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Abstract: Logistics services aid import and export businesses located near ports in terms of ease and
efficiency in the globalization era. Furthermore, economic growth and global import–export volumes
immediately impact the port industry. This research aims to develop a two-stage Data Envelopment
Analysis (DEA) model for measuring the performance efficiency of Vietnam’s top 18 seaports. The
DEA resampling technique is used to forecast future performance, and the DEA Malmquist model
analyzes efficiency improvement. First, the forecast data for the next three years, from 2021 to 2023,
were obtained by resampling Lucas weight prediction with the highest accuracy. The results indicate
that 12 out of all ports achieved an average progressive production efficiency over the entire study
period of 2018–2023. Further, most ports have advanced slightly in technological efficiency, indicating
that the determinants of increased productivity are the technical efficiency change indexes. This
work contributes to the body of knowledge by being the first to apply the resampling technique
in conjunction with the Malmquist model to forecast performance efficiency in the domain of the
seaport sector. Furthermore, the managerial implications serve as a beneficial reference for operation
managers, policymakers, and researchers when comparing the operational efficacy of seaports to
diverse logistical scenarios.

Keywords: efficiency; forecasting; seaport terminal; DEA; malmquist; resampling; Vietnam
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1. Introduction

The port industry plays a crucial role in the economic prosperity of the nation and
region in the age of globalization [1]. Logistics services help import and export businesses
located close to ports in terms of ease and efficiency. Seaport terminals are viewed as drivers
in the global trading system, acting as a catalyst for the growth of the maritime industry and
a significant contribution to a nation’s worldwide competitiveness. Port operations are no
longer limited to the handling of cargo. They have become a vital component of enterprises
and economic markets internationally. Whether for cargo or people, many port facilities
are controlled by operators with a global footprint [2]. Terminal operators must overcome
unique obstacles and challenges in each nation’s seaports to ensure the sector’s viability and
resilience. As a result, investment in port infrastructure quality enhancement and economic
contribution is frequently questioned by authorities, investors, and the general public [3].
In this context, evaluating seaports’ operational efficiency, technological capability and
progress, and performance productivity is critical for capturing their development trend [4].
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In addition, there is a dearth of literature on general supply chains and seaports,
especially in developing countries [5]. Vietnam is considered an attractive destination of
numerous foreign direct investment projects among emerging countries. It has achieved
great strides in international seaborne transport due to the friendly investment environment,
low labor costs and reduced taxes compared to India and China [6]. Demand for imported
raw materials and completed products between Vietnam and other countries is increasing
as the manufacturing landscape changes. Container throughput increased 18% in 2021,
reaching over 16.8 million TEUs. Export container throughput was 5.4 million TEUs, up
16% from 2020, while import container throughput was over 5.5 million TEUs, up 21% from
2020 [7].

Moreover, thanks to its favorable geopolitical position with a 1900-mile-long coastline
and 320 ports, Vietnam plays an expanding role in global commerce. However, the current
development level of Vietnam’s seaports is still insufficient compared to the advantages
conferred by its geographic location. According to the World Economic Forum, Vietnam
has ranked 80/139 nations on the quality of its seaport infrastructure, with an average
score of 3.80 on a scale of 1 (lowest) to 7 (highest) between 2006 and 2020. Here, Nam
Dinh Vu updates the developing situation of the Vietnam seaport system so that investors
can make an informed choice about where to place their business [8]. With a significant
number of supply chain relocations to Vietnam, it is natural that shipping demand in
the country is expanding. However, given Vietnam’s long-term economic trajectory, this
need is likely to persist for years to come. Vietnam intends to raise investment funds
from various sources, including the state budget and the private sector, to fund its master
plan for seaport development between 2021 and 2030 [9]. By 2030, Vietnam’s seaports are
expected to carry approximately 1.14–1.42 billion tons of cargo, including 38–47 million
TEUs of container goods and 10.1–10.3 million passengers annually, according to a recently
approved master plan [10]. While this planning process continues, investors that want ports
for imports or exports should consider regional variance in the quality of port infrastructure
before establishing a facility. Therefore, port efficiency assessment is crucial for port
administrators, investors, governments, and clients because it enables an examination of
ports’ performance and identifies critical factors contributing to port productivity and trade
competitiveness [11–13].

Furthermore, performance is a broad concept encompassing nearly all operational
management and competitive excellence objectives for a business and its activities. In
the case of ports, due to the complexity of today’s port products, each actor (authorities,
operators, and stakeholders) conducts in-depth examinations of various performance com-
ponents. These are based on the development of several, occasionally unique performance
indicators that differentiate terminal operations, cargo transfer operations, port logistics,
and manufacturing and postponed manufacturing activities. The users of these products
and the selection criteria for each specific port service vary significantly. With the spa-
tial and functional expansion of ports (port regionalization), connecting and integrating
operational design and strategy across the multi-institutional and cross-functional port
sector has emerged as a new dimension of port performance. Performance measurements
and communication of performance measures that are tailored to specific objectives are
becoming more prevalent.

Port-related literature has addressed efficiency from a variety of perspectives. Es-
sentially, port efficiency analyses established relationships between inputs (primarily the
physical facilities and labor force of a port) and outputs (such as the quantity or movement
of goods in ports). A production or cost frontier—the set of maximum outputs for a given
level of inputs or the set of minimum inputs for a given level of outputs—must be esti-
mated. The production frontier, in this context, refers to the optimal combination of inputs
in a particular industry. Thus, it is considered inefficient if a producer operates below the
frontier. According to this literature, efficiency can be defined as the difference between the
position assigned to each observation—which is determined by the relationship between
its inputs and outputs—and the estimated best practices on the production frontier [14].
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Although port performance is complex and no longer limited to internal procedures,
port operators and authorities continue to place a premium on port efficiency [15]. Var-
ious support models have been proposed to measure efficiency to solve these concerns
over the years. Data envelopment analysis (DEA), proposed by Charnes et al. [16], is
known as a popular nonparametric assessment technique based on considering multi-
input and multi-output variables as well as decision-making units (DMUs) for efficiency
evaluation across geographies or periods [4,17,18]. Various previous studies have applied
DEA-based techniques to a variety of domains, including Charnes–Cooper–Rhodes (CCR),
Banker–Charnes–Cooper (BCC), super slack-based measure (super SBM), Window DEA,
and DEA Malmquist [2,13]. Notably, the CCR and BCC models cannot solve undesirable
outputs [19]. The SBM model is used to eliminate slack while accurately ranking the efficacy
of DMUs, further optimizing the shortcomings to obtain reasonable metrics. The DEA
Malmquist model is an advantageous extension for calculating DMU productivity. The
DEA window analysis takes a dynamic approach, treating the same DMU as distinct DMUs
at different points in time. The moving average method determines its relative efficiency
by comparing each DMU to a different reference set.

