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Abstract: The linear differential operator with constant coefficients D(y) = y(n) + a1y(n−1) + . . . +
any, y ∈ Cn(R, X) acting in a Banach space X is Ulam stable if and only if its characteristic
equation has no roots on the imaginary axis. We prove that if the characteristic equation of D
has distinct roots rk satisfying Re rk > 0, 1 ≤ k ≤ n, then the best Ulam constant of D is KD =

1
|V|
∫ ∞

0

∣∣ n
∑

k=1
(−1)kVke−rk x

∣∣dx, where V = V(r1, r2, . . . , rn) and Vk = V(r1, . . . , rk−1, rk+1, . . . , rn), 1 ≤

k ≤ n, are Vandermonde determinants.

Keywords: linear differential operator; Ulam stability; best constant; Banach space

MSC: 34D20; 39B82

1. Introduction

In this paper, we denote by K the field of real numbers R or the field of complex
numbers C. Let M and N be two linear spaces over the field K.

Definition 1. A function ρM : M→ [0, ∞] is called a gauge on M if the following properties hold:

(i) ρM(x) = 0 if and only if x = 0;
(ii) ρM(λx) = |λ|ρM(x) for all x ∈ M, λ ∈ K, λ 6= 0.

Throughout this paper, we denote by (X, ‖ · ‖) a Banach space over the field C and
by Cn(R, X) the linear space of all n times differentiable functions with continuous n-th
derivatives, defined on R with values in X. C0(R, X) will be denoted as usual by C(R, X).
For f ∈ Cn(R, X) define

‖ f ‖∞ = sup{‖ f (t)‖ : t ∈ R}. (1)

Then, ‖ f ‖∞ is a gauge on Cn(R, X). We suppose that Cn(R, X) and C(R, X) are endowed
with the same gauge ‖ · ‖∞.

Let ρM and ρN be two gauges on the linear spaces M and N, respectively, and let
L : M→ N be a linear operator.

We denote by ker L = {x ∈ M|Lx = 0} and R(L) = {Lx|x ∈ M} the kernel and the
range of the operator L, respectively.

Definition 2. We say that the operator L is Ulam stable if there exists K ≥ 0 such that for every
ε > 0 with ρN(Lx) ≤ ε there exists z ∈ ker L with the property ρM(x− z) ≤ Kε.

The Ulam stability of the operator L is equivalent to the stability of the associated
equation Lx = y, y ∈ R(L). An element x ∈ M satisfying ρN(Lx) ≤ ε for some positive
ε is called an approximate solution of the equation Lx = y, y ∈ R(L). Consequently,
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Definition 2 can be reformulated as follows: The operator L is Ulam stable if for every
approximate solution of Lx = y, y ∈ R(L) there exists an exact solution of the equation near
it. The problem of Ulam stability is due to Ulam [1]. Ulam formulated this problem during
a conference at Madison University, Wisconsin, for the equation of the homomorphisms
of a metric group. The first answer to Ulam’s question was given by D.H. Hyers for the
Cauchy functional equation in Banach spaces in [2]. In fact, a problem of this type was
formulated in the famous book by Polya and Szegö for the Cauchy functional equation on
the set of integers; see [3]. Since then, this research area received a lot of attention and was
extended to the contexts of operators, functional, differential, or difference equations. For a
broad overview on the topic, we refer the reader to [4,5].

The number K from Definition 2 is called an Ulam constant of L. In what follows, the
infimum of all Ulam constants of L is denoted by KL. Generally, the infimum of all Ulam
constants of the operator L is not a Ulam constant of L (see [6,7]), but if it is, it will be called
the best Ulam constant of L or, simply, the Ulam constant of the operator L. Finding the best
Ulam constant of an equation or operator is a challenging problem because it offers the best
measure of the error between the approximate and the exact solution. In [6,8], for linear
and bounded operators acting on normed spaces their Ulam stability is characterized and
representation results are given for their best Ulam constant. Using this result, D. Popa
and I. Raşa obtained the best Ulam constant for the Bernstein, Kantorovich, and Stancu
operators; see [9–12]. For more information on Ulam stability with respect to gauges and
on the best Ulam constant of linear operators, we refer the reader to [4,13].

