
����������
�������

Citation: Khabyah, A.A.; Zaman, S.;

Koam, A.N.A.; Ahmad, A.; Ullah, A.

Minimum Zagreb Eccentricity

Indices of Two-Mode Network with

Applications in Boiling Point and

Benzenoid Hydrocarbons.

Mathematics 2022, 10, 1393. https://

doi.org/10.3390/math10091393

Academic Editors: Mikhail Goubko

and Emeritus Mario Gionfriddo

Received: 23 February 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Minimum Zagreb Eccentricity Indices of Two-Mode Network with
Applications in Boiling Point and Benzenoid Hydrocarbons
Ali Al Khabyah 1, Shahid Zaman 2 , Ali N. A. Koam 1 , Ali Ahmad 3,* and Asad Ullah 4

1 Department of Mathematics, College of Science, Jazan University, New Campus, Jazan 2097, Saudi Arabia;
aalkhabyah@jazanu.edu.sa (A.A.K.); akoum@jazanu.edu.sa (A.N.A.K.)

2 Department of Mathematics, University of Sialkot, Sialkot 51310, Pakistan; zaman.ravian@gmail.com
3 College of Computer Science and Information Technology, Jazan University, Jazan 2097, Saudi Arabia
4 Department of Mathematical Sciences, Karakoram International University Gilgit, Gilgit 15100, Pakistan;

dr.asadullah@kiu.edu.pk
* Correspondence: ahmadsms@gmail.com or aimam@jazanu.edu.sa

Abstract: A two-mode network is a type of network in which nodes can be divided into two sets in
such a way that links can be established between different types of nodes. The relationship between
two separate sets of entities can be modeled as a bipartite network. In computer networks data
is transmitted in form of packets between source to destination. Such packet-switched networks
rely on routing protocols to select the best path. Configurations of these protocols depends on the
network acquirements; that is why one routing protocol might be efficient for one network and
may be inefficient for a other. Because some protocols deal with hop-count (number of nodes in the
path) while others deal with distance vector. This paper investigates the minimum transmission in
two-mode networks. Based on some parameters, we obtained the minimum transmission between
the class of all connected n-nodes in bipartite networks. These parameters are helpful to modify or
change the path of a given network. Furthermore, by using least squares fit, we discussed some
numerical results of the regression model of the boiling point in benzenoid hydrocarbons. The
results show that the correlation of the boiling point in benzenoid hydrocarbons of the first Zagreb
eccentricity index gives better result as compare to the correlation of second Zagreb eccentricity index.
In case of a connected network, the first Zagreb eccentricity index ξ1(ℵ) is defined as the sum of the
square of eccentricities of the nodes, and the second Zagreb eccentricity index ξ2(ℵ) is defined as
the sum of the product of eccentricities of the adjacent nodes. This article deals with the minimum
transmission with respect to ξi(ℵ), for i = 1, 2 among all n-node extremal bipartite networks with
given matching number, diameter, node connectivity and link connectivity.

Keywords: Zagreb eccentricity indices; bipartite networks; matching number; diameter; node connectivity;
link connectivity

MSC: 05C09; 05C92

1. Bipartite Network

In bipartite networks, nodes are divided into two disjoint sets where each link connects
a node from one partition with a node from second partition.

Bipartite networks do not contain any odd cycle, (i.e., cycles that consist of an odd
number of links). Hence, the bipartite networks do not contain triangular shapes because
triangles have an odd number of links.

2. Preliminaries

In this article, connected, simple and undirected networks are considered. We denote
Pn for the path network, Kn for the complete network and Kp,n−p for the complete bipartite
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network with n nodes. We follow [1–4], for the notation and terminology which are not
defined in this article.

Assume that ℵ = (Vℵ, Eℵ) is a network having node set Vℵ which are connected by
the link is denoted by Eℵ. The cardinality of network W is denoted as |W|. Let y ∈ Vℵ,
then denote Nℵ(y) be the set of entire adjacent nodes with y in ℵ. We denote the degree of
y ∈ ℵ by dℵ(y) = |Nℵ(y)|. The minimum degree of ℵ is denoted by δ(ℵ), and defined as
δ(ℵ) = min{dℵ(y)|y ∈ Vℵ}. Let ℵ[A] is a subset of Vℵ which is induced by A. The networks
ℵ − v and ℵ − uv denote as any network construct from ℵ by removing the node v ∈ Vℵ
and by removing the link uv ∈ Eℵ, respectively. In the same way, ℵ+ uv can be determined
from ℵ by adding a link uv 6∈ Eℵ.

The quantityℵ1∪ℵ2 denotes the union of two networksℵ1 andℵ2 with Vℵ1∪ℵ2 = Vℵ1 ∪Vℵ2
and Eℵ1∪ℵ2 = Eℵ1 ∪ Eℵ2 . If ℵ1 and ℵ2 are disjoint nodes, then we let ℵ1 ] ℵ2 denote the join
of ℵ1 and ℵ2, which is the network obtained from ℵ1 ∪ ℵ2 by adding all the links between
the nodes x ∈ Vℵ1 and y ∈ Vℵ2 . For disjoint networks ℵ1,ℵ2, . . . ,ℵk having k ≥ 3, then
the joining ℵ1 ] ℵ2 ] · · · ] ℵk is the network (ℵ1 ] ℵ2) ∪ (ℵ2 ] ℵ3) ∪ · · · ∪ (ℵk−1 ] ℵk). In
short, we indicate kℵ and [k]ℵ for the union and for the joining of k time disjoint copies
of ℵ, simultaneously. For instance, kK1

∼= Kk is exactly the k isolated nodes, whereas
[p]ℵ1 ] ℵ2 ] [q]ℵ3 is indicating the joining ℵ1 ] ℵ1 ] . . . ] ℵ1︸ ︷︷ ︸

p

]ℵ2 ] ℵ3 ∨ ℵ3 ] . . . ] ℵ3︸ ︷︷ ︸
q

.

For a network, the distance among x and y is denoted by dℵ(x, y) and defined by the
length of a shortest x-y path. Assume that ε denotes the eccentricity of a node, then it can
be defined as εℵ(x) := maxy∈Vℵ dℵ(x, y) be the eccentricity of x. Next, is the diameter of a
network ℵ which is defined as diam(ℵ) = maxx∈Vℵ εℵ(x). The path P is called a diametrical
path of a network ℵ if it satisfies |Ep| = diam(ℵ).

Let ℵ be a simple network and Uℵ is the node set of ℵ. Then, Uℵ can be divided into
two disjoint subsets U1 and U2 in such a way that there is at least one link between these
two disjoint subsets, then ℵ is called a bipartite network. On the other hand if every node
of U1 is adjacent to every node of U2 such network is called a complete bipartite network.
Generally, it is denoted by Kn1,n2 , where n1 = |U1|, n2 = |U2|. A node independent set of
any network ℵ is the node subset in Vℵ which satisfies that any of the two distinct nodes in
the set are not adjacent. The independence number is defined as the maximum cardinality
in all of the independent sets of ℵ and it is denoted by α(ℵ).