Although there are many studies on the DEA measurement of efficiency, to our
knowledge, only a few studies have employed the combination of the DEA resampling and
Malmquist approach to estimate seaport performance. Therefore, the DEA applications
in the literature proved their enormous advantages in efficiency evaluation in the seaport
industry. To address this research gap, our study evaluated the efficiency of the top
Vietnamese seaports using the combined Malmquist–resampling DEA approach. This study
considers the top 18 seaports associated with five major indicators regarding efficiency
evaluation in Vietnam, including three input variables: terminal length, equipment, and
ship calls. In contrast, cargo throughput twenty-foot equivalent units (TEUs) are chosen
as two output variables. The dataset was extracted from Vietnam Seaports Association
(VPA) [20] and General Statistics Office (GSO) [21] for the period 2018–2020. Relating these
insights to the literature, our main contributions are threefold:

(1) An effective two-stage DEA approach integrating resampling technique and Malmquist
is first proposed to assess performance efficiency in the context of the Vietnamese
port industry.

(2) The DEA resampling is applied to forecast the next 3 years of seaport performance
based on the efficiency score to confirm the suitable data in this case study.

(3) The DEA Malmquist model estimates total productivity change through technical
and technological changes based on selected inputs (terminal length, equipment, ship
calls) and outputs (cargo throughput, TEUs).

The rest of this study is divided into sections. Section 2 mentions a comprehensive
port industry literature review. Section 3 describes the process of the DEA Malmquist and
Resampling models. In Section 4, a case study of Vietnam is investigated to demonstrate
the procedures’ efficacy and the method’s applicability to the maritime industry’s perfor-
mance evaluation problem. Section 5 summarizes the study’s conclusions, contributions,
limitations, and future work.

2. Literature Review

In the past decade, many researchers have paid attention to the consideration of
production optimization. Debreu [22] provided the first measure of productive efficiency
in the context of the coefficient of resource utilization. Farrell [23] presented a similar
method for calculating efficiency by considering various inputs and outputs. The term
“input-based Farrell efficiency” refers to the highest percentage contraction of all inputs
necessary to produce the same amount of output. On the other hand, the output-oriented
Farrell efficiency measures the proportionate expansion of all outputs with a given number
of inputs. Efficiency can be divided into allocative (cost) and technical. The former de-
notes the ideal mix of inputs and outputs under the assumption that the producer wishes
to minimize costs, whereas the latter refers to the efficiency with which a particular set
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of inputs is employed to generate an output. The primary disadvantage of the Farrell
efficiency is the weighting of inputs and outputs. CCR [14] is known as a mathematical
programming-based optimization method to address this issue. The DEA approach was
developed with constant returns to scale or DEA–CCR. This method enables the relative
efficiency of DMUs to be determined without the use of fixed weights or time series anal-
ysis. DEA–BCC [24] was devised by integrating the BCC model and variable returns to
scale (VRS). Since then, the DEA approach has been modified in various ways, includ-
ing incorporating dummy or categorical variables, discretionary and non-discretionary
variables, and nonparametric Malmquist indices. For example, the super SBM model is
utilized to address the slack issue while precisely assessing the effectiveness of DMUs [25].
As an expansion of the original DEA model, the DEA Malmquist model is an extremely
valuable tool for determining the productivity of DMUs, with the Malmquist productivity
index (MPI) being the product of the catch-up index (technical efficiency) and frontier-shift
index (technological efficiency) [26]. In this study, the MPI extracted from the Malmquist
model is exploited to find the most efficient ports in Vietnam. Due to the suitability of
DEA for comparing homogeneity units such as container ports, port benchmarking studies
frequently use operational data due to the difficulties of acquiring a port’s expenses and
pricing [27]. As a result, our study will concentrate on technical efficiency and technological
efficiency measurements.

Table 1 summarizes the applications of DEA in the literature to determine the relative
efficiency of container terminals and ports. Tongzon [28] evaluated the efficiency of four
Australian and twelve other foreign container ports using the CCR and Additive DEA
models. Cullinane and Wang [29] utilized CCR and BCC models to analyze the perfor-
mance of 57 container terminals. Jiang and Li [30] proposed a technique for estimating
the technical efficiency of Northeast Asian seaports as a performance metric using DEA
radial and non-radial approaches. Sharma and Yu [31] optimized the benchmarks and
prioritized the variables in 70 container terminals using a hybrid decision tree in context
DEA. Lim et al. [32] used additive non-oriented DEA with RAM, a modified version of
the context-dependent DEA model, to assess the relative operating efficiency of 26 Asian
container terminals. Sánchez and Millán [33] examined the effect of public changes on the
productivity of Spanish ports using the Malmquist index model (MPI). Wanke [34] opti-
mized both steps concurrently using a two-stage network–DEA technique. The first stage,
named physical infrastructure efficiency, involves utilizing assets (number of terminals,
warehouse space, and yard space) to meet a specified shipping frequency each year. These
operations enable the handling of solid bulk and containerized shipments in the second
step, named shipment consolidation efficiency. Bray et al. [35] investigated the efficiency of
transportation systems using the DEA model based on fuzzy sets. This method was then
applied to a sensitivity study of the efficiency of container ports on the Mediterranean Sea
involving different attributes. Almawsheki and Shah [36] measured technical efficiency
using the CCR model, and slack variable analysis identified possible areas for improvement
at 19 inefficient container terminals in the Middle Eastern region. Sun et al. [37] suggested
a non-radial DEA preference model based on the VRS and the directional distance function
(DDF) for analyzing the efficiency of Chinese-listed port firms. Huang et al. [38] employed
the DEA–supply chain operations reference (SCOR) model to examine the port operational
efficiency of ship inward–outward and stacking yards in ports along the Maritime Silk Road
of the twenty-first century. Mustafa et al. [39] applied DEA–CCR and DEA–BCC models to
compare the technical efficiency of less-explored South Asian and Middle Eastern ports to
East Asian ports and identify opportunities for improving their efficiency and management.
Based on the idea of supply base rationalization in Korea container terminals, Kim et al. [40]
suggested DEA cross-efficiency and cluster analysis to assess the direction for terminal
rationalization at the national level in order to alleviate excessive rivalry among container
terminals. Xu and Xu [41] integrated the exponential smoothing method with the DEA
model to determine the business plan for SIPG during the next five years. Liu et al. [42]
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used the SBM–DEA and undesirable–DEA models to assess the efficiency of the major
container terminals in three Chinese cities.