To the best of our knowledge, the first result on Ulam stability of differential equations
was obtained by M. Obłoza [14]. Thereafter, the topic was deeply investigated by T. Miura,
S. Miyajima, and S.E. Takahasi in [15–17] and by S. M Jung in [18], who gave some results
for various differential equations and partial differential equations. For further details on
Ulam stability, we refer the reader to [1,4,5].

Let a1, . . . , an ∈ C and consider the linear differential operator D : Cn(R, X)→ C(R, X)
defined by

D(y) = y(n) + a1y(n−1) + . . . + any, y ∈ Cn(R, X). (2)

Denote by P(z) = zn + a1zn−1 + . . . + an the characteristic polynomial of the operator D,
and let r1, . . . , rn be the complex roots of the characteristic equation P(z) = 0.

The problem of finding the best Ulam constant was first posed by Th. Rassias in [19].
Since then, various papers on this topic appeared, but there are only a few results on the
best Ulam constant of differential equations and differential operators. In the sequel, we
will provide a short overview of some important results concerning the Ulam stability and
best Ulam constant of the differential operator D. In [16] the operator D is proven to be
Ulam stable with the Ulam constant 1

n
∏

k=1
|Re rk |

if and only if its characteristic equation has

no roots on the imaginary axis. In [9], D. Popa and I. Raşa obtained sharp estimates for
the Ulam constant of the first-order linear differential operator and the higher-order linear
differential operator with constant coefficients. The best Ulam constant of the first-order
linear differential operator with constant coefficients is obtained in [15]. Later, A.R. Baias
and D. Popa obtained the best Ulam constant for the second-order linear differential opera-
tor with constant coefficients [20]. Recent results on Ulam stability for linear differential
equations with periodic coefficients and on the best constant for Hill’s differential equation
were obtained by R. Fukutaka and M. Onitsuka in [21,22]. Important steps in finding the
best Ulam constant were made also for higher-order difference equations with constant
coefficients. For more details, we refer the reader to [23] and the references therein.

The aim of this paper is to determine the best Ulam constant for the n-order linear
differential operator with constant coefficients acting in Banach spaces, for the case of dis-
tinct roots of the characteristic equation. Through this result, we improve and complement
some extant results in the field.
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2. Main Results

Let a1, . . . , an ∈ C, and consider the linear differential operator D : Cn(R, X) →
C(R, X) defined by

D(y) = y(n) + a1y(n−1) + . . . + any, y ∈ Cn(R, X). (3)

If r1, r2, . . . , rn are distinct roots of the characteristic equation P(z) = 0, then the general
solution of the homogeneous equation D(y) = 0 is given by

yH(x) = C1er1x + C2er2x + · · ·+ Cnernx, (4)

where C1, . . . , Cn ∈ X are arbitrary constants. Consequently,

ker D =

{
n

∑
k=1

Ckerkx|C1, C2, . . . , Cn ∈ X

}
. (5)

The operator D is surjective, so according to the variation of constants method, for every
f ∈ C(R, X) there exists a particular solution of the equation D(y) = f of the form

yP(x) =
n

∑
k=1

Ck(x)erkx, x ∈ R,

where C1, . . . , Cn are functions of class C1(R, X) that satisfy
er1x er2x . . . ernx

r1er1x r2er2x . . . rnernx

. . . . . . . . . . . .
rn−1

1 er1x rn−1
2 er2x . . . rn−1

n ernx




C′1(x)
C′2(x)

...
C′n(x)

 =


0
...
0

f (x)

, x ∈ R. (6)

In what follows, we denote for simplicity the Vandermonde determinants by
V := V(r1, r2, . . . , rn) and Vk := V(r1, r2, . . . , rk−1, rk+1, . . . , rn), 1 ≤ k ≤ n. Consequently,
we obtain

C′k(x) = (−1)n+k Vk
V

e−rkx f (x), k = 1, . . . , n.

Hence, a particular solution of the equation D(y) = f is given by

yP(x) =
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt, x ∈ R. (7)

The main result concerning the Ulam stability of the operator D for the case of distinct
roots of the characteristic equation is given in the next theorem.

