, and credit resources are the
“blood” of enterprise development. There is a long-term “financial mismatch” in China,
where financial resources are concentrated in state-owned enterprises, large enterprises,
and hot industries [15,16], and the enterprises with high levels of pollution and energy
consumption mentioned above are mainly subject to government intervention [17,18] and
credit rationing [19,20]. The green credit policy tries to change this “financial mismatch”
phenomenon by introducing high-pollution investment into higher financing constraints
and by internalizing the negative externality of corporate pollution emissions, thus having
a profound impact on China’s industrial patterns.

From the implementation effect, there is a lot of evidence that green credit boosts the
green and high-quality development of the economy. For enterprises in high-polluting
industries, the green credit policy significantly reduces the credit financing of enterprises
in heavy-polluting industries, which not only redirects the resources from low-efficiency
enterprises to high-efficiency enterprises [21], but also promotes the green innovation in
high-polluting enterprises [13,22]. Green credit has a significant effect on reducing the
friction costs and risk coefficients in various industries [23]. On the other hand, the national
conditions result in green credit having policy effects that cause enterprises to show certain
Chinese characteristics. For example, the credit-approval features of Chinese commercial
banks that emphasize mortgages [24] cause green credit policies to have less of an impact
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on highly polluting enterprises with high fixed assets [25]. Sun et al. [26] found that green
credit policies can motivate Chinese enterprises to focus on front-end prevention and
control rather than on terminal emission reduction.

The research results on the impact of green credit on commercial banks are divided.
Many scholars believe that green credit has a positive effect on commercial banks. First, the
implementation of a green credit policy can improve the social image of commercial banks
from the perspectives of media attention and recognition from customers, employees, and
partners. For example, more social reports on green credit [27] and the disclosure of public
announcements [28] can enable commercial banks to gain more public trust by improving
their reputation. In contrast, there is evidence that commercial banks regard some major
polluting enterprises as important loan-provision objects that will affect their green rep-
utation, lead to the loss of high-quality customer resources, and result in reductions and
fluctuations in the financial performance level [29]. Second, the implantation of a green
policy can reduce the environmental risks of the loan customer. In the literature, environ-
mental risk generally includes climate risk and environmental-regulation risk. China’s
current credit resources flow into industries with high energy consumption, high pollution,
and excess capacity (hereinafter referred to as the “Two High and One Surplus”) [8,9];
this process makes the value of the credit assets of commercial banks more sensitive to
environmental regulations, energy price fluctuations, and market demand changes. There
is evidence that green credit can effectively reduce the probability of loan losses caused by
environmental regulations [30,31]. Climate risk affects the ability for loans to be repaid by
changing the business cash flow of borrowers [32].

Scholars with the opposite point of view believe that green credit increases business
costs (Ma and Liu, 2013; Hu and Zhang, 2016) and squeezes out the “Two High and One
Surplus” loans (Chen and Lu, 2011). Even the decision by commercial banks to adopt
the Equator Principles will bring a double blow to operating costs and profits (Scholtens
and Dam, 2007). However, Maya et al. (Finger and Gavious et al., 2018) showed that
most of these results occurred in developing countries, while the situation was reversed in
developed countries. The study of Cao Junxin and Yao Bin (Cao and Yao, 2014) found that
carbon emission reduction measures would reduce industry profits and affect the quality
of bank credit assets.

Scholars who hold a neutral view emphasize case-by-case analysis. The impact of
green credit on commercial banks is moderated by several factors, such as bank size:
large banks have advantages such as cost amortization and customer resources and can
benefit more from increasing the proportion of green credit [33]. However, the research
results of Zhang Lin and Lian Yonghui [34] are in contrast to this. Tong Menghua et al. [35]
believe that commercial banks will lose customers due to “one-size-fits-all” carbon emission
reduction policies and advocate for the establishment of a “carbon emission reduction
credit risk warning system for industrial enterprises” to ensure that commercial banks can
maximize their interests when implementing green credit policies.

In terms of methods, most of the research in the literature takes the financial index of
commercial banks as the explained variable and the proportion of green credit as the core
explanatory variable to establish panel data linear regression. In terms of the explained
variables, many scholars take return on total assets as the explained variable [34,36]. Some
scholars have also used self-built comprehensive indexes as the explained variables, such
as the bank competitiveness index [37] or the comprehensive evaluation index [38,39].

The relevant literature not only analyzes the positive effects of green credit policies
on commercial banks from the perspectives of social responsibility and environmental
risks, but also points out the negative effects of green credit policies from the aspects
of increased costs and customer loss. Most research methods use return on assets or
comprehensive financial indicators as the explained variables and the core of green
credit as an accounted-for explained variable in a controlled variable linear regression
series. These rich research methods and empirical conclusions allow us not only to
further explore the green financial market mechanism and to lay a solid foundation, but
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also to leave space for further research, with potential avenues of research including
updating the data, as most of China’s green credit research data are from 2017 and
are related to commercial banks. The existing green credit data imperfectly disclose
regulations, meaning that free disclosure exists in terms of disclosing the green credit
data of commercial banks. Thus, due to the lack-of-interruption phenomenon, it is
difficult to update the data. Additionally, 2016 represents the first year of green finance in
China, and the data from subsequent years are more meaningful. The sample size needs
to be expanded. Additionally, due to limited relevant information regarding disclosure
regulation defects, the vast majority of the literature is limited to listed companies
that disclose their data to commercial banks, and most banks and some influential city
businesses come to the market late. This not only causes under-represented defects, but
also partly explains the use of the same methods in the literature; however, different
results have been achieved, and the three research methods need to be enriched. The
return on assets or return on equity is taken as the explained variable, and its fluctuation
is easily affected by changes in the asset structure (for example, the return on assets
decreases due to capital and stock increases). However, most of the studies in the
literature do not control this variable, resulting in differences in the research conclusions.
A single income index fails to fully describe the operation of commercial banks, while the
comprehensive indicator method fails to grasp the phased coordination under multiple
objectives (for example, when the non-performing loan ratio is low, the pursuit of the
maximum return rate is a more important goal).

This paper will make adjustments to the above points, try to explain the differences in
the conclusions of previous studies, and analyze the effect of green credit on commercial
banks from the two angles of financial results and operation efficiency. The research in this
paper mainly analyzes the theoretical analysis of the two types of innovation. (1) When
analyzing the theory, there is a distinct lack of research on the impact mechanism in most of
the literature, with most studies establishing a regression model of the financial indicators
of green credit and commercial banks and discussing the effects of green credit policies on
the financial performance of commercial banks from the empirical results of the model. In
contrast, we have carried out a full research methodology on the impact mechanism: on the
one hand, it reveals that the characteristics of green credit, “low risk and high income”, are
important mechanisms for improving the business situation of commercial banks. On the
other hand, combined with the conclusions in the literature and of the financial analyses,
different index types affect the modeling results, with the modeling results pointing out that
capital expansion is too fast and that the decline in the efficiency of internal resources is the
main reason for the decline in asset yields and that green credit policies can help improve
the “overcapacity” in commercial banks. (2) In the empirical analysis, this paper establishes
a data envelope analysis model with undesirable output and dynamically analyzes the
operation efficiency of commercial banks in China, innovatively proving the argument
through the utilization and efficient configuration of internal resources.