Table 1. A summary of previous study methodologies and problem features.

Authors/Year Inputs/Criteria Outputs/Responses Method Sample and Region

Tongzon
(2001) [28]

Number of cranes
Number of container

berths Number of tugs
Terminal area Delay

time labor

Throughput
Number of ship calls

CCR
Additive DEA. Brazilian ports

Cullinane and
Wang (2006) [29]

Terminal area
Quay cranes
Yard cranes

straddle carriers

Container throughput CCR
BCC container ports

Jiang and Li
(2009) [30]

Import/Export by customs
GDP by regions

Berth length
Crane number

Container throughput Radial
Non-radial

Northeast Asian
container ports

Sharma and Yu
(2010) [31]

Quay cranes
Transfer cranes

Straddle carriers
Reach stackers

Quay length terminal area

Container throughput Context-DEA Container terminals

Lim et al.
(2011) [32]

Quay length
Total area

Gantry cranes
Container throughput Additive non-oriented

DEA RAM
Asian container

terminals

Sánchez and
Millán (2012) [33]

Number of employees
Intermediate consumption

Capital

Liquid bulk solid bulk
Containerized
general cargo

Non-containerized
general cargo

MPI Ports in Spain

Wanke (2013) [34]

Number of berths
Warehousing area

yard area
Shipments frequency

Container throughput Network-DEA Brazilian ports

Bray et al.
(2014) [35]

Number of cranes
Container berths
Number of tugs
Terminal area

Delay time
Number of port

authority employees

Container throughput
Shiprate

Ship calls
Crane

Productivity

Fuzzy DEA Container ports

Almawsheki and
Shah (2015) [36]

Terminal Area
Quay length
Quay cranes

Yard equipment
Maximum Draft

Container throughput CCR Middle East container
terminals

Sun et al.
(2017) [37]

Staff number
Fixed assets

Operating cost
Net profit

Cargo throughput
NOx

Non-radial DEA Chinese port
enterprises
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Table 1. Cont.

Authors/Year Inputs/Criteria Outputs/Responses Method Sample and Region

Huang et al.
(2021) [38]

Quay length
Number of

container berths
Gantry cranes

Container throughput
CCR
BCC

SCOR

Ports along the
twenty-first-century
Maritime Silk Road

Mustafa et al.
(2021) [39]

Number of berths
Number of cranes

Berth length
Berth depth

TEUs CCR
BCC

Ports in South &
Middle Eastern and
East Asian region

Kim et al.
(2021) [40]

Quay length
Depth of water

Crane

Cargo volume
Loading capacity

per hour

DEA cross-efficiency
Cluster analysis

Korean Container
Terminals

Xu and Xu
(2021) [41]

R&D
Proportion of technical

personnel

Business income
Container throughput

Exponential smoothing
CCR Ports in China

Liu et al.
(2022) [42]

Gross Crane Productivity
Crane Intensity

Berth Length
Berth Depth

Calls
Moves
Finish

SBM
Undesirable Ports in China

Based on the extensive literature review, a few prior studies forecasted and evaluated
the port industry’s performance using a combined DEA approach of Resampling forecasting
techniques and the Malmquist model. This paper, therefore, is not concerned with the
description of critical factors influencing seaport efficiency in general, but rather with
identifying gaps in the scope of previous studies on seaport management and beginning to
address those gaps through an empirical study of the top 18 seaports in Vietnam. The goal
is to increase knowledge and provide a better understanding of stakeholder management
issues in the context of the Vietnamese port industry.

According to Chang et al. [43], it is critical to consider the DMU’s past, current
performance, and future potential when evaluating its performance. However, if the past,
current, and future performance are all considered concurrently, it is necessary to integrate
various methodologies. Tone [44] suggested a model in DEA to address this issue, called
resampling past–present and resampling past–present–future. The past–present model
estimates the DEA score’s confidence interval over the past and present time periods using
the super slack-base measure model (super-SBM), and then extends this model to the past–
present–future time periods. Wang et al. [45] used this DEA resampling model to forecast
the macroeconomic performance of 17 economies, including 12 Asian developing countries
and five developed countries, during 2013–2020. The research demonstrates that DEA
resampling is a highly successful model for forecasting and evaluating the performance of
numerous decision makers. Chiu et al. [46] developed a method for evaluating the financial
industry’s performance in Taiwan by combining the merger potential gains model and the
resample past–present–future model. Bai et al. [47] used a combination of resampling DEA
and the possible merger benefits model to estimate the efficiency gains associated with
three representative mergers and acquisitions schemes in China’s railway sector from 2011
to 2015.

The Malmquist model is an extremely useful tool for evaluating productivity in
DEA [48]. Färe [49] indicated that the Malmquist model consists of two components,
one of which assesses changes in technical efficiency and the other of which measures
changes in technology efficiency. The Malmquist model measures a DMU’s total factor
productivity change over a two-year period. It is defined as the product of efficiency
improvement (catch-up) and technological advancement (frontier-shift). The catch-up
effect describes how near a DMU gets to the most efficient production frontier and the
frontier-shift effect describing the sample’s technological advancement. The deconstructed
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aspects of the MPI can assess how much of an increase in relative efficiency from period t
to can be attributed to individual effort and how much to industry development. Efficiency
change quantifies the degree to which a DMU improves or decreases its efficiency, whereas
technological change measures the efficiency of frontier shift between two periods [50].
There have been various applications of the Malmquist model over time in various fields.
For example, Pan et al. [51] used the Malmquist model to examine regional disparities
and the dynamic evolution of agricultural sustainability and efficiency in 31 regions of
Mainland China. Wan and Zhou [52] used the Malmquist model to measure the total
productivity of agricultural management factors of 12 cities in Hubei, a central province of
China. Kong et al. [53] suggested that the Malmquist model investigates the development
efficiency, spatiotemporal evolution characteristics, and spatial improvement of China’s
innovative industrial clusters.