Any two distinctive links of the set that are not incident with a common node is called
a link independent set of any network ℵ. Similarly, a link independence number of any
network ℵ is the maximum cardinalities among entire link independent sets. It is indicated
as α′(ℵ). The set of nodes (links) in which every link (node) of ℵ is incident with at least
one node (link) of the set is called a node (link) cover of a network ℵ. The minimum of the
cardinalities among entire node (link) covers is said to be the node (link) cover number of a
given network ℵ and is indicated as β(ℵ)(β′(ℵ)). In any connected network ℵ with order
n, has a matching number α′(ℵ) must fulfill 1 ≤ α′(ℵ) ≤ b n

2 c. Meanwhile, in the case of a
link cover of any network, one can constantly suppose that the network should consists no
isolated node. It can easily be observed that for a network ℵ of order n, α(ℵ) + β(ℵ) = n.
Additionally, if ℵ has no isolated node, then one has α′(ℵ) + β′(ℵ) = n. For a bipartite
network ℵ, one has α′(ℵ) = β(ℵ), and α(ℵ) = β′(ℵ).

For the sake of simplicity, we assume that A
q

n is the class of all bipartite networks with
order n having matching number q. Whereas, Bd

n indicate the class of all bipartite networks
with order n having diameter d. Similarly, C s

n (resp. D t
n) be the class of all n-node bipartite

networks with connectivity s (resp. link connectivity t).
We define M1(ℵ) = ∑

u∈V(ℵ)
d2
ℵ(u) as the first Zagreb index of a network ℵ. Similarly,

M2(ℵ) = ∑
uv∈E(ℵ)

dℵ(u)dℵ(v) is the second Zagreb index of a network ℵ, for further detail

one can see [5].
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Inspired from the above definitions Vukičević and Graovac [6], Ghorbani and Hossein-
zadeh [7] invented another similar kinds of network invariant called the first (resp. second)
Zagreb eccentricity index.

The first (resp. second) Zagreb eccentricity index of ℵ is denoted by ξ1(ℵ) (resp. ξ2(ℵ))
and defined as

ξ1(ℵ) = ∑
x1∈V(ℵ)

ε2(x1), ξ2(ℵ) = ∑
x1x2∈E(ℵ)

ε(x1)ε(x2).

Some extremal problems related to first and second Zagreb eccentricity indices are
presented by Das and Lee in [8]. In [9] the authors obtained trees having sharp lower
bound of Zagreb eccentricity indices with given domination number, maximum degree,
and bipartition size. Some extremal problems of unicyclic networks which minimize
and maximize the first and second Zagreb eccentricity indices are considered by Qi and
Zhou in [10]. The networks having maximum also second maximum with respect to the
second Zagreb eccentricity index among entire n-node bicyclic networks figured out by Li
and Zhang in [11]. The Zagreb eccentricity indices of generalized hierarchical product is
computed by Luo and Wu in [12].

Studies given under [13–17] led us to consider the extremal problem on n-node bipar-
tite networks with given matching number and diameter among A

q
n and Bd

n. In order to
formulate our main results, the following Lemma is helpful.

Lemma 1 ([8], P:121). Let ℵ be any connected bipartite network with order n having bipartition
V(ℵ) = X1 ∪ X2, X1 ∩ X2 = ∅, |X1| = p and |X2| = q. Then ξi(ℵ) > ξi(Kp,q \ e) > ξi(Kp,q),
where i = 1, 2 and e ∈ Kp,q.

3. Network Contain Minimum Zagreb Eccentricity Indices among All n-Node
Bipartite Networks with Given Matching Number q

In this section, we characterize the networks among A
q

n having minimum Zagreb
eccentricity indices.

Lemma 2. Assume that ℵ be any connected bipartite network having Vℵ = (X, Y) with
|X| = n1, |Y| = n2 and n1 > n2.

(i) If n1 = 1, then ξ1(ℵ) = 2 and ξ2(ℵ) = 1, in this case ℵ = K2.

(ii) If n1 > 1, and n2 = 1 then ξ1(ℵ) = 4n1 + 1 and ξ2(ℵ) = 2n1, in this case ℵ = K1,n1 .

(iii) If n2 > 1, then ξ1(ℵ) > 4(n1 + n2) and ξ2(ℵ) > 4n1n2, with equality if and only if
ℵ ∼= Kn1,n2 .

Due to Lemma 2 we characterize all the bipartite networks which are connected and
having order n > 2.

Theorem 1. Assume that A
q

n is an n-node bipartite network with matching number q, and
ℵ ∈ A

q
n .

(i) If q = 1, then ξ1(ℵ) = 4n− 3 and ξ2(ℵ) = 2n− 2, where ℵ ∼= K1,n−1.

(ii) If q > 1, then ξ1(ℵ) > 4n and ξ2(ℵ) > 4q(n − q). The equality holds if and only if
ℵ ∼= Kq,n−q.

Proof. By a direct calculation, one has

ξ1(Kq,n−q) = 4n, ξ2(Kq,n−q) = 4q(n− q).
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Hence, we only need to show that among A
q

n with minimum Zagreb eccentricity
indices is a unique network Kq,n−q.

Choose ℵ, in A
q

n such that its first Zagreb eccentricity index and the second Zagreb
eccentricity index are minimum. For q = b n

2 c, due to Lemma 1 an extremal network is
exactly Kb n

2 c,d
n
2 e as desired. Therefore, we only consider the case q < b n

2 c.
Let the bipartition node set in ℵ is denoted by (X, Y), such that |Y| > |X| > q. Assume

that M is a maximal matching in ℵ, then due to Lemma 1, the addition of new link(s)
decreases the first Zagreb eccentricity index as well as the second Zagreb eccentricity index
of a network. In what follows, if |X| = q, then the extremal network is ℵ = Kq,n−q. Hence,
we consider the case |X| > q.

Assume that M is a matching set and XM (resp. YM) be the set of nodes of X (resp. Y)
which are incident to the links of M. Therefore, |XM| = |YM| = q. Keeping in mind that
ℵ does not contain links between the nodes of X\XM and the nodes of Y\YM. Otherwise,
any such link together with M producing the matching of cardinality more than as that in
M, which contradicts the maximality in M.

By adding entire potential links between the nodes of XM and YM, XM and Y\YM,
X\XM and YM we get a network ℵ′ as depicted in Figure 1, with ξ1(ℵ′) < ξ1(ℵ) and
ξ2(ℵ′) < ξ2(ℵ) . It can be noticed that a matching number in ℵ′ is at least q + 1. Thus,
ℵ′ /∈ A

q
n and ℵ � ℵ′. Due to ℵ′, one can build a new network, say ℵ′′, which is determine

by keeping ℵ′ in such a way that first delete entire links among X \ XM and YM, and then
add entire links among X \ XM as well XM, see Figure 1. Thereby, it is easy to see that
ℵ′′ ∼= Kq,n−q.

Figure 1. Networks ℵ′ and ℵ′′.