The rest of this paper is organized as follows: Section 3 covers the financial comparison
between “green enterprises” and “Two High and One Surplus” enterprises; Section 4 covers
the differences between different models; Section 5 discusses the operating efficiency of
Chinese commercial banks; Section 6 describes the impact of green credit on the operational
efficiency of commercial banks; Section 7 provides a discussion on the endogeneity and
robustness tests; and Section 8 comprises the summary of the present research and provides
policy suggestions.
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3. Financial Comparison between “Green” and “Two High and One Surplus” Enterprises

The main purpose of green credit policies is not only to increase the proportion of credit
for green projects, but also to reduce the loans to “Two High and One Surplus” enterprises.
Changing the credit structure of commercial banks is reflected in the proportion of these two
types of corporate loans. Financial analysis is the most important link in the loan approval
process of commercial banks. Inspired by this, we will select samples to compare the
financial situation and debt financing costs of the above two types of enterprises and will
analyze the possible net effect brought by the changes in the credit structure of commercial
banks. Considering the availability of financial information and the representativeness of
the samples, this paper takes the public industry index for the sample selection. The CSI
Environmental Protection Index was selected to represent the green industry, and the textile,
paper making, mining, steel, and chemical fiber indexes represent the “Two High and One
Surplus” industries (the CSI Environmental Protection security codes are: 000827, Wind
CSRC Textile 883114.WI, Paper making (Shenwan) 801143.SI, AMAC mining H11031.CSI,
AMAC Steel H30058.CSI, and AMAC chemical fiber H30055.CSI, respectively). According
to the Key Evaluation Indicators for the Implementation of Green Credit issued by the China
Banking Regulatory Commission in 2014 (Schedule 4 in the Key Evaluation Indicators for
Green Credit Implementation provides a reference directory of the “Two High and One
Surplus” industries, which is in use today) and the public information of commercial banks
regarding “Two High and One Surplus” loans, the above five industries cover the main
“Two High and One Surplus” industries. According to the financial analysis of the above
six categories of the index components (in Figure 1), it was found that, compared to the
“Two High and One Surplus” industries, the environmental protection industry is better,
but its financing costs are high.
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industries.

3.1. Financial Indicator Analysis

From the perspective of industry prospects, the environmental protection industry
is bound to be the industry with the largest policy support in the future, and its product
market is also developing rapidly. Both the gross profit margin and the net profit margin
of sales have steadily ranked at the top of the six studied industries. Since 2017 especially,
there has been a trend of widening the gap between other industries. By 2020, compared to
the net profit margin of the “Two High and One Surplus” industries, which is generally
below 7%, the ratio for the environmental protection industry is as high as 12.26%, and the
growth rate of the two indicators is also rising steadily. Therefore, the profitability of the
environmental protection industry is obviously better than that of the “Two High and One
Surplus” industries. In terms of asset liquidity, regardless of whether the liquidity ratio or
the quick ratio is being considered, the environmental protection industry has performed
well, second only to the textile industry.

The environmental industry suffers from weaknesses in operating-capacity measures
such as inventory turnover (which is the ratio of the operating costs to the average inventory
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balance) and accounts receivable turnover (which is the ratio of the net sales revenue to
the average accounts receivable balance). The low ratio of these two ratios indicates that
the environmental protection industry has not yet formed a favorable position in the
competition between it and the downstream of the industrial chain, and its considerable
profit margin may mainly come from upstream cost control.

3.2. Comparison of Financing Costs

This paper also analyzes the credit financing costs of the above six industries. The ratio
of interest expense to interest-bearing debt in financial statements (interest-bearing debt is
calculated by multiplying the published total debt by the ratio of the interest-bearing debt)
indicates the level of credit financing costs (for Chinese enterprises, the majority of the
interest expense comes from credit behavior). As seen from Figure 2, the credit financing
costs of the environmental protection industry are much higher than those of the “Two
High and One Surplus” industries, but the credit spread of its industrial debt is much lower
than that of the latter (Figure 3). Zhou Hong et al. [40] found that non-financial enterprises
with more social responsibilities enjoy lower financing costs in the bond market, and similar
conclusions also appear in the capital market [41–44]. In contrast, Goss and Roberts [45]
studied corporate financing data in the United States and found that enterprises with more
social responsibilities could obtain cheaper bank financing.
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Clearly, investors in the bond market and commercial banks have different financ-
ing pricing for the environmental protection industry. In terms of credit risk, bonds, as
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pure credit liabilities, will not be repaid in a higher order than loan liabilities. From the
perspective of the differences in the financing costs, the cost of bonds mainly lies in var-
ious intermediary fees generated during the issuance process, such as evaluation fees
and commission fees, while the loan mainly considers the management costs of the loan
process. Scholars [46] point out that increasing green credit increases the management
costs of commercial banks for professional talent reserves (including internal talent and
external experts), organizational preparation (such as setting up an environmental protec-
tion department), and the design of green credit products (according to the accounting
standards of Mainland China, project-evaluation staff training and other expenses should
be included in the management costs). However, how high are these costs per loan on
average? Another reason for this phenomenon is information asymmetry. The impact of
information asymmetry on asset prices has been confirmed by a large number of studies.
For example, Duffie and Lando [47], Zhou Hong et al. [48], and Lin Wanfa et al. [49] believe
that the higher the level of information asymmetry, the higher the financing cost of the
debt. Enterprises with good social responsibility will disclose more information, enhance
their transparency, and attract the attention of more analysts, thus reducing the information
asymmetry between the enterprises and the capital market [41,50,51]. In the credit market,
professional environmental protection certification and technical testing are required to
determine whether green projects really meet the requirements of green credit. The pro-
fessionalism of the project itself determines whether the information asymmetry of green
credit is more serious than that of traditional credit. In addition, this pricing difference is
closely related to the loan-approval systems of commercial banks, which attach importance
to asset mortgages and ownership discrimination. In any case, these results also support
the view that China’s current green finance reform only solves financing difficulties but
does not solve the problem of expensive financing [52]. However, this mismatch between
risk and return is undoubtedly beneficial to commercial banks.

Based on the above analysis, we propose Hypothesis 1:

Hypothesis 1 (H1). Increasing the proportion of green credit will increase the operating profits of
commercial banks.

4. Do Green Credit Policies Boost Profits?

In the last section, the financial data for green industries and the “Two High and One
Surplus” industries were compared, and the reasons for the differences between these two
types of industries were analyzed to build a theoretical basis for how green credit policies
affect the asset management of commercial banks. However, according to the literature,
relevant empirical analyses have failed to find a relatively consistent answer to the question
of whether increasing green credit can have positive effects on commercial banks. This
paper will continue to try to explain the differences in the conclusions from the literature
through empirical analysis and will put forward inferences based on facts.