Therefore, this study uses a hybrid technique for forecasting and evaluating port
industry performance by a combined DEA approach of Resampling and Malmquist models.
First, Resampling is used to forecast future values for each seaport for the period 2021–2023,
and Malmquist is applied to determine the efficiency changes score over the entire period
of 2018–2023 based on output variables such as cargo throughput and TEUs, and input
variables such as terminal length, equipment, and ship calls. This study serves as a
guideline for managers, policymakers, and decision makers to optimize operative processes
and identify critical success criteria for sustainable growth, harnessing and enhancing
Vietnam’s port industry.

3. Methodology

The present study employs an integrated DEA Malmquist and resampling model
to evaluate Vietnam’s top 18 seaports for 2018–2020. After thoroughly examining the
Vietnamese port industry, this study carefully considers the top 18 seaports. Selecting
appropriate input and output variables is critical in DEA applications, as the correlation
between the selected variables will affect the accuracy of the results. The research process
is divided into two distinct phases, as illustrated in Figure 1.

First, Pearson correlation is checked to ensure the dataset’s homogeneity and iso-
tonicity. Second, the DEA resampling technique forecasts the performance efficiency of
18 selected ports using historical data from 2018 to 2020. The authors then propose resam-
pling the past–present–future model to analyze future results from 2021 to 2023. Finally, the
DEA Malmquist model determines the total productivity change. The researchers present
the results of their application of the Malmquist productivity index, analyze the data over
time, and summarize the findings.

3.1. Validation of Data

Numerous statistical techniques such as Pearson correlation coefficient, affinity index,
diversity index, etc. are used to validate data. The correlation between the input and output
data will be verified before calculating the efficiency. Pearson’s correlation coefficient test is
a well-known method that has been utilized in past investigations. Scores are composed
of values ranging from −1 to +1 in relation to each score. Each score reflects the linear
dependence between two determinants or data sets [54]. The homogeneity and isotonicity
will demonstrate that correlation tests are significant, allowing for any DEA methodologies.
Getting correlation values close to +1 indicates a more favorable linear relationship in
simple terms.

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(1)

where n denotes the sample size, xi, yi are the individual points indexed i, and x = 1
n

n
∑

i=1
xi

is the sample mean and analogous for y.
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3.2. DEA Resampling Model

Since its establishment, DEA has been continuously enhanced, and appropriate
methodologies have been developed. While these approaches inherit two desirable quali-
ties, unit invariance and monotonicity, they share a similar flaw in that they are measured
only once, resulting in some computation bias [47]. To address this shortcoming, it is
necessary to consider their history, current record, and future potential. Incorporation of
multiple approaches, such as DEA and other forecasting models such as time series mod-
els [55], Grey models [56], and machine learning forecasting algorithms [57], is required
when considering the past, current record, and future production.

Tone [58] suggested three DEA resampling models. The resampling model is primarily
concerned with input and output measurement errors and how repeated sampling has
reduced some empirical distribution flaws. Additionally, this method may forecast the
future efficiency of DMU and increase forecast accuracy more than GM (1,1).

3.2.1. Past-Present Model

(Xt, Yt) (t = 1, . . . , m) is denoted as a set of historical data for resampling, with the
input vector Xt =

(
xt

1, . . . , xt
n
)

(xt
j ∈ Rm) and the output vector Yt =

(
yt

1, . . . , yt
n
)

(yt
j ∈ Rg), with n DMUs. Wt is denoted for a time weight increasing with t.

Lucas number series (Wl1, . . . , Wlt), is defined as follows:
Wlt+2 = Wlt + Wlt+1 (t = 1, . . . , m, m− 2; l1 = 1, l2 = 2).

WL stands for the sum of the series: WL =
m
∑

t=1
Wlt. Then, the weight Wt is as follows:

Wt = Wlt/WL (2)
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Finally, a bootstrap replication of historical data is used to calculate the confidence
interval. Because replicas are representative of the dataset, it is necessary to conduct a
preliminary analysis of the data to determine its characteristics. The 95 percent confidence
interval can then be calculated using Fisher’s transformation [19].

3.2.2. Past–Present–Future Model(
Xt+1, Yt+1) is denoted as the forecast data, calculated by taking past-present data

(
Xt, Yt)

with (t = 1, . . . , m) and measuring the DMU efficiency value in the future period alongside
their confidence intervals.

Ft(t = 1, . . . , m) is denoted as the historical data with an exact input and output of a
DMU. Fhm+1 is forecasted from Ft(t = 1, . . . , m). There are three resampling techniques:
trend analysis, Lucas weight average, and a hybrid of trend and Lucas.

3.3. DEA Malmquist Model

The Malmquist Index was suggested by Caves et al. [48] to compare the technological
efficiency of a range of items. The Malmquist Index quantifies a DMU’s overall factor
productivity change over two consecutive periods. It is characterized by efficiency changes
(catch-up) and technological changes (frontier–shift). A change in efficiency indicates how
much the DMU improves or degrades its efficacy, whereas technical changes indicate a
shift in the borders of efficiency between two periods [59].

The MPI index = Efficiency change (catch-up) × Technical change (frontier–shift):

MPI
(

xt+1, yt+1, xt, yt
)
=

ρt+1
0
(

xt+1, yt+1)
ρt

0 (xt, yt)

√
ρt

0 (xt+1, yt+1)

ρt+1
0 (xt, yt)

×
ρt

0 (xt, yt)

ρt+1
0 (xt, yt)

(3)

It is well noted that MPI values can be extracted in three scenarios:

• MPI values > 1: Increasing productivity
• MPI values = 1: Constant productivity
• MPI values < 1: Decreasing productivity.

4. Empirical Analysis
4.1. Case Study

This study investigates the top 18 seaports in Vietnam from 2018–to 2020 via DEA-
Solver software Version 13.2 (Table 2).

Table 2. List of DMUs.

DMUs Seaport Area

SP-01 Quang Ninh Northern
SP-02 Hai Phong Northern
SP-03 Doan Xa Northern
SP-04 Dinh Vu Northern
SP-05 Nam Dinh Vu Northern
SP-06 Tan Cang 128 Northern
SP-07 Nghe Tinh Central
SP-08 Da Nang Central
SP-09 Quy Nhon Central
SP-10 Dong Nai Southern
SP-11 Cat Lai Southern
SP-12 Sai Gon Southern
SP-13 Ben Nghe Southern
SP-14 Lotus Southern
SP-15 TCIT+TCCT Southern
SP-16 SSIT Southern
SP-17 Can tho Southern
SP-18 An Giang Southern
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The accuracy of the data is critical because it has the potential to alter the results
significantly. Based on the summary of inputs and outputs used in previous relevant
studies, the authors decided to choose three inputs (Terminal Length, Equipment, Ship
calls) and two outputs (Cargo throughput, TEUs), which are presented in Table 3 [13].