Assume that |X\XM| = n1, |Y\YM| = n2 let n2 > n1. We partition Vℵ′ = Vℵ′′ into
XM ∪ YM ∪ (X \ XM) ∪ (Y \ YM) as depicted in Figure 1. Through the direct calculation,
for every a ∈ Y\YM, b ∈ XM, c ∈ YM, d ∈ X\XM, one can see easily as

ε′2(a) = 9, ε′2(b) = 4, ε′2(c) = 4, ε′2(d) = 9, ε′′2(a) = 4, ε′′2(b) = 4 ε′′2(c) = 4, ε′′2(d) = 4

ξ1(ℵ′)− ξ1(ℵ′′) = ∑
vi∈V(ℵ′)

ε′2(vi)− ∑
ui∈V(ℵ′′)

ε′′2(ui)

= 9n2 + 4q + 4q + 9n1 − 4n2 − 4q− 4q− 4n1

= 5n2 + 5n1

> 0. (1)

By a similar argument as above, and by comparing the structure of networks ℵ′ and
ℵ′′, one has

ε′(a)ε′(b) = 6, ε′(b)ε′(c) = 4, ε′(d)ε′(c) = 6, ε′′(a)ε′′(b) = 4, ε′′(b)ε′′(c) = 4, ε′′(d)ε′′(b) = 4.
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This gives

ξ2(ℵ′)− ξ2(ℵ′′) = ∑
uv∈ε(ℵ′)

ε′(u)ε′(v)− ∑
uv∈V(ℵ′′)

ε′′(u)ε′′(v)

= 6n2q + 4q2 + 6n1q− 4n2q− 4q2 − 4n1q

= 2n2q + 2n1q

> 0, (2)

where the inequalities (1) and (2) follows from the fact that n1, n2 > 1, q > 1. Hence we
obtain that ξi(ℵ) > ξi(ℵ′) > ξi(ℵ′′) for i = 1, 2, give contradiction. This completes our
desired result.

Keeping in mind the connections between the parameters such as α(ℵ), α′(ℵ), β(ℵ),
β′(ℵ) of a bipartite network ℵ which is in fact a connected then, the following result is a
straight analogous of Theorem 1.

Corollary 1. A network Kσ,n−σ is the only network having minimum ξi(ℵ), i = 1, 2, among all
of the bipartite networks with order n having node cover number or node independence number or
link cover number σ.

4. Network Having Minimum ξi-Value, i = 1, 2 w.r.t Bd
n

In the current section, networks in Bd
n having minimum ξi-value is considered. As-

sume that every member in Bd
n, has a diametrical path that is to say P = v0v1 . . . vd. Then

for any ℵ = (Vℵ, Eℵ) in Bd
n, there is a partition V0, V1, . . . Vd of Vℵ with d(v0, v) = i in every

node v ∈ Vi(i = 0, 1, 2, . . . , d). Named Vi to distance layer in Vℵ. If |i − j| = 1 then the
two distance layers Vi, Vj in Vℵ are adjacent. Assume that |Vi| = li throughout this section.
Clearly, l0 = |V0| = 1.

If 3 ≤ d ≤ n− 1, where d is odd, then suppose ℵ(n, d) := [ d−1
2 ]K1 + b n−d−1

2 cK1 +

d n−d+1
2 eK1 + [ d−1

2 ]K1. Whereas, if 4 ≤ d ≤ n− 1, and d is even then, assume H (n, d) =
{H(n, d) = [ d

2 − 1]K1 + a1K1 + b n−d+2
2 cK1 + a2K1 + [ d

2 − 1]K1 : a1 + a2 = d n−d+2
2 e}.

Lemma 3. For any network ℵ ∈ Bd
n with the above partition of Vℵ, ℵ[Vi] induces an empty

network (i.e. containing no link) for each i ∈ {0, 1, . . . , d}.

Proof. it can be seen that L0 = {x0}. There must be two paths P and Q such that
P = x0 . . . u and Q = x0 . . . v, once there exists a link uv in ℵ[Li] for some i ∈ {0, 1, . . . , d}.
Meanwhile, P ∪Q + uv is an odd cycle in a network ℵ, if P and Q have no internal node in
common, this gives a contradiction. Else, assume that u0 is the last common internal node
in P as well as Q. Thereby, P(u0, u) ∪ Q(u0, v) + uv again an odd cycle. This contradicts
the statement that ℵ is a bipartite.

Lemma 4. A bipartite network ℵ[Lj−1 ∪ Lj] is complete in which j = 1, 2, . . . , d.

Proof. By Lemma 3, ℵ[Li] is an empty network for each i ∈ {1, 2, . . . , d}. In contrary,
suppose that ℵ[Lj−1 ∪ Lj] is not a complete bipartite network, then one can construct
another network ℵ′ with adding entire potential links among Lj−1 as well as Lj. Due to
Lemma 1, one has ξi(ℵ′) < ξi(ℵ), for i = 1, 2 a contradiction. Hence, ℵ[Lj−1 ∪ Lj] is a
complete bipartite network. Thus, we get our desired result.

Theorem 2. Assume that ℵ be any network in Bd
n.

(i) If d = 2, then ξ1(ℵ) > 4n. The equality holds if and only if ℵ ∼= Kn−t,t, and ℵ � Sn.
(ii) If d = 2, then ξ2(ℵ) > 4t(n− t). The equality holds if and only if ℵ ∼= Kn−t,t, and ℵ � Sn.
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Proof. (i) Due to Lemma 1 we have ℵ ∼= Kn−t,t, as t, n− t > 2. Assume that |Z1| = n− t,
|Z2| = t. Thereby, it is straightforward to see that for every x(resp. y) in Z1(resp. Z2), we
have ε2(x) = ε2(y) = 4. This gives

ξ1(Kn−t,t) = ∑
x∈V(ℵ)

ε2(x) + ∑
y∈V(ℵ)

ε2(y)

=4t + 4(n− t)

=4n. (3)

(ii) Similarly, if d = 2, then due to Lemma 1 one has ℵ ∼= Kn−t,t, as t, n− t > 2. Assume that
|Z1| = n− t, |Z2| = t. Thereby, one can check it easily that for every x (resp. y) in Z1 (resp.
Z2), we have ε(x) = ε(y) = 2. This gives

ξ2(Kn−t,t) = ∑
xy∈E(ℵ)

ε(x)ε(y)

=4t(n− t). (4)

Note that, by the addition of any link(s) between any two nodes, does not increases the
node eccentricity. Thus we have εi(ℵ + e) ≤ εi(ℵ). Using this fact, one has ξ1(ℵ) >
ξ1(Kn−t,t \ {e}) > ξ1(Kn−t,t) = 4n and ξ2(ℵ) > ξ2(Kn−t,t \ {e}) > ξ2(Kn−t,t) = 4t(n− t),
where e is any link in Kn−t,t. Thus, we get our desired result.

Theorem 3. Assume that ℵ belongs to Bd
n with the minimum ξ1-value. If d > 3, then ℵ ∼= ℵ(n, d)

for odd d, where ℵ(n, d) is already defined.

Proof. We opt ℵ ∈ Bd
n such that its ξ1-value is as small as possible. Let v0v1 . . . vd is the

diametrical path. Thereby, we partition Vℵ as V0 ∪V1 ∪ · · · ∪Vd. To complete the proof, we
need the following claim.

Claim 1. For odd d, one has

|V0| = |V1| = · · · = |Vd−1
2 −1| = |Vd+1

2 +1| = · · · = |Vd−1| = |Vd| = 1,
∣∣|Vd−1

2
| − |Vd+1

2
|
∣∣ ≤ 1. (5)

Proof of Claim 1. Note that |V0| = {v0} and |Vd| = {vd}. Here, we only need to prove that
|V1| = 1 holds. In the same way, one can show that |V2| = · · · = |Vd−1

2 −1| = |Vd+1
2 +1| =

· · · = |Vd−1| = 1, we omit the procedure here.
Since, for d = 3, the desired result is trivial. In what follows we choose the case d > 5,

for odd d. In the case |V1| > 2, then we opt any u ∈ V1 and let ℵ′ = ℵ− uv0 + {ux : x ∈ V4}.
Here, {v0} ∪ (V1 \ {u}) ∪V2 ∪ (V3 ∪ {u}) ∪V4 ∪ . . . ∪ {vd} is the node partition of ℵ′; the
choice of ℵ as well as in view of Lemma 4 i.e, for two of the neighbour blocks in Vℵ′ induces
the complete bipartite subnetwork and |Vd| = 1 for d > 5.