Theorem 1. Suppose that rk, 1 ≤ k ≤ n, are distinct roots of the characteristic equation with
Re rk 6= 0, and let ε > 0. Then, for every y ∈ Cn(R, X) satisfying

‖D(y)‖∞ ≤ ε (8)

there exists a unique yH ∈ ker D such that

‖y− yH‖∞ ≤ Kε, (9)

where
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K =



1
|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVke−rkx
∣∣∣∣dx, if Re

1≤k≤n
rk > 0;

1
|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVkerkx
∣∣∣∣dx, if Re

1≤k≤n
rk < 0;

1
|V|

∫ ∞

0

(∣∣∣∣ p

∑
k=1

(−1)kVke−rkx
∣∣∣∣+ ∣∣∣∣ n

∑
k=p+1

(−1)kVkerkx
∣∣∣∣
)

dx, if
Re

1≤k≤p
rk > 0;

Re
p+1≤k≤n

rk < 0.

(10)

Proof. Existence. Suppose that y ∈ Cn(R, X) satisfies (8), and let D(y) = f . Then, ‖ f ‖∞ ≤ ε
and

y(x) =
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt, x ∈ R,

for some Ck ∈ X, 1 ≤ k ≤ n.

(i) First, let Re rk > 0, 1 ≤ k ≤ n. Define yH ∈ KerD by the relation

yH(x) =
n

∑
k=1

C̃kerkx, x ∈ R, C̃k ∈ X,

where

C̃k = Ck + (−1)n+k Vk
V

∫ ∞

0
f (t)e−rktdt, 1 ≤ k ≤ n.

Since ‖ f (t)e−rkt‖ ≤ ε|e−rkt| = εe−t Re rk , t ≥ 0 and
∫ ∞

0 e−t Re rk dt is convergent, it
follows that

∫ ∞
0 f (t)e−rktdt is absolutely convergent, so the constants C̃k, 1 ≤ k ≤ n

are well defined. Then,

y(x)− yH(x) =
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt−

n

∑
k=1

C̃kerkx

=
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt

−
n

∑
k=1

Ckerkx − 1
V

n

∑
k=1

(−1)n+kVkerkx
∫ ∞

0
f (t)e−rktdt

= − 1
V

n

∑
k=1

(−1)n+kVkerkx
∫ ∞

x
f (t)e−rktdt

= − 1
V

n

∑
k=1

(−1)n+kVk

∫ ∞

x
f (t)erk(x−t)dt, x ∈ R.

Now, letting t− x = u in the above integral we obtain

y(x)− yH(x) = − 1
V

n

∑
k=1

(−1)n+kVk

∫ ∞

0
f (u + x)e−rkudu,

=
(−1)n+1

V

∫ ∞

0

(
n

∑
k=1

(−1)kVke−rku

)
f (u + x)du, x ∈ R.
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Hence

‖y(x)− yH(x)‖ ≤
∫ ∞

0

∣∣∣∣ 1
V

n

∑
k=1

(−1)kVke−rku
∣∣∣∣ · ∥∥ f (u + x)

∥∥du, x ∈ R

≤ ε

|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVke−rku
∣∣∣∣du, x ∈ R,

therefore
‖y− y0‖∞ ≤ Kε.

(ii) Let Re rk < 0, 1 ≤ k ≤ n. The proof follows analogously, defining

yH(x) =
n

∑
k=1

C̃kerkx, x ∈ R, C̃k ∈ X,

with

C̃k = Ck − (−1)n+k Vk
V

∫ 0

−∞
f (t)e−rktdt 1 ≤ k ≤ n.

Then,

y(x)− yH(x) =
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt

−
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ 0

−∞
f (t)e−rktdt

=
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

−∞
f (t)e−rktdt,

=
1
V

n

∑
k=1

(−1)n+kVk

∫ x

−∞
f (t)erk(x−t)dt,

=
(−1)n

V

∫ ∞

0

(
n

∑
k=1

(−1)kVkerku

)
f (x− u)du, x ∈ R,

where u = x− t. Hence,

‖y(x)− yH(x)‖ ≤ 1
|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVkerku
∣∣∣∣ · ∥∥ f (x− u)

∥∥du ≤ Kε, x ∈ R,

which entails
‖y− yH‖∞ ≤ Kε.