Table 3. Definitions of variables.

Variables Definitions Units References

Terminal Length (I1) The length of berths at which
container ship anchor m2 [2,13]

Equipment (I2) The major number of equipment
cargo-handling in port Items [13,60]

Ship calls (I3)
The number of vessels which call

or arrive at a particular port at
any given time

Call [11,12]

Cargo throughput (O1) The weighted quantity of cargo
handled annually MT [15,61]

TEUs (O2) The terminal’s annual container TEU [13,15]

4.2. Results of DEA Resampling Model
4.2.1. Results of DEA Resampling Model for Historical Data

This study uses historical data of the top 18 seaports for three years (2018–2020) to
calculate the efficiency scores using Lucas weights. A replicas test evaluates correlation
coefficients for the study’s findings. The comparisons of 5000 versus 500 replicates are
provided in Table 4, indicating that the results obtained with a 95% confidence interval were
statistical negligibly low, while the DEA scores are virtually identical. Thus, 500 replicas
can be used in this study.

Before further analysis, a correlation analysis is performed to ensure that the appro-
priate inputs and outputs are used in the DEA models. The correlation coefficient value is
always between (−1) and (+1), and if it is close to (1), it indicates a stronger linear relation-
ship between the components. The high correlation between inputs and outputs confirms
that the study’s inputs and outputs are appropriate, as indicated by the correlation analysis
results presented in Table 5.

Table 4. Comparisons of 5000 and 500 replicas (2018–2020).

DMUs
5000 Replicas 500 Replicas Difference

97.50% DEA 2.50% 97.50% DEA 2.50% 97.50% 2.50%

SP-01 1.0107 0.7801 0.6251 1.0082 0.7801 0.6251 0.0025 0
SP-02 1.1436 0.8952 0.6545 1.1449 0.8952 0.6623 −0.0013 −0.0078
SP-03 0.3698 0.2484 0.1077 0.3698 0.2484 0.1083 0 −0.0006
SP-04 2.0137 1.3668 1.3012 2.006 1.3668 1.2965 0.0077 0.0047
SP-05 1.4568 1.0705 0.6937 1.4653 1.0705 0.6834 −0.0085 0.0103
SP-06 1.3138 0.376 0.3236 1.3079 0.376 0.3236 0.0059 0
SP-07 0.2325 0.1966 0.1805 0.2385 0.1966 0.1791 −0.006 0.0014
SP-08 0.4094 0.3855 0.2377 0.4174 0.3855 0.2373 −0.008 0.0004
SP-09 0.5723 0.5266 0.3683 0.5763 0.5266 0.3872 −0.004 −0.0189
SP-10 2.909 1.1525 0.5062 2.9088 1.1525 0.5007 0.0002 0.0055
SP-11 0.4002 0.2801 0.263 0.4229 0.2801 0.263 −0.0227 0
SP-12 0.3883 0.3367 0.2613 0.3918 0.3367 0.2613 −0.0035 0
SP-13 0.5701 0.4683 0.3766 0.5735 0.4683 0.3766 −0.0034 0
SP-14 0.1772 0.1279 0.0519 0.1787 0.1279 0.0536 −0.0015 −0.0017
SP-15 5.9669 2.3891 3.9871 6.0392 2.3891 3.9797 −0.0723 0.0074
SP-16 1.2658 1.1213 0.2484 1.2665 1.1213 0.2585 −0.0007 −0.0101
SP-17 0.2038 0.1771 0.1088 0.2054 0.1771 0.1088 −0.0016 0
SP-18 0.4413 0.4098 0.3703 0.4441 0.4098 0.3689 −0.0028 0.0014
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Table 5. Correlation matrix of inputs and outputs in 2020.

Terminal Length Equipment Ship Calls Cargo Throughput TEUs

Terminal Length 1.000 0.981 0.852 0.912 0.922
Equipment 0.981 1.000 0.829 0.953 0.968
Ship calls 0.852 0.829 1.000 0.834 0.795

Cargo throughput 0.912 0.953 0.834 1.000 0.988
TEUs 0.922 0.968 0.795 0.988 1.000

4.2.2. Results of DEA Resampling Model for Future Data

To forecast future performance, the authors consider the period between 2018 and 2020
to be past–present, while the period between 2021 and 2023 is considered future. Second,
three distinct projections are used to forecast the year 2020’s efficiency (trend, Lucas weight,
and a hybrid model combining the trend and Lucas weight models). The actual efficiency
score obtained with the Super-SBM model will then be compared to the forecast score in
order to determine the prediction model’s accuracy. As previously stated, 500 replicas are
acceptable; thus, this section forecasted future operations of 18 ports in Vietnam using 500
replicas with a 95% confidence interval. After calculating and comparing the actual score
for 2020 with the efficiency scores obtained through three projections, it was determined
that the actual scores for all 18 sample ports included in the 95% confidence interval and
the average Forecast-Actual by Lucas weight prediction are 21,06%, which is the lowest of
the three separate projections. As a result, Lucas weight prediction is used to forecast data
for the three years 2021–2023. Table 6 compares the actual and forecast score (as predicted
by the Lucas weight model) for 2020.

Table 6. Forecast scores by the Lucas weight model, actual scores, and confidence interval in 2020.