4.1. Description of the Data, Variables, and Models

The study period was from 2007 to 2020 and included 2016, the first year of green
finance in China; the global financial crisis in 2008; and the COVID-19 outbreak in 2019.
Sample banks included 43 types of large state-owned commercial banks, national joint-
stock commercial banks, urban commercial banks, and rural commercial banks (including
non-listed banks). During the sample period, the selected banks were very representative
in terms of the proportion of deposit balance (69.2–80.5%) and loan balance (71.4–74.7%) for
the whole industry. From the perspective of green credit data, as of 2016 the green credit
balance of the sample banks accounted for 77% of the whole industry (the CBRC has only
released green credit statistics from 2013 to 2016). The relevant financial data, green credit,
and operational data from commercial banks were collected manually from their official
websites and from their annual reports and social responsibility reports.
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4.2. Different Models Have Different Results

The empirical analyses that have been carried out in the literature use the relative
index—return on total assets (ROA) or return on equity (ROE)—as the explained variable.
The value of the relative index is easily affected by the financing behavior of commercial
banks. For example, capital expansion increases the denominator of the relative index. In
order to further confirm that, this paper will compare the modeling results of the absolute
index and the relative index, respectively. The explained variable of the absolute index
model is the natural logarithm of net profit, and the core explanatory variable is the natural
logarithm of green credit. The relative index model corresponds to return on total assets
(or return on equity) and the ratio of green credit corresponds to the total loan scale. The
control variables include macro indicators, such as GDP, interest rates, and exchange rates,
and industrial indicators, such as the average net interest margin, market concentration,
asset size, age (from the beginning of its establishment), and income cost ratio (operating
efficiency). The descriptive statistics of these variables are in Table 1. Using the F Test, it can
be found that the F statistics in Table 2 (line “F-test”) significantly reject the null hypothesis
that there is no fixed effect; so, the fixed-effect model is superior to the mixed-effect model.
Using the Hausman test (“Hausman (p value)”), it is found that the fixed-effect models
are mostly superior to the random-effect models. Therefore, the fixed-effect model of
individual characteristics is established as follows:

RelativeIndexit = αi + γ1LnGreenLoanit + γ2Xit + εit, (1)

AbsoluteIndexit = βi + ξ1GreenLoanRateit + ξ2Xit + µit. (2)

The RelativeIndexit is the explained variable of the relative index model, namely the
ROA or ROE; the AbsoluteIndexit corresponds to the explained variable of the absolute
index model, namely the natural logarithm of net profit. LnGreenLoanit and GreenLoanRateit
are the natural logarithm of green credit and the proportion of green credit in the total loan,
respectively. Xit is the control variable. εit and µit are random disturbance terms. αi and βi
are individual fixed effects.

Table 1. Descriptive statistics.

Variable Variable Declaration Obs Mean SD Min Max

ROA Return on total assets, % 552 0.98 08.2 0.12 1.76
ROE Return on equity, % 557 19.19 8.49 1.51 49.25

LnNP Logarithm of net profit, CNY 100 million 573 4.19 1.77 −0.46 8.06
GreenLoanRate Green credit ratio, % 368 3.74 4.08 06.0 29.37

GreenRateLnAsset Green credit ratio × Log of total assets 368 38.55 45.17 0.50 328.64
LnGreenLoan Log of green credit, CNY 100 million 368 5.15 2.24 0.47 9.82

GDP The local GDP growth rate, % 602 8.86 3.25 −5.00 17.40
LnReGDP Log of the actual local GDP; CNY 100 million 602 11.26 1.60 7.97 13.45

MarketShare The bank’s local market share (by deposits), % 590 4.70 4.29 06.0 17.72
Age Age (from the date of establishment), year 602 18.52 10.63 0 69

IfListed Listed or not, Yes: 1 and No: 0 602 09.4 00.5 0 1

INIM Average net interest margin of banking
industry 471 10.28 2.58 4.30 39.10

E Exchange rate, CNY/USD 602 6.66 08.3 6.14 7.61
Evar Volatility of exchange rate (standard deviation) 602 0.11 07.0 0.004 07.2

A simple comparison of the empirical results (Table 2) shows that the conclusions
drawn by the relative indicator model (Model 1–2) and the absolute indicator model (Model
7–9) are quite different. Under the relative indicator model, the increase in the proportion of
green credit inhibits the financial performance of commercial banks, while the conclusion
drawn by the absolute indicator model is just the opposite. This contrast may be led
by the rapid expansion of the total assets (denominator) in the relative index. Before
2007, only 7 of the 43 banks in the sample had been listed. The vast majority of Chinese
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commercial banks were listed in succession during the sample period. The business scale of
Chinese commercial banks is largely constrained by the asset management of the regulatory
authorities. When the financing channel of the stock market is opened, commercial banks
resolve the asset management constraints one after another by expanding the share capital
to further promote the expansion of the asset scale. During the sample period, the average
annual growth rate of the net assets of the sample banks was as high as 27.46%, while
the corresponding growth rate of the net profits was only 18%. On the one hand, rapid
capital expansion has diluted the return on average assets, causing the total profit and the
proportion of green credit in China’s banking industry in this special period to increase
while causing the return on average assets and net assets to decline. On the other hand,
the excessive expansion of assets and the scale of business may lead to a decline in the
operating efficiency of commercial banks (this argument will be proved below).

Table 2. Regression results for the different types of index models.

(1)
ROA

(2)
ROA

(3)
ROA

(4)
ROE

(5)
ROE

(6)
LnNP

(7)
LnNP

(8)
LnNP

GreenLoanRate −0.0184 *** −0.0073 *** 0.0899 *** −0.3313 *** −0.1458 *
GreenRateLnAsset −0.0099 ***

LnGreenLoan 0.316 *** 0.107 *** 0.0520 ***
GDP 0.0257 *** 0.646 *** 0.0274 **

MarketShare −0.0231 ** 0.108 ***
Age 0.119 ***

IfListed
INIM −0.0448 ***
E var −0.790 ***

LnReGDP 1.570 ***
E −0.2784 *** −0.344 ***

Constant 1.0168 *** 2.63 *** 1.110 *** 0.2942 *** 14.43 *** 3.327 *** 2.247 *** −12.11 ***
Observations 368 368 368 368 368 368 337 368

R-squared 0.0767 0.489 0.117 0.0716 0.337 0.545 0.683 0.816
Number of id 43 43 43 43 43 43 41 43

F-Test 11.09 15.32 10.75 55.58 72.42 47.43 52.57 55.84
Hausman (p

value) 0.0017 0.0112 0.0000 0.5514 0.3379 0.0000 0.0000 0.0000

Robust t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Considering the interactive influence of their own asset scale (Model 3), the financial
effect of the proportion of green credit is differentiated: banks with a lower asset scale than
average (CNY 810.1 billion) are more likely to realize the positive effects of green credit. On
the one hand, under certain conditions, green credit policies are conducive to alleviating
the decline in operating efficiency caused by the excessive capital expansion of Chinese
commercial banks. On the other hand, it has been proven that sample selection plays an
important role in the model results. Different studies in the literature have selected different
sample individuals and sample periods, and the average asset size of those selected samples
has also been different, causing different conclusions to be drawn.

