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1. Introduction

One side, in recent years, lots of researchers pay their attentions on the problem of the
second-order difference equation (see [1])

− ∆Tu(j) + V(j)u(j) = f (j, u(j)) in Z, (1)

where T > 0 is a real number, Z is the set of all integers, V : Z→ [0, ∞) is a potential function,
the function f : Z×R→ R, and −∆Tu(j) is the discrete Laplace operator, defined as

−∆Tu(j) =
1

T2 [u((j + 1)T)− 2u(jT) + u((j− 1)T)], ∀u : Z→ R.

As our known, the famous Schrödinger equation is a widely used equation. It is
usually used to solve series of problems of molecules, atoms, nuclei and so on, and the
results are very realistic. For the Equation (1), it can be regarded as the discrete version of
the famous Schrödinger equation and used to describe an electron in an electromagnetic
field or a planetary system. In order to study the dynamics of discrete Schrödinger equation,
we need to know the homoclinic orbits, which play a very important role in this area. For
more details of second-order difference equations, there are lots of literatures, the interested
readers can see for [2–8]. In particular, in [2], by using variational methods, Agarwal,
Perera and O’Regan obtained the existence results for second order difference equations
like (1) for the first time.

On the other side, recently, nonlocal problems has been received an increasing amount
of attentions. There are two very famous pieces of work [9,10] that we highly recommend.
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In addition, the fractional Laplacian and related problems are all hot topics for researchers.
About fractional Laplace operator and fractional Sobolev Spaces, more details and proper-
ties, refer readers to see [11–14]. In many fields, nonlocal fractional problems have very
important applications, such as optimization, game theory, quantum mechanics, anomalous
diffusion, finance and so forth, readers can see the literatures [3,15–17] and the references
cited. For applications of fractional Laplace operators, the literature is very rich, we refer
to [8,18–28] and the references therein.

Very recently, in [29], Ciaurri et al., studied an equation as following:

(−∆T)
su = f , (2)

where s ∈ (0, 1), (−∆T)
su(j) = 1

Γ(−s)

∫ ∞
0 (et∆T u(j) − u(j)) dt

t1+2s is the discrete fractional

Laplace operator, Γ(−s) is a Gamma function, we denote et∆T u(j) by v(t, j), which is the
solution of the problem as follow:{

∂tv(t, j) = ∆Tu(j), in ZT × (0, ∞),
v(0, j) = u(j), on ZT ,

where ZT = {Tj : j ∈ Z}.
By the Theorem 1.1 of [29], for any u ∈ Ls := {v : ZT → R|∑k∈Z

|v(k)|
(1+|k|)1+2s < ∞},

(−∆T)
su(j) = ∑

k∈Z,k 6=j
(u(j)− u(k))KT

s (j− k),

where

KT
s (k) =

4sΓ(1/2 + s)√
π|Γ(−s)|

· Γ(|k| − s)
T2sΓ(|k|+ 1 + s)

for any k ∈ Z\{0} and KT
S (0) = 0.

When u is bounded, we know that the discrete fractional operator (−∆T)
su(j) con-

verge to the usual discrete opertor −∆Tu(j), as s → 1−. In addition the solutions of the
fractional Laplace equation (−∆)su = f in R can be approximated by the solutions of
Equation (2).

In [30], Xiang and Zhang first investigated the equation{
(−∆1)

su(k) + V(k)|u(k)| = λ f (k, u(k)), for k ∈ Z
u(k)→ 0, as |k| → ∞.

(3)

by using variational principle, the multiplicity results were obtained.
Usually, the solutions of the continuous fractional problems can be approximated by

the solutions of the discrete fractional Laplacian equations. However, numerical analysis is
difficult for discrete fractional equations, because of the singularity and nonlocality of the
discrete fractional Laplace operator, more details see [31] and the reference cited therein.

Motivated by the above literatures, in this study, we investigate the existence and
multiplicity of homoclinic solutions of a class of discrete fractional p−Laplace difference
equation on Z. Specifically speaking, we study{

(−∆T)
s
pu(k) + V(k)|u(k)|p−2u(k) = λ f (k, u(k)), for k ∈ Z

u(k)→ 0, as |k| → ∞,
(4)

where T > 0 is a real number, s ∈ (0, 1), 1 < p < ∞, Z denote the set of whole integers,
V : Z→ (0, ∞) is a continuous potential function and the nonlinear term f : Z×R→ R
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is a continuous functions too, (−∆T)
s
p is the discrete fractional p−Laplace operator, we

define it by

(−∆T)
s
pu(j) = ∑

m∈Z,m 6=j
|u(j)− u(m)|p−2(u(j)− u(m))KT

s,p(j−m) ,

for any j ∈ Z, u ∈ Lp,s, LP,s := {v : ZT → R|∑k∈Z
|v(k)|

(1+|k|)1+ps < ∞}. Here, KT
s,p is the

discrete kernel, satisfies the following expression:
There exist two constants cs,p and Cs,p such that{ cs,p