DMUs 97.50% Forecasted
Score Actual Score 2.50%

SP-01 1.0346 0.9746 0.7801 0.6427
SP-02 1.1402 1.0625 0.8952 0.6322
SP-03 0.3687 0.1907 0.2484 0.1100
SP-04 2.1020 1.4263 1.3794 1.3219
SP-05 1.4928 1.1642 1.1065 0.7053
SP-06 1.2317 0.5695 0.3760 0.4479
SP-07 0.2386 0.2187 0.1966 0.1978
SP-08 0.3011 0.2566 0.3855 0.2242
SP-09 0.4601 0.4251 0.5266 0.3718
SP-10 2.7488 1.9320 1.7165 0.4815
SP-11 0.4002 0.3369 0.2801 0.3074
SP-12 0.3879 0.3639 0.3367 0.2799
SP-13 0.5719 0.5321 0.4683 0.4064
SP-14 0.1702 0.0912 0.1279 0.0521
SP-15 5.6958 4.9512 4.5446 3.9764
SP-16 0.3943 0.2900 1.1352 0.2198
SP-17 0.1859 0.1395 0.1771 0.1116
SP-18 0.4373 0.4086 0.4098 0.3759

4.3. Results of DEA Malmquist Model
4.3.1. Technical Efficiency Change

The catch-up index displayed in Table 7 and Figure 2 reflects the evolution of the
DMUs’ technological efficiency during 2018–2023. The evolution of the catch-up indexes
for all ports is depicted in Figure 2, and the detailed catch-up values are reported in
Table 4. The catch-up index indicates the advancement and regress of the DMUs’ technical
efficiency with values greater than or equal to one. Overall, the average catch-up score for
all DMUs fluctuated dramatically from 2018 to 2020, and is expected to grow or decrease
over 2020–2023. Table 7, 13 ports in all DMUs showed progressive technical efficiency
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between 2018 and 2023 with average catch-up indexes >1, resulting in an average catch-up
of 1.0518. Among these, SP-16 (1.373), SP-12 (1.3641), and SP-10 (1.209) are the three DMUs
with the greatest average gain in technical efficiency between 2018 and 2023. Meanwhile,
SP-01 (0.977), SP-04 (0.946), SP-06 (0.9128), SP-11 (0.9803), SP-12 (0.9976), and SP-13 are
the least effective operations on average. As illustrated in Figure 2, SP-03, SP-08, and
port 16 exhibited the most volatile performance during the research period. In particular,
SP-03 and SP-16 achieved their technical efficiency peaks during the 2019–2020 period,
with catch-up indexes of 2.2371 and 3.2211, respectively. Furthermore, port-16 is predicted
to experience a decline in technical efficiency between 2020 and 2021, with a catch-up
index of 0.4971, making it the worst-performing operator, followed by an upward trend
in subsequent periods in a score of 0. 9938 at the end of the forecast period. SP-06 raised
its catch-up score from 0.4777 in 2018–2019 to 0.7826 in 2019–2020 and is anticipated to
continue increasing significantly over the next three years, but has by far the worst catch-up
index of the entire year period. The technical efficiency progressions of the remaining
DMUs indicate relatively stable patterns.

Table 7. Technical efficiency changes for the period 2018–2023.

Frontier 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023 Average

SP-01 0.8013 0.9098 1.1547 1.0192 1.0017 0.9773
SP-02 1.0079 0.8499 1.1825 0.9985 0.9999 1.0077
SP-03 0.3028 2.2371 0.8811 1.0271 1.0024 1.0901
SP-04 0.6178 1.0791 1.0180 1.0153 1.0014 0.9463
SP-05 1.1625 0.9076 1.0195 0.9939 0.9995 1.0166
SP-06 0.4777 0.7826 1.2653 1.0354 1.0030 0.9128
SP-07 1.1312 0.8632 1.0488 1.0013 1.0001 1.0089
SP-08 0.8359 1.5990 0.8326 0.9838 0.9985 1.0500
SP-09 1.1683 1.1768 0.9042 0.9836 0.9985 1.0463
SP-10 1.9953 1.0825 0.9671 0.9985 0.9999 1.2087
SP-11 0.9610 0.8390 1.0888 1.0115 1.0010 0.9803
SP-12 0.9343 1.0099 1.0408 1.0029 1.0003 0.9976
SP-13 0.9181 0.9566 1.0690 1.0067 1.0006 0.9902
SP-14 1.8819 1.0703 0.9076 0.9574 0.9924 1.1619
SP-15 1.2128 1.1298 0.9104 0.9839 0.9986 1.0471
SP-16 1.2213 3.2211 0.4971 0.9320 0.9938 1.3731
SP-17 1.8041 0.9582 0.8462 0.9617 0.9968 1.1134
SP-18 1.0297 0.9915 0.9986 0.9988 0.9999 1.0037

Average 1.0813 1.2036 0.9796 0.9951 0.9993 1.0127
Max 1.9953 3.2211 1.2653 1.0354 1.003 1.0839
Min 0.3028 0.7826 0.4971 0.932 0.9924 0.951
SD 0.4503 0.6077 0.1686 0.0255 0.0027 0.0372

4.3.2. Technological Efficiency Change

The frontier-shift index measures the technological improvements (efficiency fron-
tiers) of DMUs during the period 2018–2023, reflecting their performance under a few
variables such as competitiveness, technological change, development, and political and
regulatory environment, to highlight a few. Table 8 summarizes the detailed frontier-
shift values for the DMUs, and Figure 3 illustrates the evolutionary trajectories of tech-
nical efficiencies for all DMUs. Overall, the average frontier-shift indexes of all DMUs
fluctuated modestly in 2016–2019 but are expected to increase at a relatively stable rate
during the forecast period 2020–2023. Table 8 shows that seven the DMUs, including
SP-03 (0.9989), SP-07 (0.9995), SP-08 (0.9963), SP-09 (0.9970), SP-16 (0.9920), SP-17 (0.9949),
and SP-18 (0.9943) failed to meet the advancing average frontier-shift indexes. Meanwhile,
port-04 (1.0370), SP-06 (1.0446), and SP-11 (1.0567) are the best technologically efficient
operators. Due to the fact that the majority of DMUs (eleven out of fourteen) have positive
average frontier-shift indexes, the overall average frontier-shift score during the research
period is 1.0129 (efficiency increase). In comparison to Figure 1 (catch-up index), Figure 3
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shows more fluctuating patterns of DMUs, notably SP-02, SP-04, SP-05, SP-06, SP-11, SP-14,
and SP-15, which depict the progression of their technological performance. Among these,
SP-02, SP 14, and SP-16 experienced a remarkable increase in 2019–2020 to peaks of 1.1827,
1.1192, and 1.0299, respectively, but are predicted to decline significantly in 2020–2021,
followed by a slight increase in the next forecast period, while other DMUs tend to grow
in the opposite direction. Especially, 3 DMUs are predicted to be unchanged in 2022–2023
with a score index of 1; this proves that all DMUs are predicted to have no technological
change progression.
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Table 8. Technological change for the period 2018–2023.