By considering the construction of ℵ and ℵ′, it is easy to verify that ε(u) > ε′(u) + 1,
ε(x) = ε′(x) for every x ∈ Vℵ \ {u}. This gives

ξ1(ℵ)− ξ1(ℵ′) = ∑
x∈V(ℵ)

ε2(x) + ε2(u)− ∑
x∈V(ℵ′)

ε′2(x)− ε′2(u)

= ε2(u)− ε′2(u)

> ε2(u)− (ε(u)− 1)2

= 2ε(u)− 1

> 0. (6)

The last inequality (6), follows by d > 5 and ε(u) > 4. i.e. ξ1(ℵ′) < ξ1(ℵ), which
contradicts our selection of ℵ. Hence, |V1| = 1. In a similar manner one can also prove that
|V2| = · · · = |Vd−1

2 −1| = |Vd+1
2 +1| = · · · = |Vd−1| = 1.
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Next we show that if d is odd, then ||Vd−1
2
| − |Vd+1

2
|| ≤ 1. Without loss of generality,

we assume that |Vd−1
2
| > |Vd+1

2
|. Then it suffices to show that |Vd−1

2
| − |Vd+1

2
| ≤ 1. If this is

not true, then |Vd−1
2
| − |Vd+1

2
| > 2. Choose w ∈ Vd−1

2
, let

ℵ∗ = ℵ − {wx : x ∈ Vd−3
2
∪Vd+1

2
}+ {wy : y ∈ (Vd−1

2
\ {w}) ∪Vd+3

2
}.

Then the node partition of ℵ∗ is {v0}∪V1∪V2∪ . . . ∪Vd−3
2
∪ (Vd−1

2
\ {w})∪ (Vd+1

2
∪{w})∪

Vd+3
2
∪ . . . ∪{vd} and every two adjacent blocks in Vℵ∗ induce a complete bipartite network.

Based on the constructions of ℵ and ℵ∗, it is straightforward to see that ε2(v) = ε∗2(v) for
every v ∈ Vℵ. Thus

ξ1(ℵ)− ξ1(ℵ∗) = ∑
v∈V(ℵ)

ε2(w)− ∑
v∈V(ℵ∗)

ε∗2(v)

= 0.

This shows a class of networks such that a + b = n − (d − 1) where a = |Vd−1
2
|,

b = |Vd+1
2
|, which contradicts the option of ℵ. Hence, this completes the proof

of Claim 1.
Hence for odd d, by Lemma 4 and Equation (5), we obtain that ℵ ∼= ℵ(n, d),

as desired.

Theorem 4. Let ℵ be in Bd
n with the minimum ξ1-value. If d ≥ 4, then ℵ ∼= H (n, d) for even d,

where H (n, d) is defined as above.

Proof. Without loss of generality, choose ℵ ∈ Bd
n such that its ξ1-value is as small as

possible. Let v0v1 . . . vd is the diametrical path. We partition Vℵ as V0 ∪ V1 ∪ . . . ∪ Vd.
To fulfill all the conditions of the proof, we need to show the following claim.

Claim 2. For even d, one has

|V0| = |V1| = · · · = |Vd−1
2 −1| = |Vd+1

2 +1| = · · · = |Vd−1| = |Vd| = 1,
∣∣∣(|Vd

2−1|+ |Vd
2 +1|)− |Vd

2
|
∣∣∣ ≤ 1. (7)

Proof of Claim 2. By a similar argument as in Claim 1, it is straightforward to show
that |V0| = |V1| = · · · = |Vd−1

2 −1| = |Vd+1
2 +1| = · · · = |Vd−1| = |Vd| = 1. We only

need to show that |(|Vd
2−1|+ |Vd

2 +1|)− |Vd
2
|| ≤ 1. Suppose that |Vd

2−1|+ |Vd
2 +1| < |Vd

2
|.

Then, this is enough to see that |Vd
2
| − |Vd

2−1| − |Vd
2 +1| ≤ 1. If this is not true, then

|Vd
2
| − |Vd

2−1| − |Vd
2 +1| > 2. It is routine to check that at least one of Vd

2−1 and Vd
2 +1

contains at least two nodes. Hence, we assume without loss of generality that |Vd
2−1| > 2.

Choose w ∈ Vd
2−1 and let

ℵ∗ = ℵ − {wx : x ∈ Vd
2−2 ∪Vd

2
}+ {wy : y ∈ Vd

2−1 ∪Vd
2 +1}.

Then the node partition of ℵ∗ is V0 ∪ V1 ∪ V2 ∪ . . . ∪ (Vd
2−1 \ {w}) ∪ (Vd

2
∪ {w}) ∪

Vd
2 +1 ∪ . . . ∪ Vd and every two adjacent blocks in Vℵ∗ give a complete bipartite network.

By direct calculation, we have ε2(w) = 1
4 (d + 2)2, ε∗2(w) = 1

4 d2 all other eccentricities are
equal. Thus

ξ1(ℵ)− ξ1(ℵ∗) = ∑
x∈V(ℵ)

ε2(x) + ε2(w)− ∑
x∈V(ℵ∗)

ε∗2(x)− ε∗2(w)

=
1
4
(d + 2)2 − 1

4
d2

= (d + 1)

> 0,



Mathematics 2022, 10, 1393 8 of 18

gives a contradiction to the choice of ℵ. Hence, we get our desired result.
Hence for even d, by Lemma 4 and Equation (7), we obtain that ℵ ∼= H(n, d) ∈H (n, d),

as desired.
In Theorem 3 (resp. Theorem 4), if d is odd (resp. even), the sharp lower bound

for the second Zagreb eccentricity is not solved. Hence, we propose the following two
research problems.

Problem 1. Let ℵ be in Bd
n. If d is odd, how to determine the sharp lower bound of the second

Zagreb eccentricity.

Problem 2. Let ℵ be in Bd
n. If d is even, how to determine the sharp lower bound of the second

Zagreb eccentricity.

5. The Network with Minimum Zagreb Eccentricity Indices w.r.t C s
n (resp. D t

n)

This section deals with the sharp lower bounds on Zagreb eccentricity indices among
C s

n and D t
n, respectively.

In Kτ1,τ2 , without loss of generality suppose that τ1 > τ2. In case of Kτ1,0, τ1 > 1, we assume
that τ1K1. Let us construct the networks Φs∇1(Kn1,n24Km1,m2) and Φs∇2(Kn1,n24Km1,m2).
The notion4 represents union between networks whereas Φs denote an empty network
with order s and s > 1. The notion ∇1 is any network operation that links entirely nodes in
Φs with the nodes which belongs among the partitions of cardinality n1 in Kn1,n2 (resp. m1
in Km1,m2). Similarly, an operator ∇2 represents a network operation which joins entirely
nodes in Φs with nodes that belong to n2 in Kn1,n2 (resp. m2 in Km1,m2 ). It can be noted that
the operator ∇2 is expressed only if n2 > 1 and m2 > 1.