Tps |j|1+ps ≤ KT
s,p(j) ≤ Cs,p

Tps |j|1+ps , for any j ∈ Z\{0}
Ks,p(0) = 0,

where cs,p and Cs,p satisfy the condition 0 < cs,p ≤ Cs,p < ∞.
When T = 1, we have

(−∆1)
s
pu(j) = 2 ∑

m∈Z,m 6=j
|u(j)− u(m)|p−2(u(j)− u(m))Ks,p(j−m) .

Meanwhile, for the fractional discrete p−Laplace operator (−∆T)
s
pu , when p = 2, it is

coincide with the usual fractional discrete laplace operator (−∆T)
su, and when p = 2 and

d = 1, then Equation (4) reduces to Equation (3).
As usual, if u(k)→ 0 as |k| → ∞, the function u : Z→ R is the homoclinic solution of

Equation (4).
Next, we give the hypotheses which will be used in this paper. We suppose the

continuous potential function V : Z→ (0, ∞) fulfills
(V) (i) For all k ∈ Z, there exists a constant V0 > 0 such that V(k) ≥ V0;
(ii) V(k)→ ∞ as |k| → ∞.
The nonlinear term f : Z×R→ R is a continuous function, satisfies
( f1) lim

t→0

f (k,t)
tp−1 = 0 uniformly for all k ∈ Z;

( f2) For all T > 0, sup
|t|≤T
|F(·, t)| ∈ `1, where `1 := {u : Z → R|∑j∈Z |u(j)| < ∞}, and

F (k, t) =
∫ t

0 f (k, τ) dτ;

( f3) lim sup
|t|→∞

F(k,t)
tp ≤ 0 uniformly for all k ∈ Z;

( f4) F(h0, b0) > 0 for same h0 ∈ Z and b0 ∈ R\{0}.
When 1 < q < 2 < p < ∞, a simple example of f , fulfilling ( f1)− ( f4) is

f (k, x) =

{
|x|p−2x, if |x| ≤ 1
|x|q−2x, if |x| > 1.

Set

λ∗ =
|b0|p(pCs,p ∑m 6=h0

1
|h0−m|1+ps + V(h0))

pF(h0, b0)
.

Theorem 1. Assume that the potential function satisfies the condition (V) and the function f
sitisfies conditions ( f1)–( f4). Then, for any λ > λ∗, Equation (4) has at least two nontrivial and
nonnegative homoclinic solutions.

To our best knowledge, for fractional discrete p−Laplacian, Theorem 1 is the first
result established on variational techniques to study the existence of solutions for these
type of equation. More precisely, in this paper, when positive constant λ is big enough, we
prove the existence of two nontrivial nonnegative homoclinc solutions of Equation (4) by
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using the mountain pass theorem and Ekeland’s variational principle. However, at present,
it is still an open problem for all λ > 0, which can be one of our further research directions.

This paper is composed of three sections in addition to the introduction. In Section 2,
a variational framework to Equation (4) and some preliminary outcomes was given.
In Section 3, employing critical point theory, two distinct non trivial and nonnegative
homoclinic solutions for Equation (4) were gotten.

2. Preliminaries

In this section, we describe the functional setting and some basic definitions in which
we shall work and state our main results for more detail see [21,30,32].

Then we give the variational setting to Equation (4) and discuss its properties. For any
1 ≤ p < ∞, `p is defined as

`p :=

{
u : Z→ R : ∑

j∈Z
|u(j)|p < ∞

}

with the norm

‖u‖p =

(
∑
j∈Z
|u(j)|p

)1/p

, for 1 ≤ p < ∞,

for p = ∞
‖u‖∞ := sup

j∈Z
|u(j)| < ∞,

Define
`∞ = {u : Z→ R : ‖u‖∞ < ∞}.

We see that (`p, ‖.‖p) and (`∞, ‖.‖∞) are Banach spaces, see [32], and `p1 ⊂ `p2 for
1 ≤ p1 ≤ p2 ≤ ∞. We denote by ‖.‖p the norm of `p for all p ∈ [1, ∞].

For an interval I ⊂ R, we clarify `
p
I by

`
p
I =

{
u : I→ R : ∑

j∈I
|u(j)|p < ∞

}
.