Frontier 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023 Average

SP-01 1.0424 1.0992 0.8886 0.9899 0.9991 1.0038
SP-02 1.1074 1.1827 0.8435 0.9938 0.9994 1.0254
SP-03 0.9787 1.0265 0.9895 0.9997 1.0000 0.9989
SP-04 1.2125 0.9858 0.9929 0.9943 0.9995 1.0370
SP-05 1.1789 1.0136 0.9862 0.9907 0.9992 1.0337
SP-06 1.2662 0.9684 0.9887 0.9996 1.0000 1.0446
SP-07 0.9788 1.0259 0.9927 1.0001 1.0000 0.9995
SP-08 0.9629 1.0226 0.9950 1.0009 1.0001 0.9963
SP-09 0.9660 1.0241 0.9940 1.0006 1.0001 0.9970
SP-10 1.0644 1.0732 0.9074 0.9792 0.9981 1.0044
SP-11 1.2625 1.1304 0.9099 0.9822 0.9984 1.0567
SP-12 1.0848 0.9291 0.9889 0.9995 1.0000 1.0005
SP-13 1.0884 0.9459 0.9838 0.9983 0.9999 1.0033
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Table 8. Cont.

Frontier 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023 Average

SP-14 1.0859 1.1192 0.9190 0.9918 0.9999 1.0232
SP-15 1.1362 1.0593 0.9531 0.9905 0.9992 1.0276
SP-16 0.9484 1.0299 0.9832 0.9987 0.9999 0.9920
SP-17 0.9577 1.0267 0.9897 1.0006 1.0001 0.9949
SP-18 0.9514 1.0201 0.9983 1.0016 1.0001 0.9943

Average 1.0707 1.0379 0.9614 0.9951 0.9996 1.0129
Max 1.2662 1.1827 0.9983 1.0016 1.0001 1.0567
Min 0.9484 0.9291 0.8435 0.9792 0.9981 0.9920
SD 0.1072 0.0647 0.0466 0.0066 0.0006 0.0200
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4.3.3. Total Productivity Change

The Malmquist Productivity Indexes (MPIs) of the DMUs are obtained using Equation (3).
Table 9 contains the detailed MPI indexes, whereas Figure 4 illustrates the progression
of the MPIs for all ports. MPI = 1 denotes the status quo for constant efficiency, MPI > 1
denotes an efficiency improvement, and MPI < 1 denotes an efficiency drop. As seen in
Table 6, most DMUs performed efficiently on average, except SP-01, SP-04, SP-06, SP-12,
SP-13, and SP-18. This result is noteworthy because these DUMs performed poorly with
technical efficiency, while there is no noticeable improvement in technological efficiency,
as demonstrated by their catch-up and frontier-shift scores discussed in 4.3.1 and 4.3.2.
Regardless of this, the fact that the average MPI of all DMUs is greater than 1 (1.1359)
indicates a trend in the ports’ total productivity growth over the research period. There
are three ports with the greatest efficiency gains: SP-10 (1.2277), SP-14 (1.2035), and SP-16
(1.3778). This can be explained by the great levels of technical and technological efficiency
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attained by these DMUs. Figure 4 depicts the trend in productivity efficiency, which is
nearly identical to the trend in the majority of DMUs when compared to the trend in
Figure 2 (catch-up). In particular, SP-10 and SP-14 exhibit the highest volatility of all DMUs;
both DMUs had a dramatic fall from 2018 to 2020 and are forecast to continue declining
through 2020–2021, before gradually increasing over the next two years.

Table 9. Total productivity change for the period 2018–2023.

Frontier 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023 Average

SP-01 0.8353 1.0000 1.0261 1.0089 1.0008 0.9742
SP-02 1.1161 1.0051 0.9974 0.9922 0.9993 1.0220
SP-03 0.2964 2.2964 0.8718 1.0268 1.0023 1.0987
SP-04 0.7491 1.0638 1.0107 1.0095 1.0008 0.9668
SP-05 1.3704 0.9200 1.0055 0.9847 0.9986 1.0558
SP-06 0.6049 0.7579 1.2510 1.0349 1.0030 0.9304
SP-07 1.1071 0.8855 1.0412 1.0014 1.0001 1.0071
SP-08 0.8048 1.6351 0.8285 0.9846 0.9986 1.0503
SP-09 1.1287 1.2051 0.8988 0.9842 0.9986 1.0431
SP-10 2.1237 1.1617 0.8775 0.9778 0.9980 1.2277
SP-11 1.2133 0.9484 0.9907 0.9935 0.9994 1.0291
SP-12 1.0135 0.9383 1.0293 1.0024 1.0002 0.9968
SP-13 0.9993 0.9048 1.0516 1.0050 1.0004 0.9922
SP-14 2.0435 1.1979 0.8341 0.9496 0.9923 1.2035
SP-15 1.3779 1.1968 0.8677 0.9746 0.9977 1.0829
SP-16 1.1583 3.3176 0.4888 0.9307 0.9937 1.3778
SP-17 1.7278 0.9838 0.8374 0.9623 0.9969 1.1016
SP-18 0.9796 1.0114 0.9969 1.0004 1.0000 0.9977

Average 1.1472 1.2461 0.9392 0.9902 0.9989 1.0643
Max 2.1237 3.3176 1.251 1.0349 1.003 1.3778
Min 0.2964 0.7579 0.4888 0.9307 0.9923 0.9304
SD 0.4642 0.6235 0.1546 0.0256 0.0027 0.1096

Note: calculated by the authors.