(iii) Let Re rk > 0, 1 ≤ k ≤ p, and Re rk < 0, p + 1 ≤ k ≤ n. Define yH by the relation

yH(x) =
n

∑
k=1

C̃kerkx, x ∈ R, C̃k ∈ X,

with

C̃k = Ck + (−1)n+k Vk
V

∫ ∞

0
f (t)e−rktdt, 1 ≤ k ≤ p,

C̃k = Ck − (−1)n+k Vk
V

∫ 0

−∞
f (t)e−rktdt, p + 1 ≤ k ≤ n.

Then,

y(x)− yH(x) =
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt
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− 1
V

p

∑
k=1

(−1)n+kVkerkx
∫ ∞

0
f (t)e−rktdt +

1
V

n

∑
k=p+1

(−1)n+kVkerkx
∫ 0

−∞
f (t)e−rktdt,

= − 1
V

p

∑
k=1

(−1)n+kVkerkx
∫ ∞

x
f (t)e−rktdt +

1
V

n

∑
k=p+1

(−1)n+kVkerkx
∫ x

−∞
f (t)e−rktdt

= − 1
V

p

∑
k=1

(−1)n+kVk

∫ ∞

x
f (t)erk(x−t)dt +

1
V

n

∑
k=p+1

(−1)n+kVk

∫ x

−∞
f (t)erk(x−t)dt.

Letting x− t = −u, and x− t = u correspondingly, in the previous integrals, it follows
that

y(x)− yH(x) = − 1
V

p

∑
k=1

(−1)n+kVk

∫ ∞

0
f (x + u)e−rkudu

+
1
V

n

∑
k=p+1

(−1)n+kVk

∫ ∞

0
f (x− u)erkudu, x ∈ R

and

‖y(x)− yH(x)‖ ≤
∫ ∞

0

(∣∣∣∣ 1
V

p

∑
k=1

(−1)n+kVke−rku
∣∣∣∣∥∥ f (x + u)

∥∥)du

+
∫ ∞

0

(∣∣∣∣ 1
V

n

∑
k=p+1

(−1)n+kVkerku
∣∣∣∣∥∥ f (x− u)

∥∥)du

≤ ε

|V|

∫ ∞

0

(∣∣∣∣ p

∑
k=1

(−1)kVke−rku
∣∣∣∣+ ∣∣∣∣ n

∑
k=p+1

(−1)kVkerku
∣∣∣∣
)

du, x ∈ R.

Therefore, we have
‖y− y0‖∞ ≤ Kε.

Its existence is proved. Uniqueness. Suppose that for some y ∈ Cn(R, X) satisfying
(8), there exist y1, y2 ∈ ker D such that

‖y− yj‖∞ ≤ Kε, j = 1, 2.

Then,
‖y1 − y2‖∞ ≤ ‖y1 − y‖∞ + ‖y− y2‖∞ ≤ 2Kε.

However, y1 − y2 ∈ ker D; hence, there exist Ck ∈ X, 1 ≤ k ≤ n such that

y1(x)− y2(x) =
n

∑
k=1

Ckerkx, x ∈ R. (11)

If (C1, C2, . . . , Cn) 6= (0, 0, . . . , 0), then

‖y1 − y2‖∞ = sup
x∈R
‖y1(x)− y2(x)‖ = +∞,

which contradicts the boundedness of y1 − y2. We conclude that Ck = 0, 1 ≤ k ≤ n;
therefore, y1 = y2. The theorem is proven.

Theorem 2. If rk are distinct roots of the characteristic equation with Re rk 6= 0, 1 ≤ k ≤ n, then
the best Ulam constant of D is given by
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KD =



1
|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVke−rkx
∣∣∣∣dx, if Re

1≤k≤n
rk > 0;

1
|V|

∫ ∞

0

∣∣∣∣ n

∑
k=1

(−1)kVkerkx
∣∣∣∣dx, if Re

1≤k≤n
rk < 0;

1
|V|

∫ ∞

0

(∣∣∣∣ p

∑
k=1

(−1)kVke−rkx
∣∣∣∣+ ∣∣∣∣ n

∑
k=p+1

(−1)kVkerkx
∣∣∣∣
)

dx, if
Re

1≤k≤p
rk > 0;

Re
p+1≤k≤n

rk < 0.