Let

W =

{
u : Z→ R : ∑

j∈Z
∑
k∈Z
|u(j)− u(k)|pKs,p(j− k) + ∑

j∈Z
V(j)|u(j)|p < ∞

}
.

equipped with the norm

‖u‖W =

(
[u]ps,p + ∑

j∈Z
V(j)|u(j)|p

)1/p

,

where

[u]s,p :=

(
∑
j∈Z

∑
k∈Z
|u(j)− u(k)|pKs,p(j− k)

)1/p

.

Lemma 1. If u ∈ `p, then [u]s,p < ∞. Moreover there exists C(s, p) > 0, such that
[u]s,p ≤ C‖u‖p for all u ∈ `p.
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Proof. Let u ∈ `p. Then

[u]ps,p = ∑
j∈Z

∑
k∈Z
|u(j)− u(k)|pKs,p(j− k)

≤ 2p−1Cs,p ∑
j∈Z

∑
k=j

|u(j)|p + |u(k)|p
|j− k|1+ps = 2p−1Cs,p ∑

k 6=0

|u(0)|p + |u(k)|p
|k|1+ps

+2p−1Cs,p ∑
j=0

∑
k 6=0

|u(j)|p
|k|1+ps + 2p−1Cs,p ∑

j=0
∑
k 6=0

|u(k + j)|p
|k|1+ps

= 2p−1Cs,p ∑
k 6=0

|u(0)|p + |u(k)|p
|k|1+ps + 2p−1Cs,p ∑

k 6=0
∑
j=0

|u(j)|p
|k|1+ps

+2p−1Cs,p ∑
k 6=0

∑
j 6=0

|u(k + j)|p
|k|1+ps

≤ 3× 2p−1Cs,p ∑
k 6=0

1
|k|1+ps ∑

j∈Z
|u(j)|p = Cp ∑

j∈Z
|u(j)|p,

where 0 < Cp = 3× 2p−1Csp ∑
k 6=0

1
|k|1+ps < ∞. Thus, the proof is completed.

Besides, the following compactness result holds.

Lemma 2. If condition (V) holds, then embedding W↪→ `q is compact for any 1 < p ≤ q < ∞,
provided the condition (V) holds.

Proof. The proof is similar to papers [21,30].
First, we establish that the result holds for the case q = p. According to the hypothesis

(V), we have ‖u‖p ≤ V
− 1

p
0 ‖u‖ for all u ∈W. Indeed, the embedding W→ `p is continuous.

Next, we verify that W→ `p is compact. For {un}n ⊂W, we suppose that there exists d > 0
such that ‖un‖p

W ≤ d for all n ∈ N. Since W is a reflexive Banach space (see Appendix A),
there exist a subsequence of {un}n still denoted by {un}n and a function u ∈W such that
un ⇀ u in W. By hypothesis (V), for any ε > 0, there exists j0 ∈ N such that

V(j) >
1 + d

ε
, for all |j| > j0.

For I = [−j0, j0] we define

WI :=

{
u : I→ R : ∑

j∈I
∑

j 6=k∈I
|u(j)− u(k)|pKs,p(j− k) + ∑

j∈I
V(j)|u(j)|p < ∞

}
.

Because the dimension of WI is finite, we infer that {un}n is a bounded sequence in
WI, since {un}n is bounded in `

p
I . Thus, up to a subsequence, we conclude that un → u on

I. Thus there exists n0 ∈ N such that for all n ≥ n0

∑
j∈I
|un(j)− u(j)|p ≤ δ

1 + d
.

Then

∑
j∈Z
|un(j)− u(j)|p <

ε

1 + C
+

ε

1 + C ∑
|j|>j0

V(j)|un(j)− u(j)|p

≤ ε

1 + C
(1 + ‖un‖p

W) ≤ δ, for all n > n0.
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Hence, we conclude that un → u in `p. Now, we view the case q > p. Note that

‖u(j)‖∞ ≤
(

∑
j∈Z
|u(j)|p

)1/p

for all u ∈ `p. Then(
∑
j∈Z
|u(j)|q

)1/q

= ‖u‖∞

(
∑
j∈Z

(
|u(j)|
||u‖∞

)p
)1/q

= ‖u‖
1− p

q
∞

(
∑
j∈Z
|u(j)|p

)1/q

≤ ‖u‖
1− P

q
p ‖u‖

P
q
p = ‖u‖p,

with u ∈ `p\{0}. Therefore,
‖u‖q ≤ ‖u‖p

for all u ∈ `p. This inequality jointly with the result of the considered case q = p, shows
the proof.

To get some effects of energy functional associated with Equation (4), the following
result is required.

Lemma 3. For any compact subset U of W, and any ε > 0, there is a j0 ∈ N such that ∑
|j|>j0

V(j)|u(j)|p
1/p

< ε, u ∈ U.