4.3.4. Comparative Analysis

The relation between the average technical change index and technological change
indexes and the Malmquist production index of DMUs is depicted in Figure 5. Since the
majority of ports performed much better in terms of technological development over the
study period with 11 out of 18 DMUs achieving an average frontier-shift index greater than
1, the chart of technological change indexes between the DMUs demonstrates a stable chart
in point of 1, while the average technical performance indicators of the DMUs fluctuated
significantly in the whole period. Moreover, the MPI results from the technical change
(catch-up index) and the technological change (frontier-shift index); the MPI chart has a
similar pattern to the technical change chart, as illustrated in Figure 4. As a result, the
evolution of each DMU’s technical efficiency determines almost entirely the growth of its
production change. This also explains why the patterns in Figure 4 for MPIs are nearly
identical to the patterns in Figure 2 for all DMUs’ catch-up indices. As port decision makers
see how technological innovation has become the primary driver of the expansion and
success of the port industry, they are increasing their focus on this area. On the other hand,
to win the port industry, operators must make greater efforts to improve technical efficiency
and production to optimize their capital, including labor, equipment and material suppliers,
and investment.
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4.4. Discussions

With a coastline of over 3260 km, Vietnam has enormous potential for seaport develop-
ment. The largest ports in Vietnam are in the north and south, each with distinct advantages.
Thus, assessing and forecasting the port industry’s performance is viewed as a critical
issue to ensure the port industry’s long-term viability. As a result, this study analyzed and
forecasted the performance of Vietnam’s top 18 ports using a past–present–future model in
DEA based on the resampling technique and the Malmquist model. The future efficiency
was forecast using the resampling method in DEA using the past–present–future model.
Due to the primary objective of forecasting accuracy, this stage considered the appropriate
number of replicas and a valid prediction model. To ensure that the appropriate number
of replicas was selected, 5000 and 500 replicas were created. These two tests produced
statistically insignificantly low results, while the DEA scores were comparable. Thus,
500 replicas are available for this study. The final stage was to determine which of the three
available prediction models, trend, Lucas weight, or hybrid, was the most accurate. The
accuracy of these three models was determined by comparing the computed efficiency
scores for each prediction model to the actual Super-SBM model scores. The ratio with
the smallest value is the forecast-actual ratio. After comparison, the Lucas weight model
was chosen as the prediction model with the smallest difference between the predicted and
actual Super-SBM model scores. Finally, we forecasted the efficiency of these 18 ports using
the Lucas weight prediction model.

Then, The DEA Malmquist productivity index was utilized to examine efficiency gains
in the whole research period, 2018–2023. According to MPI’s findings, 66.7% of the selected
ports improved their production efficiency on average during the research period. The
DEA Malmquist results for 2018 to 2020 show that most DMUs fluctuated dramatically,
then are predicted to decrease modestly over the forecast period 2020–2023. In fact, due to
the fourth outbreak and the high level of distancing measures implemented production,
import, and export activities of enterprises were disrupted, especially when the epidemic
broke out in an industrial zone and many enterprises could not meet the local working
conditions, resulting in a serious impact on the output of goods [62]. However, there are
three ports with the greatest efficiency gains in the entire research period, including SP-10
(Dong Nai), SP-14 (Lotus), and SP-16 (SSIT).

Regarding container cargo, most regions with a large volume of container cargo
throughput experienced positive growth as Dong Nai, SSIT [63]. SP-16 (SSIT) achieved the
highest productivity in 2019–2020, followed by a sharp decline in the next period. At the
end of 2020, due to Vietnam’s export demand and the high demand for empty containers,
SSIT has had good growth in the volume of mother ships docked, and many ad-hoc ships
call at lower port empty containers. Total mother ship volume at SSIT increased 134% TEU
over the same period last year. The total throughput through the wharf will reach more
than 1,000,000 TEU by 2020 [64]. Likewise, these ports experienced the highest Malmquist
production efficiency; this can be explained by the fact that these DMUs achieved high
technical and technological efficiency levels. Significantly, seaport organizations worldwide,
particularly in Vietnam, continually upgrade technology to maximize port operations
and communication. Technology modernizes ports by improving and simplifying trade
movement, but it also reduces carbon footprint [65]. As a result, it can play a critical role in
determining the competitiveness of seaport organizations.

5. Conclusions

Investing in the development of marine transport is critical for the economic develop-
ment of a coastal country such as Vietnam. However, as with any nation, developing an
appropriate strategy for seaport growth necessitates an assessment of current performance
and a thorough examination of the causes of inefficiencies. Seaport productivity evaluation
is a critical concept that focuses on resource utilization efficiency. This assessment can take
various forms, the most common of which is efficiency measurement. When considering
multiple inputs and outputs, DEA can be an effective tool for evaluating operational effi-
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ciency. This study used the two-stage DEA model to examine port efficiency in Vietnam
from 2018 to 2020 and forecasted the future performance of the country’s top 18 seaports.
As a result of this analysis, the following conclusions are drawn.

First, this research conducted a new comparative evaluation of the seaport using
a combination of the DEA Malmquist and resampling models. The total efficiency of
Vietnamese ports is not high due to limited technical and technological efficiency, and
some Vietnamese ports are extremely inefficient (with efficiency scores far from the efficient
frontier). This demonstrates that Vietnamese ports have had little impact on Vietnam’s
export competitiveness. Thus, Vietnamese ports have a significant opportunity to increase
their operational efficiency and contribute to the country’s international competitiveness
and trade performance. Port efficiency can significantly impact Vietnam’s overall export
performance and economic development. Moreover, decision-makers must enhance their
technical capabilities, equipment technology, growth strategies, and resource allocation for
critical projects in order to maintain their competitive advantage, such as expanding port
capacity in the most dynamic economic area for international competitiveness, trying to
reform complex customs procedures, and prioritizing the development of infrastructure
connecting ports to the territory.

Second, this study conducts a reliable forecast which is important for macroeconomic
policymakers in setting policies. Moreover, forecasting port performance is a benefit for
port administrators and investors to help them form strategic policies and correct their
investment portfolios.

Third, the model’s results will accurately reflect the current state of the seaport indus-
try based on the performance of several successful seaport companies. As a result, our
findings have important implications for helping seaport operators to better understand
and determine critical port operations and development indicators. As a result, operators’
technical and technological quality can be enhanced.

Fourthly, our findings and the analysis mechanism are expected to make significant
academic and practical contributions. On the academic side, the paper fills a significant
research gap relating to primary container terminals in Vietnam by systematizing research
on container terminals in Vietnam. On the practical side, the study provides the Vietnam
Government, policymakers, and terminal and port operators with detailed information
about the performance of primary container terminals in Vietnam, allowing them to develop
appropriate policies and strategies for improving performance.

However, the study has several limitations. Due to practical constraints, data could
not be collected from all ports in Vietnam, limiting the dataset’s scope to 18 major seaports.
Second, because the study employs a DEA methodology, the results are relatively insensi-
tive to the input and output variables chosen. Third, the panel data set spans only three
years. As a result, future research should include additional input and output variables
and broaden the scope of data collected in the terminal count and analysis period. More-
over, future research could be integrated with multiple criteria decision-making (MCDM)
techniques [66,67] or machine learning techniques [68] to evaluate port capacity under an
unclear environment.
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