(12)

Proof. Suppose that D admits a Ulam constant K < KD.

(i) First, let Re rk > 0, 1 ≤ k ≤ n. Then,

KD =
1
|V|

∫ ∞

0

∣∣∣∣∣ n

∑
k=1

(−1)kVke−rkx

∣∣∣∣∣dx.

Let h(x) =
n
∑

k=1
(−1)kVke−rkx, x ∈ R. Take s ∈ X, ‖s‖ = 1, θ > 0 is arbitrary chosen,

and consider f : R→ X given by

f (x) =
h(x)

|h(x)|+ θe−x s, x ∈ R.

Obviously, the function f is continuous on R and ‖ f (x)‖ ≤ 1 for all x ∈ R. Let ỹ be
the solution of D(y) = f , given by

ỹ(x) =
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt (13)

with the constants

Ck = −(−1)n+k Vk
V

∫ ∞

0
f (t)e−rktdt, 1 ≤ k ≤ n.

The improper integrals in the definition of Ck 1 ≤ k ≤ n are obviously absolutely
convergent since ‖ f (x)‖ ≤ 1, x ∈ R, and Re rk > 0, 1 ≤ k ≤ n. Then,

ỹ(x) = − 1
V

n

∑
k=1

(
(−1)n+kVk

∫ ∞

0
f (t)e−rktdt

)
erkx

+
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt

= − 1
V

n

∑
k=1

(−1)n+kVkerkx
∫ ∞

x
f (t)e−rktdt

=
(−1)n+1

V

n

∑
k=1

(−1)kVk

∫ ∞

x
f (t)erk(x−t)dt.

Using the substitution x− t = −u, ỹ(x) becomes

ỹ(x) =
(−1)n+1

V

n

∑
k=1

(−1)kVk

∫ ∞

0
f (x + u)e−rkudu, x ∈ R. (14)
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Since f is bounded and Re rk > 0, 1 ≤ k ≤ n, it follows that ỹ(x) is bounded on R.
Furthermore, ‖D(ỹ)‖∞ ≤ 1, and the Ulam stability of D for ε = 1 with the constant K
leads to the existence of yH ∈ ker D, given by

yH(x) =
n

∑
k=1

Ckerkx, x ∈ R,

Ck ∈ X, 1 ≤ k ≤ n, with the property

‖ỹ− yH‖∞ ≤ K. (15)

If (C1, C2, . . . , Cn) 6= (0, 0, . . . , 0) we have, in view of the boundedness of ỹ,

lim
x→∞
‖ỹ(x)− yH(x)‖ = +∞, (16)

a contradiction with the existence of K satisfying (15). Therefore, C1 = C2 = · · · =
Cn = 0, and the relation (15) becomes

‖ỹ(x)‖ ≤ K, for all x ∈ R. (17)

Now let x = 0 in (17). We obtain, in view of (14),

1
|V|

∥∥∥∥∥
∫ ∞

0

(
n

∑
k=1

(−1)kVke−rku

)
f (u)du

∥∥∥∥∥ ≤ K,

or equivalently

1
|V|

∥∥∥∥∫ ∞

0
h(u) f (u)du

∥∥∥∥ =
1
|V|

∫ ∞

0

|h(u)|2
|h(u)|+ θe−u du ≤ K, ∀θ > 0. (18)

Let I(θ) =
∫ ∞

0
|h(u)|2

|h(u)|+θe−u du and I0 =
∫ ∞

0 |h(u)|du. We show that lim
θ→0

I(θ) = I0.

Indeed,

|I(θ)− I0| ≤
∫ ∞

0

∣∣∣∣ |h(u)|2
|h(u)|+ θe−u − |h(u)|

∣∣∣∣du

= θ
∫ ∞

0

|h(u)|e−u

|h(u)|+ θe−u du

≤ θ
∫ ∞

0
e−udu = θ, θ > 0.

Consequently, lim
θ→0

I(θ) = I0. Letting θ → 0 in (18), we have KD ≤ K, which is a

contradiction to the supposition K < KD.