Lemma 5. Let Φs∇1(K14Kτ1,τ2) and Φs∇1(K14Kτ1+1,τ2−1) be two networks. Then

(i) ξ1(Φs∇1(K14Kτ1,τ2)) > ξ1(Φs∇1(K14Kτ1+1,τ2−1)).

(ii) If τ1 > 3τ2+2s−3
3 then ξ2(Φs∇1(K14Kτ1,τ2)) > ξ2(Φs∇1(K14Kτ1+1,τ2−1)).

Proof. Assume that Φs∇1(K14Kτ1,τ2) belongs to ℵ and Φs∇1(K14Kτ1+1,τ2−1) belongs to
ℵ′, respectively. Here ℵ and ℵ′ are depicted in Figure 2. We partition Vℵ = Vℵ′ with
{v} ∪ Λ1 ∪ Λ2 ∪ Λ3 ∪ {bτ2}, where Λ1 = {c1, c2, . . . , cs}, Λ2 = {a1, a2, . . . , aτ1} and
Λ3 = {b1, b2, . . . , bτ2−1}.
(i) By direct calculation we have

ε2(bτ2) = ε′2(bτ2) + 5 all other eccentricities are equal. Thus

ξ1(ℵ)− ξ1(ℵ′) = ∑
bτ2∈V(ℵ)

ε2(bτ2)− ∑
bτ2∈V(ℵ′)

ε′2(bτ2)

= ε2(bτ2)− (ε2(bτ2)− 5)

> 0

Hence, (i) holds.
Now we prove (ii). By direct calculation we have ε(a)ε(bτ2) = 6, ε′(b)ε′(bτ2) = 6,

ε′(c)ε′(bτ2) = 4, all other eccentricities are equal. Thus

ξ2(ℵ)− ξ2(ℵ′) = ∑
abτ2∈ε(ℵ)

ε(a)ε(bτ2)− ∑
bbτ2∈ε(ℵ′)

ε′(b)ε′(bτ2)− ∑
cbτ2∈ε(ℵ′)

ε′(c)ε′(bτ2)

= 6τ1 − 6(τ2 − 1)− 4s

= 6τ1 − 6τ2 − 4s + 6

> 0.

This completes the proof of (ii).
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Figure 2. Networks ℵ and ℵ∗.

Corollary 2. Let Φs∇2(K14Kτ1,τ2) and Φs∇1(K14Kτ1,τ2) be two networks. Then

(i) ξ1(Φs∇2(K14Kτ1,τ2)) > ξ1(Φs∇1(K14Kτ1,τ2))

(ii) ξ2(Φs∇2(K14Kτ1,τ2)) > ξ2(Φs∇1(K14Kτ1,τ2)).

The equality holds in both cases if and only if τ1 = τ2.

Proof. Let ℵ ∈ Φs∇2(K14Kτ1,τ2) and ℵ′ ∈ Φs∇1(K14Kτ1,τ2). We partition Vℵ = Vℵ′
with {v} ∪ Λ1 ∪ Λ2 ∪ Λ3, where Λ1 = {c1, c2, . . . , cs}, Λ2 = {a1, a2, . . . , aτ1} and
Λ3 = {b1, b2, . . . , bτ2}.
(i) By direct calculation we get

ε2(a) = 4, ε2(b) = 9, ε′2(a) = 9, ε′2(b) = 4 all other eccentricities are equal. Thus

ξ1(ℵ)− ξ1(ℵ′) = ∑
a∈V(ℵ)

ε2(a) + ∑
b∈V(ℵ)

ε2(b)− ∑
a∈V(ℵ′)

ε′2(a)− ∑
b∈V(ℵ′)

ε′2(b)

= 4τ2 + 9τ1 − 9τ2 − 4τ1

= 5τ1 − 5τ2

> 0.

Hence, (i) holds.
Now we prove (ii). By direct calculation we have ε(c)ε(a) = 4, ε′(c)ε′(b) = 4 all other

eccentricities are equal. Thus

ξ2(ℵ)− ξ2(ℵ′) = ∑
ca∈ε(ℵ)

ε(c)ε(a)− ∑
cb∈ε(ℵ′)

ε′(c)ε′(b)

= 4sτ1 − 4sτ2

= 4s(τ1 − τ2)

> 0.

Hence, we get our desired result.

Lemma 6. Assume Φs∇1(K14Kτ1,τ2) and Φs∇1(K14Kτ1−1,τ2+1) be the networks. Then

(i) ξ1(Φs∇1(K14Kτ1,τ2)) > ξ1(Φs∇1(K14Kτ1−1,τ2+1))

(ii) ξ2(Φs∇1(K14Kτ1,τ2)) > ξ2(Φs∇1(K14Kτ1−1,τ2+1))

Proof. (i) Let us denote Φs∇1(K14Kτ1,τ2) by ℵ and Φs∇1(K14Kτ1−1,τ2+1) by ℵ′. We parti-
tion Vℵ = Vℵ′ with {v} ∪ Λ1 ∪ Λ2 ∪ Λ3 ∪ {u}. We define Λ1, Λ2 and Λ3 as
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Λ1 = {c1, c2, . . . , cs}, Λ2 = {a1, a2, . . . , aτ1−1} and Λ3 = {b1, b2, . . . , bτ2}, respectively
(see Figure 3).

Then by direct calculation we have ε2(u) = ε′2(u) + 5 all other eccentricities are
equal. Thus

ξ1(ℵ)− ξ1(ℵ′) = ∑
u∈V(ℵ)

ε2(u)− ∑
u∈V(ℵ′)

ε′2(u)

= ε2(u)− (ε2(u)− 5)

= 5

> 0.

This completes the proof of (i).
(ii) Similar to (i), let us denote Φs∇1(K14Kτ1,τ2) by ℵ and Φs∇1(K14Kτ1−1,τ2+1) by

ℵ′. We partition Vℵ = Vℵ′ with {v} ∪ Λ1 ∪ Λ2 ∪ Λ3 ∪ {u}. We define Λ1, Λ2 and Λ3 as
Λ1 = {c1, c2, . . . , cs}, Λ2 = {a1, a2, . . . , aτ1−1} and Λ3 = {b1, b2, . . . , bτ2} (see Figure 3).

Then by direct calculation we have
ε(u)ε(c) = 4, ε(u)ε(b) = 6, ε′(u)ε′(a) = 6 all other eccentricities are equal. Thus

ξ2(ℵ)− ξ2(ℵ′) = ∑
uc∈ε(ℵ)

ε(u)ε(c) + ∑
ub∈ε(ℵ)

ε(u)ε(b)− ∑
ua∈ε(ℵ′)

ε′(u)ε′(a)

= 4s + 6τ1 − 6(τ2 − 1)

= 4s + 6τ1 − 6τ2 + 6

> 0

The last inequality holds as τ1 > τ2. This completes the proof of (ii).

Figure 3. Networks ℵ and ℵ∗.

Corollary 3. Let Ks,n−s, Φs∇1(K14K1,n−s−2) and Φs∇1(K14Kn−s−2,1) be the networks. Then

(i) If 1 ≤ s ≤ b 4n−9τ2−13
4 c, then ξ1(Ks,n−s) > ξ1(Φs∇1(K14K1,n−s−2)). The equality holds

if and only if n = 4s+9τ2+13
4 .