Proof. We prove it by contradiction, suppose that there exist ε > 0 and a sequence
{un} ⊆ U such that  ∑

|j|>n
V(j)|un(j)|p

1/p

> ε for all n ∈ N.

Due to the compactness of U, passing to a subsequence we may assume that un → u
in W for some u ∈ U. Thus, there exists n0 ∈ N, such that ‖un − u‖ < ε

2 for any n ≥ n0,
moreover, there exists j1 ∈ N such that ∑

|j|>j1

V(j)|u(j)|p
1/p

<
ε

2
.

Recall the classical Minkowski inequality:

(
m

∑
I=1
|xi + yi|p

) 1
p

≤
(

m

∑
i=1
|xi|p

) 1
p

+

(
m

∑
i=1
|yi|p

) 1
p

for all m ∈ Z, x1...xm.y1...ym ∈ R. (5)

By (5), we have

ε <

 ∑
|j|>n

V(j)|un(j)− u(j)|p
1/p

≤

 ∑
|j|>n

V(j)|un(j)|p
1/p

+

 ∑
|j|>n

V(j)|u(j)|p
1/p

≤ ‖un − u‖+ ε

2
< ε,

which is a contradiction, and the proof is archived.
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For u ∈W, we propose the associated energy functional with Equation (4) as

Iλ(u) = Ψ(u)− λJ(u) ,

where
Psi(u) =

1
p ∑

j∈Z
∑

m∈Z
|u(j)− u(m)|pKs,p(j−m) +

1
p ∑

j∈Z
V(j)|u(j)|p

and
J(u) = ∑

j∈Z
F(j, u(j)).

Lemma 4. If (V) is fulfilled, then Psi is well-defined, of class C1(W,R) and〈
Ψ′(u), v

〉
= ∑

j∈Z
∑

m∈Z
|u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m)

+ ∑
j∈Z

v(j)|u(j)|p−2u(j)v(j),

for all u, v ∈W.

Proof. According to Lemma 1, the functional Psi is well-defined on W. Fix u, v ∈W. We
first prove that

limt→0+ ∑j∈Z ∑m∈Z
|u(j)+tv(j)−u(m)−tv(m)|p−|u(j)−u(m)|p

p Ks,p(j−m) (6)

= ∑j∈Z ∑m∈Z |u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m).

Pick C > 0 such that max(‖u‖W, ‖v‖W) ≤ C. For all ε > 0 there exists h1 ∈ N such
that

∑
|j|>h

∑
|m|>h

|u(j)− u(m)|pKs,p(j−m))
1
p < ε (7)

for all h > h1. Indeed, for any h ∈ N, we have

∑
|j|>h

∑
|m|>h

|u(j)− u(m)|pKs,p(j−m) ≤ Cs,p2p−1 ∑
|j|>h

∑
|m|>h,m 6=j

(|u(j)|p + |u(m)|p)
|j−m|1+ps

≤ 2pCs,p ∑
|j|>h

∑
|m|>h,m=j

|u(j)|p
|j−m|1+ps

≤ 2pCs,p(∑
k 6=0

1
|k|1+ps ) ∑

|j|>h
|u(j)|p, u ∈W.

Therefore (7) holds.
For h ∈ N, if |j| ≤ h and |m| > 2h, then |j− m| ≥ |m| − |j| ≥ |m| − h > |m|

2 . Thus,
there exists h2 ∈ N such that ∑

|j|≤h
∑
|m|>2h

|u(j)− u(m)|pKs,p(j−m)

 1
p

< ε (8)

for all h > h2. Fix h > max{h1, h2} . Clearly, there exists t0 ∈ (0, 1) such that for all
0 < t < t0, we get
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∑
|j|≤2h

∑
|m|≤2h

| |u(j) + tv(j)− u(m)− tv(m)|p − |u(j)− u(m)|p
p

− |u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))|Ks,p(j−m) < ε.

Fix 0 < t < t0, for j, m ∈ Z, using the mean value theorem, we can find 0 < tj,m < t
such that

(|u(j) + tv(j)− u(m)− tv(m)|p − |u(j)− u(m)|p)
tp

Ks,p(j−m) (9)

= |y(j)− y(m)|p−2(y(j)− y(m))(v(j)− v(m))Ks,p(j−m),

where y(j) = u(j) + tj,mv(j) . Evidently y ∈W and ‖y‖W ≤ 2C. Observe that

∣∣∣∣∣∣ ∑
|j|≤h|

∑
m|>2h

|u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m)

∣∣∣∣∣∣
≤ ∑
|j|≤h|

∑
m|>wh

|u(j)− u(m)|p−1|v(j)− v(m)|Ksp(j−m)