4.3. Cost Margin of Green Credit

According to the above analysis, the excessive capital expansion of Chinese commercial
banks may lead to a decline in operating efficiency. Increasing green credit not only
improves the operating profits, but also alleviates the problems caused by excessive capital
expansion to a certain extent. In order to further verify and explore the relationship between
green credit policies and the operation efficiency of commercial banks, this paper studies
whether and how increasing green credit affects the operation of commercial banks by
establishing elastic green credit models and input and output from the perspective of
internal resource utilization efficiency:

Inputit = φi + ϕ1LnGreenLoanit + ϕ2Xit + εit. (3)
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Inputit, the input variable, represents the management costs; the number of employees
and the number of business outlets are selected as the corresponding input variables,
which are the explained variables taken from the natural logarithm. LnGreenLoanit is the
logarithm of the amount of green credit, Xit represents a series of the control variables, and
εit is the random interference term. In order to compare the costs and benefits of green
credit, the natural logarithm of the net profit is added to the explained variable. In this
paper, the individual fixed effect was used for regression analysis.

The results of Model 9–11 (in Table 3) support the view that “an increase in the pro-
portion of green credit will increase business costs”. Many scholars, such as He Dexu
and Zhang Xuelan [46], believe that green credit increases the management costs incurred
by project identification in the credit process of commercial banks, such as via project
evaluation by external experts and targeted staff training, etc. Model 9 verifies this view.
Model 10 and Model 11 show that increasing the amount of green credit not only signifi-
cantly increases the management cost, but also promotes increasing the number of staff and
outlets. Specifically, when the green credit ratio increases by 1%, costs rise by an average
of 0.05%. Compared to the increase in cost, green credit also significantly improves net
profit, and the coefficient is slightly higher than the increase in cost, which indicates that
the increase in green credit business may bring income to commercial banks that is twice
the increase in cost. This further shows that green credit businesses are more efficient in
using cost inputs than traditional credit businesses.

Table 3. Regression of green credit on costs and profit.

(8)
LnNP

(9)
LnAdminCost

(10)
LnStaff

(11)
LnBranch

LnGreenLoan 0.0520 *** 0.0641 *** 0.0506 *** 0.0491 ***
MarketShare 0.108 *** 0.0998 *** 0.114 *** 0.115 ***

LnReGDP 1.570 *** 1.241 *** 0.810 *** 0.868 ***
E −0.344 *** −0.130 *** −0.124 *** −0.106 ***

Constant −12.11 *** −9.738 *** 0.368 3.835 ***
Observations 368 368 368 368

R-squared 0.816 0.880 0.758 0.689
Number of id 43 43 43 43

F-Test 55.84 122.06 93.37 93.26
Hausman (p value) 0.0000 0.0000 0.0000 0.0000

Robust t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

So far, we have proved Hypothesis 1; that is, green credit policies improve the operat-
ing profits of commercial banks. In addition, it was determined that compared to general
loans, green credit also significantly increases the cost input of commercial banks. In order
to further analyze the mechanism influencing green credit policies and to combine with the
conclusions that have already been obtained, this paper puts forward Hypothesis 2:

Hypothesis 2 (H2). Increasing the proportion of green credit will improve the operating efficiency
of commercial banks by improving the utilization rate and allocation efficiency of internal resources.

5. The Operation Efficiency of Commercial Banks

According to the conclusions of Section 4, excessive capital expansion speed may lead
to a decrease in the internal resource allocation efficiency of Chinese commercial banks
and improving the green credit ratio not only pushes up the business costs of banks, it
also creates several times more profit. These findings provide market evidence for green
credit policies improving the operational efficiency of commercial banks, but these findings
only support this inference from the results, and there is a lack of systematic and dynamic
discussion on the principles and processes. Is the rate at which the assets of commercial
banks are expanding really reasonable? Is there an optimal asset size or allocation structure
for internal resources? Additionally, can increasing green credit have an impact on the
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resource allocation efficiency of commercial banks? The answers to these questions are
the key to further exploring how green credit policies affect the operational efficiency
of commercial banks. This requires us to analyze the relationship between green credit
policies and the operational efficiency of commercial banks, not only from the perspective
of the operating results, but also from the perspective of the operating processes. In view
of this, this paper will take the input–output efficiency as the starting point to explore the
impact of changes in the proportion of green credit on business efficiency and will carry
out research from a more comprehensive perspective.

Here, input–output efficiency refers to the concept of technical efficiency in economics;
that is, under certain technical conditions, when it is impossible to increase any output
without reducing other output, or it is impossible to reduce any input without increasing
other input, then the input–output is technically efficient [53]. Therefore, technical efficiency
refers to the utilization level of the existing technology. Common influencing factors include
the quality of the workers and the management level. Farrell [54] used production frontier
analysis to measure technical efficiency for the first time, which was widely recognized by
the theoretical circle of researchers and became the basis of the efficiency measurements.
The so-called production frontier refers to the maximum output set corresponding to
various proportional inputs at a certain technical level. The core of production, frontier
analysis, is the effective frontier, that is, analysis in the form of the production function.
In terms of methods, it includes parametric analysis with a specific function form and
a non-parametric method without a specific function form. The former is represented
by stochastic frontier analysis (SFA) and parametric metafrontier analysis. The latter is
represented by data envelope analysis (DEA).

DEA is a non-parametric analysis method that was first proposed by A. Charnes,
W.W. Cooper, and E. Rhodes [55] in 1978 and was developed on the basis of evaluating
relative efficiency. As a non-parametric analysis, DEA can calculate the efficiency value with-
out setting the specific function form of production, which has a wide range of applications.
In the process of analyzing the input–output efficiency of commercial banks, it is difficult to
find an effective functional form between input (such as staff and outlets) and output (such as
net profit). Therefore, this paper adopts the DEA method to analyze the operating efficiency
of commercial banks (if it is a functional form, then net profit is the explained variable, and the
number of employees and outlets is the explanatory variable. It should be considered whether
there is an optimal proportion between employees and outlets, which often varies greatly for
different types of commercial banks in different regions, and this optimal proportion often
varies over time. Therefore, insufficient degrees of freedom should be considered during
parameter estimation).

Sherman and Gold [56] were the first to apply DEA to banking efficiency, and later
scholars followed their methods [57–59]. A key to measuring the operational efficiency
of commercial banks with DEA is to identify the input and output. There are three main
classification methods: production methods, asset methods, and intermediary methods.
Production methods view banks as general productive enterprises. The input production
factors mainly include employees, machinery and equipment, capital, etc., and the output
factors include deposits and loans. According to the intermediary method, the bank is the
medium of borrowing and lending; that is, it produces the absorbed deposits as loans, and
other inputs also include human resources, financial resources, material resources, and
other elements. For the property method, the index classification is closely related to the
balance sheet. The input index is the liability item, and the output is the asset item. The
amount of a loan is often taken as the most important output indicator, while deposits can
be classified differently. Other indicators, such as manpower, equipment assets, and capital
input, generally appear in the form of input factors.