(ii) If 1 ≤ s ≤ b 3(n−2)
4 c, then ξ2(Ks,n−s) > ξ2(Φs∇1(K14Kn−s−2,1)), with equality if and

only if n = 4
3 s + 2.

Proof. (i) Let us denote Ks,n−s by ℵ and Φs∇1(K14K1,n−s−2) by ℵ′. We partition Vℵ = Vℵ′
with {v} ∪Λ1 ∪ {a} ∪Λ2, where Λ1 = {c1, c2, . . . , cs} and Λ2 = {b1, b2, . . . , bτ2}. Then
by direct calculation we get ε2(u) = 4, ε′2(v) = 9, ε′2(c) = 4, ε′2(a) = 4, ε′2(b) = 9

This gives
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ξ1(ℵ)− ξ1(ℵ′) = ∑
u∈V(ℵ)

ε2(u)− ∑
v∈V(ℵ′)

ε′2(v)− ∑
c∈V(ℵ′)

ε′2(c)− ∑
a∈V(ℵ′)

ε′2(a)− ∑
b∈V(ℵ′)

ε′2(b)

= 4n− 9− 4s− 4− 9τ2

> 0.

This completes the proof of (i).
(ii) Let us denote Ks,n−s by ℵ and Φs∇1(K14Kn−s−2,1) by ℵ′. We partition Vℵ = Vℵ′ with
{v} ∪ Λ1 ∪ Λ2 ∪ {b}, where Λ1 = {c1, c2, . . . , cs} and Λ2 = {a1, a2, . . . , aτ1}. Then by
direct calculation we get ε(u1)ε(u2) = 4, ε′(v)ε′(c) = 6, ε′(c)ε′(a) = 4, ε′(a)ε′(b) = 6
This gives

ξ2(ℵ)− ξ2(ℵ′) = ∑
u1u2∈ε(ℵ)

ε(u1)ε(u2)− ∑
vc∈ε(ℵ)

ε(v)ε(c)− ∑
ca∈ε(ℵ′)

ε′(c)ε′(a)− ∑
ab∈ε(ℵ′)

ε′(a)ε′(b)

= 4s(n− s)− 6s− 4s(n− s− 2)− 6(n− s− 2)

= 8s− 6n + 12

> 0.

This completes the proof of (ii).

Lemma 7. Let ℵ ∈ C s
n and ℵ−W has two nontrivial components, where W is any node-cut set of

order s in ℵ, then ℵ cannot be the network with minimum Zagreb eccentricity indices in ℵ ∈ C s
n .

Proof. Assume that ℵ1 and ℵ2 are two nontrivial components of ℵ −U having the two
partitions (A1, A2) and (A3, A4), simultaneously. Suppose that W = W1 ∪W2 be the two
partitions of W which is induced from the bipartition of ℵ. Next, we join entire links among
all the nodes of A1 and A2, A3 and A4, W1 and W2 we get a network ℵ̄ ∈ C s

n which implies
that ξi(ℵ) > ξi(ℵ̄), i = 1, 2. Therefore we suppose that ℵ = ℵ̄; see Figure 4.

If it is possible that there exists any node w in ℵ −W in such a way that dℵ(w) = s,
in this situation we can obtain a complete bipartite network inside the nodes of ℵ \ {w}.
Hence, it is easy to see that we can get a network in C s

n which has smaller Zagreb eccentricity
indices. Thereby, one can see that every node inside of ℵ −W having degree more than s.
Without loss of generality, |A1| = m1, |A2| = m2, |A3| = n1, |A4| = n2, |W1| = t, |W2| = k.
Therefore, one can opt a node u0 ∈ A3 and perceive that dℵ(u0) = t + |A4| > s, since
t(0 ≤ t ≤ s) is the overall amount of links which join u0 with the nodes of W1. Note
that W1 ∪W2 represents the node-cut set with order s, hence m1, n1 > t, m2, n2 > k.
Assume that m1 = max{m1, m2, n1, n2} without loss of generality, note that s > 1, m1 > 2
and m1m2 + n1n2 > 2(m2n1 + m1n2). Now, we opt a subset M2 of A4 in such a way
|M2| = |A4| − k > 0 hence, n2 > 2k. Let

ℵ∗ = ℵ − {u0x : x ∈ M2}+ {bc : b ∈ A2, c ∈ A3 \ {u0}}+ {τ1τ2 : τ1 ∈ A4, τ2 ∈ A}.

It is routine to check that ℵ∗ ∈ C s
n having bipartition (X, Y). The quantity X = A2 ∪

M2 ∪W1 ∪M1 and Y = A1 ∪ A2 ∪ A′3 ∪ {u0} with |A′3| = n1 − 1, |M1| = k, and |M2| =
n2 − k. Here, ℵ∗ is depicted in Figure 5. Notice that, for a ∈ A1(resp. b ∈ A2, c ∈ A′3, d ∈
A4, d1 ∈ M1, d2 ∈ M2). By direct calculation we get

ε2(a) = 9, ε2(d) = 9, ε2(c) = 9, ε∗2(a) = 4, ε∗2(d2) = 9, ε∗2(d1) = 4, ε∗2(c) = 4. All
other eccentricities are equal. Thus

ξ1(ℵ)− ξ1(ℵ∗) = 9m1 + 9n2 + 9(n1 − 1)− 4m1 − 9(n2 − k)− 4k− 4(n1 − 1)

= 5m1 + 5n1 − 5 + 5k

= 5(m1 − 1) + 5(n1 + k)

> 0.
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By the similar argument as above, and by comparing the structure of networks ℵ and
ℵ∗ one can see easily that

ε(b)ε(a) = 9, ε(b)ε(u2) = 6, ε(d)ε(u2) = 6, ε(d)ε(c) = 9, ε(d)ε(u0) = 9, ε(u1)ε(a) = 6,
ε(u1)ε(u2) = 4, ε(u1)ε(c) = 6, ε(u1)ε(u0) = 6. ε∗(a)ε∗(b) = 6, ε∗(b)ε∗(u2) = 6,
ε∗(b)ε∗(c) = 6, ε∗(d2)ε

∗(a) = 6, ε∗(d2)ε
∗(u2) = 6, ε∗(d2)ε

∗(c) = 6, ε∗(u1)ε
∗(a) = 4,

ε∗(u1)ε
∗(u2) = 4, ε∗(u1)ε

∗(c) = 4, ε∗(u1)ε
∗(u0) = 6, ε∗(d1)ε

∗(a) = 4, ε∗(d1)ε
∗(u2) = 4,

ε∗(d1)ε
∗(c) = 4, ε∗(d1)ε

∗(u0) = 6. All other eccentricities are equal. Thus

ξ2(ℵ)− ξ2(ℵ∗) = 9m1m2 + 6m2k + 6n2k + 9n2(n1 − 1) + 9n2 + 6m1t + 4kt + 6(n1 − 1)t + 6t

− 6m1m2 − 6m2k− 6m2(n1 − 1)− 6(n2 − k)m1 − 6(n2 − k)k− 6(n2

− k)(n1 − 1)− 4tm1 − 4kt− 4t(n1 − 1)− 6t− 4km1 − 4k2 − 4k(n1 − 1)− 6k

= 3m1m2 + 3n1n2 + 2m1t + 2tn1 − 6m2n1 + 6m2 − 6m1n2 + 2km1 + 2k2 + 6n2 + 2kn1 − 8k− 2t

= (3m1m2 + 3n1n2 − 6m2n1 − 6m1n2) + (2m1t− 2t) + (6n2 − 8k) + 2tn1 + 6m2

+ 2km1 + 2k2 + 2kn1 = 3(m1m2 + n1n2 − 2m2n1 − 2m1n2)

+ 2t(m1 − 1) + 2(3n2 − 4k) + 2(tn1 + 3m2) + 2k(m1 + k + n1)

> 0.