≤

 ∑
|j|≤h|

∑
m|>2h

|u(j)− u(m)|pKs,p)
p−1

p ( ∑
|j|≤h|

∑
m|>2h

|v(j)− v(m)|pKs,p(j−m)

 1
p

≤ Cε. (10)

From (7) and (10), using Holder’s inequality, we infer∣∣∣∣∣∑j∈Z ∑
m∈Z

|u(j) + tv(j)− u(m)− tv(m)|p − |u(j)− u(m)|p
p

Ks,p(j−m)

+ ∑
j∈Z

∑
m∈Z
|u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m)

∣∣∣∣∣
≤ ε + ∑

|j|≤h|
∑

m|>h
+ ∑
|j|>h

∑
|m|≤h

+ ∑
|j|>h

∑
|m|>h

|(φp(y(j)− y(m))− φp(u(j)− u(m)))(v(j)− v(m))|Ks,p(j−m)

≤ Cε + ∑
|j|≤h|

∑
m|>2h

+ ∑
|j|>2h|

∑
m|≤h

+ ∑
|j|>h

∑
|m|>h

|(φp(y(j)− y(m))− φp(u(j)− u(m)))(v(j)− v(m))|Ks,p(j−m)

≤ Cε,

where for all τ ∈ R, φp(τ) := |τ|p−2τ. Consequently (6) holds valid. A similar idea gives

lim
t→0+

‖u + tv‖p − ‖u‖p

pt
= ∑

j∈Z
V(j)|u(j)|p−2u(j)v(j).

Thus, we get〈
Ψ′(u), v

〉
= ∑

j∈Z
∑

m∈Z
|u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m)

+ ∑
j∈Z

V(j)|u(j)|p−2u(j)v(j).
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Therefore, Ψ is Gâteaux differentiable in W. In the end, we prove that Ψ′ : W→W∗ is
continuous. To this end, we take {un}n sequence in W with un →n→∞

u in W. From Lemma 3,

for all ε > 0, there exists h ∈ N such that ∑
|j|>h

∑
|m|>h

|un(j)− un(m)|pKs,p(j−m)

1/p

< ε for all n ∈ N

and  ∑
|j|>h

∑
|m|>h

|u(j)− u(m)|pKs,p(j−m)

1/p

< ε.

In addition, there exists n0 ∈ N such that ∑
|j|≤2h|

∑
m|≤2h

∣∣∣(φ(un(j)− un(m))− φ(u(j)− u(m)))K1/p′
s,p (j−m)

∣∣∣p′
1/p′

< ε

for all n ≥ n0, where p′ = p
p−1 . For any v ∈W with ‖v‖W ≤ 1, and for any n ≥ n0, by the

Hölder inequality and a similar argument to above, we conclude∣∣∣∣∣∑j∈Z ∑
m∈Z

[φ(un(j)− un(m))− φ(u(j)− u(m))](v(j)− v(m))Ks,p(j−m)

∣∣∣∣∣
≤
(

∑
j∈Z

∑
m∈Z

∣∣∣(φ(un(j)− un(m))− φ(u(j)− u(m)))K1/p′
s,p (j−m)

∣∣∣p′)1/p′

×
(

∑
j∈Z

∑
m∈Z
|v(j)− v(m)|pKs,p(j−m)

)1/p

≤ Cε‖v‖W.

Also, we can show that∣∣∣∣∣∑k∈Z V(k)(|un|p−2un − |u|p−2u)v

∣∣∣∣∣ ≤ Cε‖v‖W

as n→ ∞. Thus,

‖Ψ′(un)− = Ψ′(u)‖ = sup
‖v‖≤1

∣∣{Ψ′(un)−Ψ′(u), v}
∣∣→ 0,

which implies that Ψ′ is continuous. Hence, we confirm that Ψ ∈ C1(W,R).

Lemma 5. If conditions (V) and ( f1) hold, then J ∈ C1(W,R) with〈
J′(u), v

〉
= ∑

j∈Z
f (j, u(j))v(j)

for all u, v ∈W.