The DEA model is essentially a target optimization problem under a given constraint.
As a modern enterprise, the ultimate goal is undoubtedly to pursue profit maximization
rather than to maximize the loan amount. In fact, commercial banks expand the size of
deposits and loans to maximize their total profit by increasing the scale. The classification
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methods for deposits are the input, and loans are the output, showing how commercial
banks continue to consider debt management similarly to how it was considered in the
1960s and 1970s. This paper does not take loans as output and instead replaces them with
net profit. Considering the importance of the asset security of commercial banks to the
financial system and even to the national economy, we added the non-performing loan
rate as an undesirable output to the optimization target. In fact, trade-offs between safety
and profitability often occur; so, commercial bank managers and regulators need to make
two-goal trade-offs. In practice, commercial banks have different priorities for different
goals in different periods. For example, in a period when the non-performing loan ratio is
lower than 1%, it is more important to improve the net profit level than to further reduce
the non-performing loan ratio, while the opposite is true when the non-performing loan
ratio is higher than 5%. In view of this, we considered a multi-objective weight problem for
dynamic intertarget trade-offs at different risk levels.

5.1. Theory and Methods

In this paper, the directional distance function (DDF) was used to measure the input–
output efficiency. x represents the inputs, and the outputs are divided into desirable outputs
y and non-desirable outputs b. The production possibility set is:

T =
{
(x, y, b) : x can produce (y, b)}, (4)

and the corresponding non-radial DDF is

Dnr(x, y, b; g) = sup
{

w′β : ((x, y, b) + diag(β)× g) ∈ T
}

. (5)

g = (gx, gy,gb) is the direction of improvement, and diag (β) is the adjustment amount for
the input–output that is not limited by a fixed proportion. Based on the studies related to
SBM-DDF [60–62], we also dynamically set the weights w of the inputs and outputs in the
objective function. It was transformed into a linear programming problem using panel data
with an individual number J and time dimension Γ (assuming the same scale remuneration
production mode, variable scale remuneration only needs to add convexity conditions):

Dnr(x, y, b; g) = max
β,λ

w′β = wx,t
βxgx

x
+ wy,t

βygy

y
= wb,t

βbgb
b

(6)

s.t. ∑
τ∈Γt

J
∑

j=1
λjτxjτ + Sx

jτ = x + diag(βx) · gx

∑
τ∈Γt

J
∑

j=1
λjτyjτ − Sy

jτ = y + diag(βy) · gy

∑
τ∈Γt

J
∑

j=1
λjτbjτ + Sb

jτ = b + diag(βb) · gb

β ≥ 0; λjτ ≥ 0, j = 1, . . . , J τ = 1, . . . , Γ

(7)

In the above expression, the letter with lower indices is a scalar value, and the letter
without lower indices is a vector. In accordance with the above, x, y, and b represent
input, desirable output, and undesirable output, respectively. g = (gx, gy,gb) and β =
(βx, βy,βb) are the adjustment directions and adjustment quantities of these three variables,
respectively; Sx

jτ , Sy
jτ , and Sb

jτ are the relaxation variables representing the three variables,
respectively; λjτ is the λ value (intensity variable) of the Jth DMU at time τ.

The setting of the efficient reference frame, namely the effective frontier, is crucial. The
effective frontier is usually divided into the biennial, sequential, and global frontiers in
the scope of time. The main difference lies in the period range of data used to determine
the effective frontier. It corresponds to the data from the previous two years and to the
sequential and sample data for the whole period. In order to facilitate the efficiency
comparison in different periods, this paper adopts the global SBM-DDF.
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5.2. Variable Selection and Data Description

In this paper, a production method is adopted, and the number of employees, the
number of business organizations, the fixed assets, and the other input variables are
adopted as output indicators. According to the above analysis, net profit is used to replace
the amount of deposits and loans as the desirable output (the larger the better), and the
non-performing loan ratio is taken as the undesirable output. Considering multi-objective
dynamic coordination, this paper dynamically adjusts the weight of the non-performing
loan ratio and the net profit output. The weight of the net profit is set as 1, and the weight
of the non-performing loan ratio is dynamically adjusted according to the actual situation.
The specific method is as follows: first, work out the average value of the non-performing
loan ratio for all of the sample banks each year. The dynamic weight adjustment rule of the
non-performing loan ratio is as follows: if the non-performing loan ratio is less than the
average value, the weight is 0.2; if the ratio is greater than average, but less than 5%, then
the weight is 0.6; if the ratio is greater than 5%, the weight is set to 1 (during the sample
period, the average was 1.36%m, with a minimum of 0.76 and a maximum of 2.27%, never
exceeding 5%). The descriptive statistics of these variables are in Table 4.

Table 4. Descriptive statistics for operational efficiency analysis.

Type of
Variable Variable Variable Declaration Mean Max Min SD

Input

Staff Total number of
working employees 59,047.05 503,082 775 118,241.16

Branch Total number of business outlets 2438.59 24,452 21 5316.64

FixedAsset Fixed asset value, CNY
100 million 215.90 2535.25 1.31 475.72

AdminCost

The administrative expenses
incurred (excluding asset

impairment provisions), CNY
100 million

256.15 1990.50 1.57 448.81

Desirable
output NP Total net profit, CNY 100 million 287.42 3176.85 0.63 573.85

Undesirable
output wNPLR Dynamically adjusted

non-performing loan ratio, % 0.63 9.81 0.00 0.75

Efficiency
measure Dv Non-radial distance from the

effective boundary 2.33 14.77 0.00 1.44

5.3. Analysis of Business Efficiency

The non-radial distance was obtained. The smaller the value of the distance, the closer
it is to the corresponding effective point and the higher the efficiency value. The non-radial
distance between the points on the efficiency boundary was 0. For better understanding,
this distance was further normalized by means of min-max normalization, resulting in an
efficiency score of 0–100, with higher scores resulting in greater efficiency. Another result
of the SBM model is the slack variable. The slack variable is the amount of each input
(or output) variable that should be reduced (increased) when the efficiency is improved.
Therefore, the smaller the slack variable of a factor is, the higher the utilization efficiency of
the factor is (the relaxation variable of the non-satisfactory output refers to the number of
efficiency improvements that should be reduced).

Overall, as we can see in Figure 4, the operating efficiency of Chinese commercial
banks has declined since they reached their peak in 2011.This is consistent with the previous
discussion on how “excessive capital expansion leads to a decline in operating efficiency”.
In 2008–2011, the efficiency scores rose rapidly as each slack variable declined (in order
to increase the comparability between different slack variables, this paper represents the
change rates in the slack variables. The larger the change rate, the lower the factor efficiency
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corresponding to the slack variable). It can be seen that the most important force leading
this wave of operational efficiency improvements is the sharp increase in net profit, which is
closely related to rapid economic recovery in the post-financial crisis, and a good economy
promotes the improvement of the utilization efficiency of various input factors. During
the period of 2011–2017, the overall operating efficiency gradually decreased. In terms
of slack variables, the efficiency of all of the inputs and outputs shows varying degrees
of decline during this period, and the most obvious feature is the decline in the control
efficiency of the non-performing loan ratio. All of the indicators showed a brief small rally
in 2017–2019. Affected by the COVID-19 epidemic, the operating efficiency in 2020 showed
a sharp decline. As seen from the figure, the most important reason for this comes from the
rapid decline in net profits.
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Figure 4. Average operating efficiency and slack variables.