Figure 4. Networks ℵ̄ and ℵ2.

Lemma 8. Let ℵ ∈ D t
n and ℵ − ξt has two nontrivial components, which implies that ξt is any

link cut-set of order t in ℵ. Then ℵ may not be the network having minimum Zagreb eccentricity
indices in D t

n.

Proof. Assume that ℵ1 and ℵ2 be two nontrivial components of ℵ − ξt having the two
partitions (A1, A2) and (A3, A4), respectively. Now joining all possible links between the
nodes of A1 and A2, A3 and A4 yields a network, say ℵ̄, in D t

n such that ξi(ℵ) > ξi(ℵ̄);
i = 1, 2. Therefore, in D t

n we suppose that ℵ = ℵ̄; see Figure 5.
It can be noticed that for some node v ∈ ℵ one has dℵ(v) > t. For the existence of some

node w in ℵ we have dℵ(w) = t. By adding entirely probable links inside the subnetwork
of ℵ which is induced from the nodes of Vℵ \ {w}, then finally we would reach at a two
partition network ℵ′. For ℵ 6= ℵ′, we have ξi(ℵ) > ξi(ℵ′); i = 1, 2 in view of Lemma 1.
Thereby, we suppose that every node in ℵ has degree more than t.

Assume that |A1| = m1, |A2| = m2, |A3| = n1, |A4| = n2 and the amount of links
among A1 and A3(respectively A2 and A4), in ℵ, is i(resp. j).

Hence, it is easy to see that m1 + m2 + n1 + n2 = n and i + j = t.
Choose any node c0 ∈ A3 and perceive that dℵ(c0) = τ2 = h + |A4| > i, the quantity
h(0 ≤ h ≤ i) is the overall amount of links which join c0 with the nodes belongs to A1. It
can be noticed that ξℵ̄[A1, A3] ∪ ξℵ̄[A2, A4] is any link-cut set with size i + j = t, for further
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detail one can see Figure 6. Hence, m1, n1 > i, m2, n2 > j. Moreover, we opt a subset M2 of
A4 which satisfies |M2| = |A4| − (τ2 − h) > 0. Let

ℵ∗ = ℵ̄ − {c0x : x ∈ M2}+ {ac : a ∈ A1, c ∈ A3 \ {c0}}+ {τ1τ2 : τ1 ∈ A2, τ2 ∈ A4}.

It is easy to see that ℵ∗ ∈ D t
n, for detail one can see the construction of Figure 5.

We denote the sets which are assumed to be the end-nodes of the links of ξt in
A1, A2, A3 and A4 by S1, S2, S3, and S4, respectively. Let a ∈ A1, b ∈ A2, c ∈ A3, d ∈
A4, u ∈ S1, v ∈ S2, w ∈ S3, z ∈ S4, a1 ∈ A1 \ S1, a2 ∈ A2 \ S2, a3 ∈ A3 \ S3, a4 ∈
A4 \ S4, |S1| = s1, |S2| = s2, |S3| = s3.

Moreover m1 > s1, m2 > s2, n1 > s3, n2 > s4 and note that m1m2 + n1n2 > m1n1 +
m2n2, m1 + n2 > 2τ2, τ2 > 2s1, 2s4, s1(s2 + 9s3) > 4m1s2, s4(s3 + 9s2) > 4n2s3. By direct
calculation we get ε̄2(a1) = 16, ε̄2(a2) = 16, ε̄2(a3) = 16, ε̄2(a4) = 16, ε̄2(u) = 9, ε̄2(v) =
9, ε̄2(w) = 9, ε̄2(z) = 9, ε∗2(a \ Nℵ(c0)) = 9, ε∗2(b) = 4, ε∗2(c \ c0) = 4, ε∗2(c0) =
9, ε∗2(d2) = 9, ε∗2(d1) = 4, ε∗2(a ∩ Nℵ(c0)) = 4. All other eccentricities are equal. Thus

ξ1(ℵ̄)− ξ1(ℵ∗) = 16(m1 − s1) + 16(m2 − s2) + 16(n1 − s3) + 16(n2 − s4) + 9s1 + 9s2 + 9s3 + 9s4

− 9(m1 − h)− 4m2 − 4(n1 − 1)− 9− 9(n2 − (τ2 − h))− 4(τ2 − h)− 4h

= 7m1 − 7s1 + 12m2 − 7s2 + 12n1 − 7s3 + 7n2 − 7s4 + 5τ2 − 5

> 0.(∵ τ2 > 1)

By the similar argument as above, and by comparing the structure of networks ℵ̄ and
ℵ∗ one can see easily that ε̄(a1)ε̄(a2) = 16, ε̄(a1)ε̄(v) = 12, ε̄(u)ε̄(a2) = 12, ε̄(u)ε̄(v) =
9, ε̄(u)ε̄(w) = 9, ε̄(v)ε̄(z) = 9, ε̄(a3)ε̄(a4) = 16, ε̄(a3)ε̄(z) = 12, ε̄(w)ε̄(a4) = 12, ε̄(w)ε̄(z) =
9; ε∗(a \Nℵ(c0))ε

∗(b) = 6, ε∗(a \Nℵ(c0))ε
∗(c \ c0) = 6, ε∗(d2)ε

∗(b) = 6, ε∗(d2)ε
∗(c \ c0) =

6, ε∗(a ∩ Nℵ(c0))ε
∗(c \ c0) = 4, ε∗(a ∩ Nℵ(c0))ε

∗(b) = 4, ε∗(d1)ε
∗(b) = 4, ε∗(d1)ε

∗(c \
c0) = 4, ε∗(c0)ε

∗(a ∩ Nℵ(c0)) = 6, ε∗(c0)ε
∗(d1) = 6. All other eccentricities are equal.

This gives

ξ2(ℵ̄)− ξ2(ℵ∗) = 16(m1 − s1)(m2 − s2) + 12s2(m1 − s1) + 12s1(m2 − s2) + 9s1s2 + 9s1s3 + 9s2s4

+ 16(n1 − s3)(n2 − s4) + 12(n1 − s3)s4 + 12s3(n2 − s4) + 9s3s4 − 6(m1 − h)m2

− 6(m1 − h)(n1 − 1)− 6(n2 − (τ2 − h))m2 − 6(n2 − (τ2 − h))(n1 − 1)− 4h(n1 − 1)

− 4hm2 − 4(τ2 − h)m2 − 4(τ2 − h)(n1 − 1)− 6h− 6(1)(τ2 − h)

= 10m1m2 − 4m1s2 − 4m2s1 + s1s2 + 9s1s3 + 9s2s4 + 10n1n2 − 4n1s4 − 4n2s3 + s3s4

− 6m1n1 + 6m1 − 6m2n2 + 2τ2m2 + 2τ2n1 + 6n2 − 8τ2

= (10m1m2 + 10n1n2 − 6m1n1 − 6m2n2) + (2τ2n1 − 4n1s4) + (6m1 + 6n2 − 8τ2)

+ (2τ2m2 − 4m2s1) + (s1s2 + 9s1s3 − 4m1s2) + (s3s4 + 9s1s3 − 4n2s3)

= 2
(
5(m1m2 + n1n2)− 3(m1n1 + m2n2)

)
+ 2n1(τ2 − 2s4) + 2(3(m1 + n2)− 4τ2)

+ 2m2(τ2 − 2s1) +
(
s1(s2 + 9s3

)
− 4m1s2) + (s4(s3 + 9s2)− 4n2s3)

> 0.