Proof. By (f1) , there exists δ > 0 such that | f (j, t)| ≤ |t|p−1 for all j ∈ Z, |t| ≤ δ. Integrating
we have

|F(j, t)| ≤ |t|
p

p
for all j ∈ Z, |t| ≤ δ (11)
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for all u ∈W. There exists h ∈ N such that |u(k)| ≤ δ for all j ∈ Z, |j| > h, we obtain∣∣∣∣∣∑j∈Z F(j, u(j))

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
|j|≤h

F(j, u(j)) + ∑
|j|>h

F(j, u(j))

∣∣∣∣∣∣
≤ ∑
|j|≤h
|F(j, u(j))|+ 1

p ∑
|j|>h
|u(j)|p

≤ ∑
|j|≤h
|F(j, u(j))|+ 1

pV0
∑
|j|>h

V(j)|u(j)|p,

thus J is well defined. Now, fix u, v ∈W. We show that

lim
t→0+

J(u + tv)− J(u)
t

= ∑
j∈Z

f (j, u(j))v(j)), (12)

indeed, choose R > 0 such that max
(
‖u‖p, ‖v‖p

)
≤ R. Let δ > 0 be such that (11) holds

and
max{u(j), v(j)} ≤ δ

2
for all j ∈ Z, |j| > h.

For all ε > 0, there exists h ∈ N such that

∑
|j|>h

V(j)|v(j)|p <
ε

6V0(2R)p−1 .

Moreover, we can find t0 ∈ (0, 1) such that

∑
|j|≤h

∣∣∣∣ F(j, u(j)) + tv(j)− F(j, u(j))
t

− f (j, u(j))v(j)
∣∣∣∣ < ε

3
.

Now fix 0 < t ≤ t0. For all |j| > h, there exists 0 ≤ tk ≤ t such that

F(j, u(j)) + tv(j)− F(j, u(j))
t

= f (j, u(j) + tkv(j))v(j).

We define w ∈ W by w(j) = 0 for all |j| ≤ h and w(j) = u(j) + tjv(j) for all |j| > h.
Therefore, ‖w‖ ≤ ‖u‖+ ‖v‖ and |w(j)| ≤ δ for all j ∈ Z. Summarizing what proved above,
we have ∣∣∣∣∣ J(u + tv)− J(u)

t
− ∑

j∈Z
F(j, u(j))v(j)

∣∣∣∣∣
≤ ε

3
+ ∑
|j|>h
|F(j, w(j))v(j)|+ ∑

|j|>h
|F(j, u(j))v(j)|

≤ ε

3
+ ∑
|j|>h
|w(j)|p−1|v(j)|+ ∑

|j|>h
|u(j)|p−1|v(j)|

≤ ε

3
+

1
V0


 ∑
|j|>h
|w(j)|p

 1
q

+

 ∑
|j|>h
|u(j)|p

 1
q

 ∑
|j|>h
|v(j)|p

 1
q

<
ε

3
+

1
V0

(
(2R)p−1 + Rp−1

) ε

6V0(2R)p−1 < ε.

Hence, (12) holds. So J is Gâteaux differentiable.
Next, similar to Lemma 4, we can prove that J ∈ C1(W,R), combining Lemmas 4 and 5,

we see that Iλ ∈ C1(W,R).
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Lemma 6. If conditions (V) and (f1) hold, 1 < q < p < ∞, then the critical point of Iλ is a
homoclinic solution of Equation (4) for all λ > 0.

Proof. Suppose that u ∈W is a critical point of Iλ, that is, I′λ(u) = 0. Then

∑
j∈Z

∑
m∈Z
|u(j)− u(m)|p−2(u(j)− u(m))(v(j)− v(m))Ks,p(j−m) (13)

+ ∑
j∈Z

V(j)|u(j)|p−2u(j)v(j) = λ ∑
j∈Z

f (j, u(j))v(j))

for all v ∈W. For each k ∈ Z, we define ek as

ek(j) = δkj :=

{
l , j = k

0, j 6= k.

Obviously, ek ∈W. Choosing v = ek in (13), we get

p ∑
j=k
|u(k)− u(j)|p−2(u(k)− u(j))Ksp(k− j) + V(k)|u(k)|p−2u(k) = λ f (k, u(k)) ,

which implies that u is a solution of (4). Furthermore, according to u ∈W and Lemma 2,
we can easily infer that u(k)→ 0 as |k| → ∞. Hence u is a homoclinic solution of (4).

Next, we employ the general mountain pass lemma (see [33]) to prove our main result.
we first verify that the functional Iλ possesses the mountain pass geometry.

Lemma 7. If conditions (V) and (f1)− (f4) hold and

λ >
|b0|p

pF(h0, b0)

(
pCs,p ∑

m 6=h0

1

|h0 −m|1+ps + V(h0)

)
,

then the functional Iλ fulfills the mountain pass geometry.