(ii) The case Re rk < 0, 1 ≤ k ≤ n, follows analogously. Let h(x) =
n
∑

k=1
(−1)kVkerkx, x ∈ R,

and f be given by

f (x) =
h(−x)

|h(−x)|+ θex s,

for s ∈ X, ‖s‖ = 1, x ∈ R and θ > 0 be arbitrary chosen. Obviously, the function f
is continuous on R and ‖ f (x)‖ ≤ 1 for all x ∈ R. Let ỹ be the solution of D(y) = f ,
given by

ỹ(x) =
n

∑
k=1

Ckerkx +
n

∑
k=1

(−1)n+k Vk
V

erkx
∫ x

0
f (t)e−rktdt (19)
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with the constants

Ck = (−1)n+k Vk
V

∫ 0

−∞
f (t)e−rktdt, 1 ≤ k ≤ n.

Using a similar reasoning as in the previous case, we obtain

ỹ(x) =
(−1)n

V

∫ ∞

0

(
n

∑
k=1

(−1)kVkerku

)
f (x− u)du, x ∈ R.

Since f is bounded and Re rk < 0, 1 ≤ k ≤ n, it follows that ỹ(x) is bounded on R.
Furthermore, ‖D(ỹ)‖∞ ≤ 1 and the Ulam stability of D for ε = 1 with the constant K
leads to the existence of yH ∈ ker D, given by

yH(x) =
n

∑
k=1

C̃kerkx, x ∈ R,

C̃k ∈ X, 1 ≤ k ≤ n, such that
‖ỹ− yH‖∞ ≤ K. (20)

If (C̃1, C̃2, . . . ,̃ Cn) 6= (0, 0, . . . , 0) it follows that ỹ− yH is unbounded, a contradiction
to the existence of K satisfying (20).
Therefore, C̃1 = C̃2 = · · · = C̃n = 0, and the relation (20) becomes

‖ỹ(x)‖ ≤ K, for all x ∈ R. (21)

Now, let x = 0 in (21). We have

1
|V|

∥∥∥∥∥
∫ ∞

0

(
n

∑
k=1

(−1)kVkerku

)
f (−u)du

∥∥∥∥∥ ≤ K,

or equivalently

1
|V|

∥∥∥∥∫ ∞

0
h(u) f (−u)du

∥∥∥∥ =
1
|V|

∫ ∞

0

|h(u)|2
|h(u)|+ θe−u du ≤ K, ∀θ > 0. (22)

Let I(θ) =
∫ ∞

0
|h(u)|2

|h(u)|+θe−u du and I0 =
∫ ∞

0 |h(u)|du. The arguments used in the proof
of the previous case lead to lim

θ→0
I(θ) = I0. Letting θ → 0 in (22), we have KD ≤ K, a

contradiction to the supposition K < KD.
(iii) Consider Re rk > 0, 1 ≤ k ≤ p and Re rk < 0, p + 1 ≤ k ≤ n. Let

h1(x) =
n

∑
k=p+1

(−1)kVkerkx, h2(x) =
p

∑
k=1

(−1)kVke−rkx, x ∈ R.

Take an arbitrary θ > 0, s ∈ X, ‖s‖ = 1 and define

f (x) =


h1(−x)

|h1(−x)|+θex s, if x ∈ (−∞,−θ]

−h2(x)
|h2(x)|+θe−x s, if x ∈ [θ,+∞)

ϕ(x), if x ∈ (−θ, θ).

(23)

where ϕ : (−θ, θ) → X is an affine function chosen such that f is continuous on R.
Remark that ‖ f ‖∞ ≤ 1.
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ỹ(x) =
n

∑
k=1

Ckerkx +
1
V

n

∑
k=1

(−1)n+kVkerkx
∫ x

0
f (t)e−rktdt (24)

with the constants

Ck = −(−1)n+k Vk
V

∫ ∞

0
f (t)e−rktdt, 1 ≤ k ≤ p.

Ck = (−1)n+k Vk
V

∫ 0

−∞
f (t)e−rktdt, p + 1 ≤ k ≤ n.