Theorem 5. Let ℵ be a network in C s
n with minimum ξ1(ℵ) and ξ2(ℵ) with 1 ≤ s ≤ b 4n−9τ2−13

4 c
and 1 ≤ s ≤ b 3(n−2)

4 c respectively. If n is odd then ℵ ∈ {ℵ∗1 , ℵ∗3}, otherwise ℵ ∼= ℵ∗2 . In Fig.6,
we have shown the networks ℵ∗1 , ℵ∗2 and ℵ∗3 .
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Figure 5. Networks ℵ̄ and ℵ∗.

Proof. Assume that ℵ be a network with minimum Zagreb eccentricity indices in C s
n . Let

W be any node cut of ℵ which contains s number of nodes. By removing these nodes
gives the components ℵ1,ℵ2, . . . ,ℵt in ℵ −W. The quantity t is greater than or equal to 2.
Meanwhile, if any component ℵi of ℵ −W of has at least two nodes, then that should
be a complete bipartite. Similarly, if few component ℵi in ℵ −W are singleton, that is
to say ℵi = {u}, as a result u is connected to entire nodes of W; else κ(ℵ) < s. Thus,
the subnetwork ℵ[W] is induced from W which contains no links, and belongs with the
alike partition of ℵ. To proceed further we need we need the following two cases.
Case 1. Entire components of ℵ −W being singletons. In this case, one has ℵ = Ks,n−s for
s = b n−1

2 c or b n−3
2 c. It is straightforward to see that, if n is odd then Ks,n−s ∼= ℵ∗1 , and oth-

erwise Ks,n−s ∼= ℵ∗2 as desired. To prove the first Zagreb eccentricity index, let us assume
that 1 ≤ s ≤ b 4n−9τ2−13

4 c. Then by Corollary 3(i), ξ1(Ks,n−s) > ξ1(Φs∇1ξ1(K14K1,n−s−2)),
this gives a contradiction to the minimality in ℵ. To prove the second Zagreb eccentricity
index, let 1 ≤ s ≤ b 3(n−2)

4 c. Then by Corollary 3(ii), ξ2(Ks,n−s) > ξ2(Φs∇1(K14Kn−s−2,1)),
which also contradicts the minimality of ℵ. Thus, not every of the components in ℵ −W
are supposed to be singletons.
Case 2. Only single component in ℵ −W that is to say ℵ1, containing at least two nodes.
In such situation, ℵ −W containing exactly two components, else there is a complete
bipartite network which consists the nodes of ℵ1 ∪ ℵ2 ∪ . . . ℵt−1. Hence, one can construct
a new network ℵ∗ from ℵ having smaller Zagreb eccentricity indices such that ℵ∗ ∈ C s

n ,
which gives a contradiction. Let ℵ1, ℵ2 are the two components in ℵ −W. Due to Lemma
8, we have ℵ1 = K1 or ℵ2 = K1. Suppose that ℵ2 = K1 = {u}. In such scenario u is joining
by entire nodes of W, and every node in W is joining each node of ℵ1 these are under
the same partition as that of u. It can be noticed that ℵ be any network with minimum
Zagreb eccentricity indices, hence due to Corollary 3, ℵ = Φs∇1(K14Kτ1,τ2) in few τ1 and
τ2. One can notice that τ1 > s, else s may not be the node connectivity in ℵ. The result
follows for ξ2(ℵ) if 2s

3 + τ2 − 1 ≤ τ1 ≤ 3s
2 + τ2 + 1; and if τ1 > 1, then the result follows

for ξ1(ℵ). Again, if 2s
3 + τ2 − 1 > τ1, then applying Lemma 5(ii) multiple times we have

ℵ = ℵ∗1 , for odd n, similarly ℵ = ℵ∗2 for even n. At last, if τ1 > 3s
2 + τ2 + 1, then by applying

Lemma 7(ii) multiple times, one has ℵ in one hand ℵ∗2 or on the other hand ℵ∗3 depending
on even n or odd n. This gives our desired result.

The below result is similar to the proof of Theorem 5, so we omit its proof.
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Theorem 6. Assume that ℵ is any network in D t
n with minimum ξ1(ℵ) and ξ2(ℵ) with

1 6 s 6 b 4n−9τ2−13
4 c and 1 6 s 6 b 3(n−2)

4 c respectively. For odd n we have ℵ ∈ {ℵ∗1 , ℵ∗3},
otherwise ℵ ∼= ℵ∗2 . The networks ℵ∗1 , ℵ∗2 and ℵ∗3 are shown in Figure 6.

Figure 6. Graphs ℵ∗1 , ℵ∗2 and ℵ∗3 .

6. Regression Model for Boiling Point

In this section, we study the correlation between the first and second Zagreb eccen-
tricities of benzenoid hydrocarbons (depicted in Figure 7) and their boiling points (BP).
The scatter plot between BP and ξ1 and ξ2 are shown in Figures 8 and 9.

Figure 7. Molecular networks of benzenoid hydrocarbons.

Linear regression models of a boiling point (BP) are obtained by considering the data
given in Table 1 with the least square fitting method and calculated by SPSS Statistics
programme as:

BP = 199.578(±28.269) + 0.899(±0.084)ξ1 (8)

BP = 291.549(±33.537) + 0.172(±0.027)ξ2 (9)
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Figure 8. The scatter plot of BP and ξ1.

Figure 9. The scatter plot of BP and ξ2.

Table 1. Different values of BP, ξ1 and ξ2 of 21 benzenoid hydrocarbons.

BP 1 2 3 4 5 6 7 8 9 10 11

ξ1 89 120 180 280 284 246 298 318 286 286 356

ξ2 192 459 516 959 983 729 1085 1096 862 862 1201

BP 12 13 14 15 16 17 18 19 20 21

ξ1 326 370 424 402 424 366 398 466 466 392

ξ2 990 1344 1780 1584 1780 1128 1484 1926 1927 1349

The model (8) indicates that correlation of the boiling point in benzenoid hydrocarbons
of ξ1 gives a better (R = 0.927) result, as compare to the correlation of ξ2 as given in Table 2.
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Table 2. The correlation coefficient (R) and standard error estimation.

Index The Correlation Coefficient (R) The Standard Error of Estimation

ξ1 0.927 38.525

ξ2 0.826 57.848

7. Conclusions

This paper analyses the minimum transmission in two-mode networks. Based on some
parameters, we obtained the minimum transmission between in the class of all connected
n-nodes bipartite networks. The considered parameters are very useful to modify or to
change the path of a given network. We determined the minimum transmission with
respect to ξi(ℵ), for i = 1, 2 among all n-node extremal two-mode networks with given
matching number, diameter, node connectivity and link connectivity.
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