Proof. On the one hand, according to ( f1), for any 0 < ε < V0
pλ there exists δ > 0 such that

F(j, t) ≤ ε

p
|t|p for all |t| < δ and j ∈ Z

Since ‖u‖∞ ≤ ‖u‖p, we can find 0 < ω < |b0|p−1V(h0)
1
p such that ‖u‖∞ < δ for all

u ∈W with ‖u‖ = ω. Here, h0 and b0 come from assumption ( f4). Then

Iλ(u) = Ψ(u)− λJ(u) ≥ ‖u‖
p

p
− λε‖u‖p

≥ (
1
p
− λε

V0
)‖u‖p ≥ (

1
p
− λε

V0
)ωp > 0.
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On the other hand, set e = b0eh0(j) and eh0(j) = 1 if j = h0; eh0(j) = 0 if j 6= h0. Then

‖e‖ = |b0|p−1V(h0)
1
p > ω and

Iλ(e) =
1
p ∑

j∈Z
∑

m 6=j
|e(j)− e(m)|pKs,p(j−m) +

1
p ∑

j∈Z
V(j)|e(j)|p − λ ∑

j∈Z
F(j, e(j))

=
|b0|p

p
(p ∑

m 6=h0

|Ks,p(j−m) + V(h0))− λF(h0, b0)

≤ |b0|p

p
(pCs,p ∑

m 6=h0

| 1

|h0 −m|1+ps + V(h0))− λF(h0, b0) < 0

for all

λ >

|b0|p
(

pCs,p ∑m 6=h0
1

|h0−m|1+ps + V(h0)

)
pF(h0, b0)

.

Therefore, the functional Iλ fulfills the mountain pass geometry.

Lemma 8. If conditions (V) and (f1)− (f3) hold, then for all λ > 0, the functional Iλ fulfills the
(PS)c condition in W for all c ∈ R (see [21]).

Proof. Fix λ > 0, we first show that Iλ is coercive on W, i.e., lim‖u‖→∞ Iλ(u) = +∞.

By condition (f3), for all ε ∈ (0, V0
pλ ), there exists T > 0 such that

F(j, t) ≤ ε|t|p for all j ∈ Z and |t| > T.

Again by ( f2), there exists θ ∈ `1 such that

|F(j, t)| ≤ θ(j) for all j ∈ Z and |t| ≤ T.

For all u ∈W, we have

Iλ(u) =Ψ(u)− λJ(u) ≥ ‖u‖p

p
− λ ∑

|u(j)|≤T
F(j, u(j))− λ ∑

|u(j)|>T
F(j, u(j)) (14)

≥‖u‖
p

p
− λ‖θ‖1 − λε‖u‖p

p ≥ (
1
p
− λε

V0
)‖u‖p − λ‖θ‖1,

which denotes that coerciveness is valid. Next we prove that Iλ fulfills (PS)c condition. Let
{un}n be a sequence in W such that Iλ(un) → c and I′λ(un) → 0 in W∗. Because {un}n is
bounded due to the coercivity of Iλ, consequently, by Lemma 2, there is a subsequence of
{un}n, still denoted by {un}n, such that un ⇀ u in W and un → u in `p. Then

lim
n→∞

〈
I′λ(un − I′λ(u), un − u)

〉
= 0. (15)

Similar to Lemma 5, it is obvious that

lim
n→∞ ∑

j∈Z
( f (j, un(j)− f (j, u(j))(un(j)− u(j)) = 0.

Combining (15), we know that ‖un − u‖ → 0, i.e., un → u in W.
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3. Proof of Main Result

Proof of Theorem 1. By Lemmas 7 and 8 and mountain pass lemma, we have that for all

λ >
|b0|p(pCs,p ∑m 6=h0

1
|h0−m|1+2s + V(h0))

pF(h0, b0)
,

there exists a sequence {un}n ⊂W such that

Iλ(un)→ cλ > 0 and I′λ(un)→ 0, as n→ ∞,

where
cλ = inf

γ∈Γ
max

0≤t≤1
Iλ(γ(t))

and Γ = {γ ∈ ([0, 1], X) : γ(0) = 1, γ(1) = e}.
So there exists a subsequence of {un}n (still denoted by {un}n ) such that un → u(1)

λ

strongly in W. Furthermore, Iλ(u
(1)
λ ) = α ≥ 0 and I′λ(u

(1)
λ ) = 0. Hence, Lemma 6 implies

that u(1)
λ is a homoclinic solution of (4).

Next we prove that Equation (4) has another homoclinic solution. Choose ω ∈ R such
that Iλ(e) < ω < 0, where e is given by Lemma 7. Set

M = {u ∈W : Iλ(u) ≤ ω}.