On the other hand, compared to other inputs, the inefficient use of fixed assets and
business outlets is more prominent and has existed for a long time. Among them, the
number of business outlets before 2009 was the minimum efficiency investment, which is
consistent with the conclusion of the research performed by Wang Bing and Zhu Ning [63].
The rate at which personnel are utilized and the management expenses gradually converge,
a phenomenon that can be explained by saying that the efficiency of management expenses
is gradually determined by how efficiently employees are used. The biggest factor causing
the fluctuations in the overall operating efficiency is the substantial adjustments in net
profit, followed by the non-performing loan ratio.

From the perspective of different types of commercial banks(in Figure 5), the operating
efficiency of large state-owned banks has risen to the highest level in the industry through a
series of measures such as capital injection, bad debt stripping, shareholding reform, among
others. These measures have resulted in strong national joint-stock commercial banks. In
contrast, the city commercial banks cannot compete with the national banks due to the
restrictions of their operating areas, and they have to compete with rural commercial banks
for tight regional resources, resulting in the operating efficiency declining. Rural commercial
banks have a low level of operating efficiency. The efficiency stratification of different types of
banks is basically consistent with the study of Li Lifang et al. [64]. From the perspective of
commercial banks in different regions, the economic environment plays a significant role in
dividing them into different efficiency categories (in Figure 6). Commercial banks in the east
have the highest operating efficiency, other than national banks, and the operating efficiency
of commercial banks in the central and western regions is low.
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6. Green Credit and Bank Operating Efficiency

When comparing the trends in the operating efficiency of commercial banks and the
proportion of green credit, the average value of green credit is easily affected by extreme
values due to the limitations in the amount of information that is publicly disclosed, thus
affecting the accuracy of the conclusions. As shown in the left figure below, if the proportion
of green credit is simply averaged, then there is a certain negative correlation with the
operating efficiency; that is, the higher the proportion of green credit is, the lower the
operating efficiency of the banks is as well. In cases where the sample size is small, this
simple average method is easily affected by large values, thus resulting in wrong judgments.
For example, the green credit ratio in industrial banks has been 3–7 times higher than the
average ratio for a long time. In order to eliminate these influences, the method proposed in
this paper standardizes the deviation of each bank’s green credit ratio in its own time series
and then averages it in years to determine the average green credit ratio for each year. The
same treatment is performed on the operating efficiency to obtain the average efficiency
score. This processing method highlights the rising and falling trends in the data over time,
smooths the influence of extreme values, and fits the average trend better. The final results
are shown in Figure 7. It can be seen from the figure on the right that the proportion of
green credit after the standardized treatments is positively correlated with the efficiency
score to a certain extent; that is, the higher the proportion of green credit, the higher the
operation efficiency of the banks. A regression model is used to verify this below.
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Figure 7. Green credit ratio and operating efficiency (trend comparison under different averaging
methods).

6.1. Model and Variables

Compared to the panel data from the mixed-effect model, the individual fixed-effect
model eliminates the influence of individual characteristics that do not change the average
effect in the form of difference over time and can eliminate the influence of extreme
individuals without reducing the sample size. Therefore, this paper takes the green credit
ratio as the core explanatory variable and adopts an individual fixed-effect model to
analyze the non-radial distance and each slack variable (here, the slack variables decrease
the proportion of inputs and undesirable outputs and increase the proportion of desirable
outputs. It can be seen that the larger the slack variable, the lower the efficiency. Therefore,
if the regression coefficient of the proportion of green credit is significantly negative, it
shows that increasing the amount of green credit can improve the efficiency, and vice versa):

Dvit = αi + ς1GreenLoanRateit + ς2Xit + µit, (8)

Slackit = βi + ξ1GreenLoanRateit + ξ2Zit + εit. (9)

Dvit and GreenLoanRateit are the non-radial distance and green credit ratio, respec-
tively. Slackit represents the slack variables of the inputs and outputs, and Xit and Zit are
the control variables for two models. µit and εit are the random interference terms. αi and
βi are individual fixed effects. China’s supply of credit resources demonstrates a certain
regional segmentation phenomenon [65]; that is, there is a large amount of funds clustered
in some regions. Therefore, regional variables may have an impact on the operational
efficiency and the green credit ratio of commercial banks. We introduced regional GDP,
regional financial depth, and regional market share into the control variables. Furthermore,
individual factors such as age and asset size were added into the control variables to reduce
the endogeneity of the model. The descriptive statistics of these variables are in Table 5.
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Table 5. Descriptive statistics (regression of green credit ratio and operating efficiency).

Variable Variable Declaration Obs Mean SD Min Max

Dv Non-radial distance 491 2.326 1.439 0 14.766
B Branch Slack variable of branch 491 0.463 0.265 0 0.934

B Staff Slack variable of staff 491 0.326 0.212 0 0.902
B FixedAsset Slack variable of fixed assets; CNY 100 million 491 0.53 0.30 0 0.96

B AdminCost Slack variable of management cost; CNY
100 million 491 0.25 0.21 0 0.80

B wNPLR Slack variables of dynamic non-performing
loan ratio; % 491 0.55 0.30 0 0.98

B NP Slack variables of net profit; CNY 100 million 491 0.20 1.06 0 14.19
GreenLoanRate Green credit ratio; % 368 3.74 4.082 0.06 29.37

LnAsset Log of total assets; CNY 100 million 568 9 1.741 5.11 12.72

LnReGDP Log of the actual GDP of the area: CNY
100 million 602 11.26 1.604 7.97 13.45

GDP Regional GDP growth rate; % 602 8.86 3.25 −5 17.4

FinInspPop
Financial depth: the number of financial

institutions per capita in the region;
individual/10,000 people

602 1.58 0.23 1.03 2.33

Age Age: from the date of establishment; year 602 18.52 10.63 −4 69

MarketShare Market share: the bank in its region
(by deposits); % 590 4.70 4.29 0.06 17.72

PFEpGDP Public fiscal expenditure accounted per GDP; % 602 19.61 5.55 8.74 40.22

6.2. Empirical Results

From the regression results, it can be seen that increasing the proportion of green credit
in commercial banks will improve all aspects of their operating efficiency. All else being
equal, each percentage point increase in green credit brings commercial banks closer to the
effective boundary by 0.07 units on average (Table 6). This proves that green credit policies
can effectively improve the allocation efficiency of the internal resources of commercial
banks. Through the regression of the green credit ratio to the slack variable (Table 7), it can
be seen that during the operation of commercial banks, increasing the proportion of green
credit can significantly improve the efficiency of all of the inputs and outputs. Among them,
improving the efficiency has the biggest effect on the net profits. All other things being
equal, an average percentage point in the green credit ratio of one can promote the net
profit index towards its corresponding effective standard by 3.31. Improving the efficiency
of the non-performing loan ratio is also obvious, a finding that is supported by the market
data. For example, according to data from the CBRC in June 2016, the non-performing
green credit ratio of 21 major banks was only 0.41%, 1.35% lower than that of other loans
during the same period (http://www.cbirc.gov.cn/cn/view/pages/ItemDetail_gdsj.html?
docId=22943&docType=0, accessed on 8 April 2022).