Consequently,

ỹ(x) =
(−1)n

V

∫ ∞

0

(( n

∑
k=p+1

(−1)kVkerku
)

f (x− u)−
( p

∑
k=1

(−1)kVke−rku
)

f (x + u)
)

du.

Since f is bounded, taking account of the sign of Re rk, 1 ≤ k ≤ n, it follows that ỹ(x)
is bounded. The relation ‖D(y)‖∞ = ‖ f ‖∞ ≤ 1 and the stability of D for ε = 1 with
the Ulam constant K leads to the existence of an exact solution yH ∈ ker D given by

yH(x) =
n

∑
k=1

C̃kerkx, x ∈ R,

such that

‖ỹ− yH‖∞ ≤ K. (25)

For (C̃1, C̃2, . . . , C̃n) 6= (0, 0, . . . , 0), the solution yH is unbounded; therefore, the
relation (25) is true only for yH(x) = 0, x ∈ R. Consequently, relation (25) becomes

‖ỹ(x)‖ ≤ K, x ∈ R. (26)

For x = 0, we have ‖ỹ(0)‖ ≤ K. However,

ỹ(0) =
(−1)n

V

∫ ∞

0

(
h1(u) f (−u)− h2(u) f (u)

)
du

=
(−1)n

V

{∫ ∞

θ
h1(u) f (−u)du−

∫ ∞

θ
h2(u) f (u)du

}
+

(−1)n

V

∫ θ

0

(
h1(u) f (−u)− h2(u) f (u)

)
du

=
(−1)n

V

{∫ ∞

θ

|h1(u)|2
|h1(u)|+ θe−u du +

∫ ∞

θ

|h2(u)|2
|h2(u)|+ θe−u du

}
+

(−1)n

V

∫ θ

0

(
h1(u) f (−u)− h2(u) f (u)

)
du.

Analogous to the previous cases, it can be proven that if θ → 0, then

∫ ∞

θ

|h1(u)|2
|h1(u)|+ θe−u du 7−→

∫ ∞

0
|h1(u)|du∫ ∞

θ

|h2(u)|2
|h2(u)|+ θe−u du 7−→

∫ ∞

0
|h2(u)|du,

and ∫ θ

0

(
h1(u) f (−u)− h2(u) f (u)

)
du 7−→ 0,



Mathematics 2022, 10, 1412 11 of 14

in view of the relation

‖ f (u)‖ = ‖ϕ(u)‖ ≤ 1, u ∈ [−θ, θ].

Hence, letting θ → 0 in (26), we have KD ≤ K, which is a contradiction.

Theorem 3. If rk, 1 ≤ k ≤ n, are real and distinct roots of the characteristic equation and an 6= 0,
then the best Ulam constant of the operator D is

KD =
1

|
n
∏

k=1
rk|

=
1
|an|

. (27)

Proof. In [16], it is proven that D is Ulam stable with the Ulam constant KD = 1

|
n
∏

k=1
rk |

. We

show further that this is also the best Ulam constant of the operator D. Suppose that D
admits a Ulam constant K < KD. Let ε > 0 and

ỹ(x) =
ε

an
, x ∈ R.

Then, ‖D(ỹ)‖∞ = ε and since D is Ulam stable with the constant K, it follows that there
exists yH ∈ ker D such that

‖ỹ− yH‖∞ ≤ Kε. (28)

Clearly, if yH is not identically 0 ∈ X, then it is unbounded so relation (28) cannot
hold. Therefore, yH(x) = 0 for all x ∈ R and relation (28) becomes ‖ỹ‖∞ ≤ Kε, or KD ≤ K,
which is a contradiction.

The previous results lead to the following identity.

Proposition 1. If rk, 1 ≤ k ≤ n, are real distinct, nonzero numbers then

1
|r1r2 · · · rn|

= KD, (29)

where KD is given by (12).

Proof. For real and distinct roots rk, 1 ≤ k ≤ n, of the characteristic equation, the best
Ulam constant is given on one hand by relation (12), Theorem 2, and on the other hand by
relation (27) in Theorem 3.

Next, we obtain as well an explicit representation of the best Ulam constant for the
case of complex and distinct roots of the characteristic equation having the same imaginary
part.