It is clear that M 6= 0. It follows from (14) that M is a bounded subset in W.
Now we infer that Iλ is bounded below on M. If not, we suppose that there exists a

sequence {un}n ⊂ M such that

lim
n→∞

Iλ(un) = −∞. (16)

Since {un}n is bounded, up to a subsequence, we have un ⇀ u in W and un → u in `p.
Similar to Lemma 5, we know that J is continuous in `p. We obtain that Ψ is weakly lower
semi-continuous in W thanks to the convexity of Ψ. Thus,

lim
n→∞

inf Iλ(un) ≥ Iλ(u) > −∞,

which contradicts (16). So we can define

c∼λ = inf{Iλ(u) : u ∈ M} = inf
W

Iλ(u).

Then c∼λ < 0 for all λ > 0. On basis of Lemma 7 and the Ekeland variational principle,
applied in M, there exists a sequence {un}n such that

c∼λ ≤ Iλ(un) ≤ c∼λ +
1
n

(17)

and

Iλ(υ) ≥ Iλ(un)−
‖un − υ‖

n
(18)

for all υ ∈ M.
It is clear that {un}n is a (PS)c∼λ sequence for the functional Iλ. Similar to Lemma 8,

there exists a subsequence of {un}n (still denoted by {un}n) such that un → u(2)
λ in W. So,

we get a nontrivial homoclinic solution u(2)
λ of Equation (4) fulfilling

Iλ(u
(2)
λ ) ≤ ω < 0.
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Furthermore, we have

Iλ(u
(2)
λ ) = c∼λ ≤ ω < 0 < α < cλ = Iλ(u

(1)
λ )

for all

λ >

|b0|p
(

pCs,p ∑m 6=h0
1

|h0−m|1+2s + V(h0)

)
pF(h0, b0)

.

Therefore, Equation (4) has at least two nontrivial homoclinic solutions.
Finally, we show that all critical points of the functional Iλ are nonnegative. Let

u ∈ W\{0} be a critical point of Iλ. Then, I′λ(un) = 0 and uk → 0 as |k| → ∞. Let u+ =
max{u, 0} and u− = max{−u, 0}. We have

〈
I′λ(un),−u−

〉
= 0, due to I′λ(un) = 0. It

follows from f (k, t) = 0 for all k ∈ Z, t ≤ 0 that

∑
j∈Z

∑
m∈Z
|u(j)− u(m)|p−2(−u−(j) + u−(m))Ks,p(j−m) + ∑

j∈Z
V(j)|u(j)|p−2(−u−(j)) = 0,

which implies that

∑
j∈Z

∑
m∈Z
|u(j)− u(m)|p−2(−u−(j) + u−(m))Ks,p(j−m) ≤ 0.

We know that for all j, m ∈ Z,

∑
j∈Z

∑
m∈Z
|u−(j)− u−(m)|pKs,p(j−m) ≤ 0,

which means that u−(j) = u−(m) for all j, m ∈ Z. By virtue of uk → 0 and u−(k) ≤ |u(k)|,
we get that C = 0. Hence, we infer that u−(k) = 0, which ends the proof.

4. Conclusions

Lemmas 1–3 are important contents needed for functional estimation; Lemmas 4 and 5
are important conclusions to ensure the continuous differentiability of functional; Lemma 6
shows that the critical point of functional is a homoclinic solution of Equation (4) for
all λ > 0.; Lemmas 7 and 8 verify the mountain pass geometry and (PS) conditions
respectively. Finally, in combination with Ekeland’s variational principle, we get two
homoclinic solutions. In future studies, we can consider the case of variable order and
variable exponent. See for more details (see [34–36]).
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Appendix A

The pair (W, ‖.‖W) equipped with the equivalent norm

‖u‖ =
(

∑
j∈Z

V(j)|u(j)|p
)1/p

is a Banach space.

Proof. The proof is similar to [37], for fullness, we provide its facts. Employing hypothesis
(V) and Lemma 1, we keep

∑
j∈Z

V(j)|u(j)|p ≤ ‖u‖p
W ≤ C ∑

j∈Z
|u(j)|p + ∑

j∈Z
V(j)|u(j)|p

≤ C
1

V0
∑
j∈Z

V(j)|u(j)|p + ∑
j∈Z

V(j)|u(j)|p = C ∑
j∈Z

V(j)|u(j)|p,

which shows that ‖u‖ =
(

∑j∈Z V(j)|u(j)|p
)1/p

is an equivalent norm of W. Finally, we
establish that (W, ‖.‖W) is complete. Let {vn}n be a Cauchy sequence in W.

We point out that

‖u‖p ≤ V
− 1

p
0 ‖u‖

for all u ∈W. Then, {vn}n is even a Cauchy sequence in `p. By the completeness of `p,
there exists u ∈ `p satisfying un → u in `p. In addition, Lemma 1 and hypothesis (V) imply
that .Inadditionun → u strongly in W as n→ ∞. Thus, we conclude the result.
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