The excessive speed of capital expansion leads to Chinese commercial banks having
excessive internal resources, resulting in the gradual decline of the overall operating
efficiency after 2011. In essence, green credit policies increase the green credit ratio; on the
one hand, they make more effective use of the excess internal resources, and on the other
hand, they improve the allocation efficiency of internal resources, alleviating the problem
of low operating efficiency. This proves Hypothesis 2.

http://www.cbirc.gov.cn/cn/view/pages/ItemDetail_gdsj.html?docId=22943&docType=0
http://www.cbirc.gov.cn/cn/view/pages/ItemDetail_gdsj.html?docId=22943&docType=0
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Table 6. The regression results for the green credit ratio on non-radial distances.

(1) (2) (3)

Dv Dv Dv

GreenLoanRate −0.0863 *** −0.0663 *** −0.0551 ***
LnAsset 1.063 ***

LnReGDP −3.444 *** −4.833 ***
FinInspPop 2.919 ***

age 0.295 ***
MarketShare 0.218 ***

Constant 2.508 *** 27.97 *** 51.91 ***
Observations 368 368 368

R-squared 0.055 0.157 0.232
Number of id 43 43 43

F-Test 8.93 9.07 11.33
Hausman (p value) 0.000 0.000 0.000

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 7. Regression results of the green credit ratio on the slack variables.

(1) (2) (3) (4) (5) (6) (7)

B_Branch B_Branch B_Staff B_FixedAsset B_AdminCost B_wNPLR B_NP

GreenLoanRate −0.0119 *** −0.0184 *** −0.0123 *** −0.0192 *** −0.00907 *** −0.0238 *** −0.0331 **
GDP 0.0201 ***

MarketShare 0.0384 ***
PFEpGDP 0.183 ***
Constant 0.146 *** 0.511 *** 0.365 *** 0.570 *** 0.313 *** 0.634 *** −3.641 ***

Observations 368 368 368 368 368 368 368
R-squared 0.232 0.098 0.044 0.073 0.042 0.078 0.155

Number of id 43 43 43 43 43 43 43
F-Test 27.12 22.69 10.42 14.74 19.65 8.87 3.04

Hausman
(p value) 0.0338 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

7. Discussion of Endogeneity and the Robustness Test
7.1. Discussion of Endogeneity

As there is policy space for the disclosure of green credit data, commercial banks can
choose the green credit data that they wish to publish to a certain extent. Therefore, the
samples that can be collected may be from commercial banks with a high proportion of
green credit. This potential problem leads to the possibility of endogeneity caused by a
non-random sample (self-selection bias); that is, the sample selection is endogenous. On
the other hand, some important variables related to the proportion of green credit may
be omitted from the model. Heckman’s two-stage method and the instrumental variable
method are used to discuss the above two types of endogeneity problems.

For non-random sample problems, this paper refers to Heckman’s [66] two-stage
method and introduces the non-randomness of the sample into the original regression
model in the form of a variable called the inverse Mills ratio (IMR) to solve the self-selection
bias problem in the regression model.

Yit =
1

1 + ePit
(10)

Yit = αi + φ1Sit + µit. (11)

IMRit =
pd f (P̂it)

cd f (P̂it)
. (12)
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Dvit = βi + ϕ1GreenLoanRateit + ϕ2 IMRit + ϕ3Xit + εit (13)

Pit is a dummy variable. If a bank publishes green credit data in that year, then the
corresponding Pit value is 1; otherwise, it is 0. Sit is a potential factor that affects whether
banks publish green credit data, including the ages of the banks, whether they are listed,
and the competition status of the industry. In this paper, we established a logistic model to
analyze the relationship between Pit and Sit through the intermediate variable Yit pd f

(
P̂it

)
and cd f

(
P̂it

)
are the probability density function values and the cumulative distribution

function values corresponding to the Pit fitting value, respectively, and the two are divided
to calculate the inverse Mills ratio IMRit. GreenLoanRateit represents the green credit ratio,
and Xit is the corresponding control variable (the same as above). εit and µit are the residual
terms for the two models, respectively. αi and βi are individual fixed effects.

In this paper, the instrumental variable method is used to analyze possible missing
variable problems. In order to meet the relevance and externality principle of instrumental
variable selection, we took the local implementation intensity of environmental protection
as the direction of selection and constructed “the operating cost of industrial waste gas
treatment facilities/sulfur dioxide emissions” as the indicator for the intensity of envi-
ronmental protection implementation. Because of the rapid spillover of environmental
technology, the average cost of waste gas treatment does not fluctuate much from region
to region. Therefore, the ratio of the operating costs of industrial waste gas treatment
facilities to sulfur dioxide emissions can reflect a region’s emission tolerance. The lower
the environmental tolerance, the greater the demand for green projects, and the higher
the proportion of green credit that commercial banks in a region have. On the other hand,
there is a high correlation between the behavior of local officials and the credit structure
of banks [65,67]. Government officials who are involved in promotion tournaments are
limited by environmental assessment when pursuing GDP targets [68]. Therefore, the
environmental tolerance of local government officials has a strong correlation with the
green credit behavior of commercial banks within the jurisdiction. From the perspective of
externality, environmental tolerance refers to the environmental awareness of the regional
government, which is hardly affected by factors related to the operation performance of
local commercial banks.

As seen from the regression results (Table 8), the inverse Mills ratio (IMR) is significant,
indicating the existence of non-random sample problems. After modification, the positive
effect of green credit on the operating efficiency of banks is improved (the coefficient
increases from 0.0663 to 0.0692). From the perspective of the instrumental variable method
(Model 4–5), environmental tolerance (OEIWGpSo2) has a certain correlation with the
proportion of green credit, and endogeneity problems may underestimate the promotion
effect of green credit on improving the operational efficiency of banks.

Table 8. The regression results of the endogenous tests.

(1) (2) (3) (4) (5)

Dv Dv Dv GreenLoanRate Dv

GreenLoanRate −0.0663 *** −0.0692 *** −0.0883 *** −0.344 **
LnAsset 1.063 *** 1.447 ***

LnReGDP −3.444 *** −3.392 ***
FinInspPop 2.919 *** 3.697 ***

imr 2.312 **
MarketShare 0.198 *** 0.119 **

r −0.370 *** −0.350 ***
OEIWGpSo2 0.0503 **

Constant 27.97 *** 21.51 *** 2.420 *** 3.442 *** 3.677 ***
Observations 368 368 368 325 325

R-squared 0.157 0.173 0.168 0.015
Number of id 43 43 43 43 43

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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7.2. Test of Robustness

Whether measuring the operational efficiency of commercial banks can effectively
reflect objective facts is the key to determining whether the conclusions of this paper are
reliable. During the DEA analysis of the efficiency, the weight change rule of the objective
function is set in this paper, which may affect the reliability of the conclusions. Therefore,
the rule will be reset to test the robustness of the results. Specifically, the weight of net
profit is still set as 1, and the tolerance of non-performing loans is reduced: when the
non-performing loan ratio is lower than the industry average, the weight is set as 1; when
the non-performing loan ratio is higher than the average but lower than 5%, the weight is
set as 1.2; if it is above 5%, the weight is 1.5. The other methods remain unchanged.