Theorem 4. If the characteristic equation of D admits outside of the imaginary axis distinct roots
having the same imaginary part, then the best Ulam constant of D is given by

KD =
1

n
∏

k=1
|Re rk|

. (30)

Proof. Suppose that rk = ρk + iα, ρk ∈ R \ {0}, 1 ≤ k ≤ n, α ∈ R. Then, the Vandermonde
determinants become

V(r1, r2, . . . , rn) = ∏
1≤k<j≤n

(rj − rk) = ∏
1≤k<j≤n

(ρj + iα− ρk − iα) = V(ρ1, ρ2, . . . , ρn)
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and analogously

Vk(r1, r2, . . . , rk−1, rk+1, . . . , rn) = Vk(ρ1, ρ2, . . . , ρk−1, ρk+1, . . . , ρn), 1 ≤ k ≤ n.

On the other hand, for Re rk > 0, 1 ≤ k ≤ n, we have

|
n

∑
k=1

(−1)kVke−rkx| = |
n

∑
k=1

(−1)kVke−ρkxe−iα|

= |e−iαx||
n

∑
k=1

(−1)kVke−ρkx| = |
n

∑
k=1

(−1)kVke−ρkx|

and analogously for the other expressions in (10). Consequently, in view Theorem 2 and
Proposition 1, the best Ulam constant of D becomes

KD =
1

n
∏

k=1
|ρk|

.

Theorem 2 is an extension of the result given in [20] for distinct roots of the charac-
teristic equation. Indeed, the particular case n = 2 corresponds to the second-order linear
differential operator given by

D(y) = y′′ + a1y′ + a2y, a1, a2 ∈ C, (31)

and the best Ulam constant in this case is

KD =


1

|r1−r2|
∫ ∞

0 |e
−r1x − e−r2x|dx, if Re r1 > 0, Re r2 > 0,

1
|r1−r2|

∫ ∞
0 |e

r1x − er2x|dx, if Re r1 < 0, Re r2 < 0,
1

|r1−r2|

∣∣∣ 1
Re r1
− 1

Re r2

∣∣∣, if Re r1 · Re r2 < 0
(32)

An explicit representation of KD for the second-order linear differential operator with
real coefficients is given in the next theorem.

Theorem 5. If D(y) = y′′ + a1y′ + a2y, a1, a2 ∈ R \ {0}, then the best Ulam constant of the
operator is

KD =


1
|a2|

, if a2
1 − 4a2 ≥ 0,

1
a2

coth |a1|π
2
√

4a2−a2
1
, if a2

1 − 4a2 < 0.
(33)

Proof. Let δ = a2
1 − 4a2.

(i) If δ ≥ 0, then r1, r2 ∈ R and, in view of [20] (Theorem 3) and Vieta’s formulas,

KD =
1
|r1r2|

=
1
|a2|

.

(ii) If δ < 0, then r1,2 = α± iβ, α, β ∈ R, β 6= 0. Suppose first α > 0. Then,

KD =
1

2|β|

∫ ∞

0
e−αx|e−iβx − eiβx|dx

=
1

2|β|

∫ ∞

0
e−αx| − 2i sin βx|dx =

1
|β|

∫ ∞

0
e−αx| sin(|β|x)|dx.
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Now, letting |β|x = t in the above integral, taking account∫ ∞

0
e−px| sin x|dx =

1
1 + p2 coth

pπ

2
, p > 0,

we obtain

KD =
1
β2

∫ ∞

0
e−

α
|β| t| sin t|dt =

1
α2 + β2 coth

α

2|β|π =
1
a2

coth
|a1|π

2
√

4a2 − a2
1

.

We can prove this analogously for α < 0.

3. Conclusions

In this paper, we obtain the best Ulam constant for an n-order linear differential
operator with constant coefficients acting in a Banach space for the case of distinct roots of
the characteristic equation. This result gives an optimal evaluation of the difference between
an approximate solution and an exact solution of the equation associated to the differential
operator. Consequently, these results can be applied in the study of perturbations of a
dynamical systems governed by differential equations and in some branches of science as
engineering, mechanics, and economy.

It will be interesting to obtain a closed-form (if possible) for the best Ulam constant of
the n-order differential operator for the case of multiple roots of the characteristic equation.
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