By comparing the influences of different weight setting rules on the results (Tables 7 and 9),
we can see that the significance of the regression coefficient remains unchanged after the rules
that have been set for the dynamic weight have changed considerably. Although the size of the
coefficient is reduced to a certain extent, such changes cannot overturn the original conclusions.
That is, it still proves that green credit can significantly improve the operational efficiency of
commercial banks using the allocation efficiency of input and output.

Table 9. Regression results for the robustness test (objective function reconstruction).

(1) (2) (3) (4) (5) (6) (7)

B_Branch1 B_Branch1 B_Staff1 B_FixedAsset1 B_AdminCost1 B_wNPLR1 B_NP1

GreenLoanRate −0.0113 *** −0.0175 *** −0.0115 *** −0.0170 *** −0.00852 *** −0.0207 *** −0.0300 *
GDP 0.0193 ***

MarketShare 0.0342 ***
PFEpGDP 0.162 ***
Constant 0.172 *** 0.508 *** 0.355 *** 0.568 *** 0.317 *** 0.549 *** −3.253 ***

Observations 368 368 368 368 368 368 368
R-squared 0.226 0.098 0.047 0.063 0.043 0.095 0.125

Number of id 43 43 43 43 43 43 43

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

8. Conclusions and Policy Recommendations
8.1. Conclusions

According to the development status, the Chinese government must further promote
green credit policies to finance green economic development. However, in the context of
a weak global economy, such economic transformation may face the risks and challenges
of a further decline in the domestic economy. With such doubts, from the perspective of
commercial banks, this paper tries to clarify the market logic of green credit policies and
explore whether green credit policies conform to the long-term market mechanism.

Section 3 analyzes the financial status and credit financing costs of two types of loan
customers (the enterprises in the environmental protection industry and the “Two High
and One Surplus” enterprises), corresponding to a green credit policy that is based on the
financial information of the loan customers. It was found that green enterprises have a
better financial status and less risk but higher credit financing costs than the “Two High
and One Surplus” enterprises. On the one hand, the pricing differences between the capital
market and the credit market regarding the financing costs of green enterprises result
from the monopoly that commercial banks have in the credit market. On the other hand,
commercial banks benefit from the implementation of green credit policies. The financial
comparison lays an important theoretical foundation for demonstrating how green credit
policies affect the operation of commercial banks.

Section 4 closely combines previous research from the literature and the content of the
first part of the paper through regression analysis and studies the influence of increasing
the ratio of green credit to the operating results of commercial banks (namely, financial
indicators). It is pointed out that the differences in conclusions from the literature are due
to the selection of model variables. The root cause of these differences may be the rapid
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expansion of the capital of commercial banks in the sample period, resulting in a decline
in the internal factor allocation efficiency. The empirical analysis proves that increasing
the green credit ratio can increase the total profits of commercial banks and puts forward
that green credit policies can solve the “overcapacity” problems that are experienced by
commercial banks to a certain extent.

Section 5 analyzes the allocation efficiency of the internal resources of commercial
banks from the perspective of input–output efficiency to prepare for the fourth part of
the study. In terms of methods, an SBM-DEA model containing undesirable output (the
non-performing loan ratio) was established, and the weights of the output variables were
innovatively and dynamically coordinated. The results show that the efficiency measure-
ments for China’s commercial banks largely conform to the economic reality, and the
analysis of the slack variables effectively revealed the main reasons for the changes in the
operating efficiency of commercial banks at various stages.

Section 6 uses the operating efficiency and slack variables obtained in the third part
of the paper to study the influence of increasing the proportion of green credit on the
operation processes (operating efficiency) of commercial banks. It was found that green
credit policies mainly improve the overall operating efficiency of commercial banks from
two aspects: (1) it improves the utilization efficiency of various internal resources, and (2)
it improves the overall allocation efficiency of resources.

At the end of this paper, the possible endogeneity and robustness of the model were
discussed and tested. We considered possible endogeneity problems such as omitted
variables and non-random samples, and instrumental variables and Heckman’s two-stage
method were used to test and adjust the model. It was found that it is the model that has
mild endogeneity that underestimates the promotion effect of the green credit policy on
the operational efficiency of commercial banks to some extent. For a robustness test, the
influence of the weight rule changes on the research conclusions was tested by objective
function reconstruction, and no significant differences were found in the conclusions.

8.2. Policy Recommendations

Based on the research in this paper, we can provide the following three policy suggestions:
First, commercial banks should continue to promote green credit policies. This paper

has proven that increasing the proportion of green credit can not only increase the net profit
of commercial banks effectively and reduce the non-performing loan ratio, but it can also
make full use of their internal resources and improve the overall operating efficiency. Under
the current situation of a transition in industry competition, excessive capital expansion,
and a high idle rate of resources, Chinese commercial banks should further promote the
implementation of green credit policies, improve overall asset profitability, and promote
the optimal allocation of internal resources.

Second, from the perspective of the green industry, regulatory authorities should be
committed to reducing the pricing differences between different financing markets and to
solving the problems of “expensive financing” of green projects in a market-oriented way.
The different financing pricing for green industries in the stock market and in the credit
market stems from the monopoly that commercial banks have in the credit market, and the
unequal competition relationship is determined by comparing the huge volume of credit
financing and equity financing. Therefore, we suggest expanding the equity financing
channels of green industry so that the equity market information can be transmitted to the
credit market more effectively. On the other hand, differences in financing pricing may also
result from the sensitivity of different markets to information asymmetry. When financing
green projects, commercial banks require a higher risk premium for uncertainty. Therefore,
a credit guarantee mechanism can be designed to reduce the cost of uncertainty.

From the perspective of finance, the government should gradually reduce green
financial subsidies in coordination with supporting policies and measures. This paper
has proven that the green credit policies of commercial banks are in line with their own
market interests, laying a theoretical and factual basis for the withdrawal of fiscal subsidies.
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However, attention should be paid to the reaction of the market when withdrawing fiscal
subsidies, and various policies and orderly withdrawal methods should be implemented.
For example, due to the dominant position of commercial banks in green credit approval,
they may transfer the cost increases caused by the abolition of fiscal discounts to enterprises
applying for green credit by increasing interest rates. In this regard, regulators can provide
two types of supporting measures: on the one hand, they can increase the benefits of green
credit issued by commercial banks through policies, such as by supporting securing green
credit; on the other hand, there should be more alternative financing channels for green
projects to weaken the monopoly that commercial banks have on the financing market. At
the same time, market monitoring mechanisms should be added, such as the establishment
of a green credit financing index to monitor market reactions to fiscal cuts in real time.
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