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Abstract: The transmission rate of COVID-19 varies over time. There are many reasons underlying
this mechanism, such as seasonal changes, lockdowns, social distancing, and wearing face masks.
Hence, it is very difficult to directly measure the transmission rate. The main task of the present paper
was to identify the variable transmission rate (β1) for a SIR-like model. For this, we first propose a
new compartmental forced SEYNHRV-S differential model. We then drive the nonlinear differential
equation and present the finite difference technique to obtain the time-dependent transmission rate
directly from COVID-19 data. Following this, we show that the transmission rate can be represented
as a linear combination of radial kernels, where several forms of radial kernels are explored. The
proposed model is flexible and general, so it can be adapted to monitor various epidemic scenarios
in various countries. Hence, the model may be of interest for policymakers as a tool to evaluate
different possible future scenarios. Numerical simulations are presented to validate the prediction
of our SEYNHRV and forced SEYNHRV-S models, where the data from confirmed COVID-19 cases
reported by the Ministry of Health in Saudi Arabia were used. These confirmed cases show the
second wave of the infected population in Saudi Arabia. By using the COVID-19 data, we show that
our model (forced SEYNHRV-S) is able to predict the second wave of infection in the population in
Saudi Arabia. It is well known that COVID-19 epidemic data cannot be accurately represented by any
compartmental approach with constant parameters, and this is also true for our SEYNHRV model.

Keywords: contagion dynamics; time dependent transmission rate; COVID-19; forced SEYNHRV-S
model; radial kernel; finite difference method

MSC: 34A08; 37N30

1. Introduction

Throughout history, infectious diseases have impacted humanity, such as the flu,
smallpox, polio, plagues, AIDS, SARS, and MARS. Now, coronavirus disease 2019, which
is known as COVID-19, has been affecting humans since 2019. This is a serious pandemic
and is currently affecting the whole world. As of 6 September 2021, over 220 million people
worldwide have been diagnosed with COVID-19, and this number is increasing daily.
COVID-19 is transmitted in droplets from infected people through coughing or sneezing or
simply breathing them out [1].

The COVID-19 pandemic has created problems in public health systems and has led
to an economic slowdown of the economy around the world. The pandemic has disrupted
lives and has pushed hospital systems to their capacity. Governments have put in place
several preventive measures to control the transmission of the disease, including internal
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and external travel restrictions, school closures, mandated mask wearing, and partial or
complete lockdowns.

It is well known that the essential mathematical tools for analyzing the development
of epidemics are compartmental models. The predictions from these models can be used by
governments and policymakers to take adequate measures to prevent or control the spread
of a disease and to allocate economic resources. These models divide populations into
different compartments, and people may move between these compartments. Scientists
have studied these models extensively, and a significant number of papers have been
published on this subject in the short interval from the beginning of 2020 [2].

The first SIR (Susceptible (S), Infected (I), and Recovered (R)) model was originally
proposed in 1927 by Kermack and McKendrick [3], and since then, several generalizations
have been considered by several authors. For example, Ivorra et al. [4] developed a
θ–SEIHRD model, and they studied the particular case of China, obtaining good agreement
between the reported data and the prediction of their model. This group recently added
more compartments to their original model, called θ− ij−SVEIHQRD, and used COVID-19
data from Italy. They observed that vaccination alone might not be enough to avoid a new
wave of infection but may reduce the number of infections. More compartments have now
been added, making the models far more complex (see, for example, [5–8], to mention only
a few of the most recent models).

This article considered a flexible extension of the SEYNHR model, which incorporates
the temporal dynamics connected to the transmission rate parameter, which is one of
the most critical indicators for epidemiologists. This article also considered the effects
of vaccination on the epidemic spread. To do this, we extended the model by adding
a vaccinated people compartment, thus obtaining the SEYNHRV-S scheme. There are
many vaccine-related papers in the COVID-19 literature, in which several hypothetical
scenarios have been analyzed based on different prioritization policies, and we mentioned
one of them above. Other studies have also focused on combining vaccination with
nonpharmaceutical interventions [8,9]. It is also well known that the vaccination of more
than 60% of the population is enough for herd immunity. Mancuso et al. [10] used the
compartmental model to show that future waves of COVID-19 can be prevented in the U.S.
if one of the two vaccines (Pfizer or Moderna) offer a moderate level of cross-protection
against the variant (at least 67%). Moreover, Ngonghala et al. [11] considered a similar
problem to that considered herein, but they considered each wave with different parameters;
therefore, our study is more general. Another useful study, which is also similar to our
model, was that undertaken by Asamoah et al. [12,13]. They provided cost-effective
analysis, sensitivity assessment, and optimal economic evaluation of the model, but they
assumed a constant transmission rate.

The transmission rate is the key parameter to understanding the spread of COVID-19;
this is defined as the ratio of all possible contacts between susceptible and infected persons
that effectively result in a new infection per unit of time. The extraction, estimation, or
driving of the average transmission rate is a crucial challenge in the epidemiology of
contagious diseases. In practice, there are different factors that impact the transmission rate:
(i) the coefficient of susceptibility (wearing masks), (ii) virulence factors, (iii) the number of
contacts per unit of time (government policies), etc. [14].

In this article, we introduced a new forced SEYNHRV-S model, summarized in Figure 1,
including susceptible, exposed, symptomatic, asymptomatic, hospitalized, recovered, and
vaccinated compartments. This model consists of a total of seven compartments and
considers the impact of homestead isolation on the susceptible compartment. A similar
model was originally introduced in [15], but deterministic cases, vaccinated populations,
and the impact of homestead isolation on susceptible persons were not considered for a
constant infection rate. Moreover, it is well known that compartmental approaches with
constant parameters cannot represent COVID-19 data accurately. In order to overcome this
problem, some authors have used variable parameters as a function of time, assuming that
the infection rate is a function of the exponential or linear function of time, but we need
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a more general mathematical representation. In this study, we proved that the infection
rate can be represented as linear combinations of several forms of radial functions (kernels)
in time, and we also provided numerical simulations to justify our results for the forced
SEYNHRV-S model, where the data used are from COVID-19-confirmed cases reported by
the Ministry of Health in Saudi Arabia (MOH). The model calibration was carefully tested
by solving the constrained minimization problem using the weighted least square residuals
between the measured epidemic data and the model predictions.
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This paper is organized as follows: A detailed description of the model is presented in
Section 2. In Section 3, we provide mathematical analysis and theory for radial functions.
In Section 4, we derive nonlinear differential equations to obtain the time-dependent
transmission rate function and provide a numerical solution. In Section 5, we provide
a detailed numerical solution based on our new algorithm. Our original algorithm is
as follows: We first found a numerical solution of the time-dependent transmission rate
function; then, we proved that this can be represented by a linear combination of Gaussian
radial functions, where we used the data from Saudi Arabia as an example, but our method
can be applied to other countries with different COVID-19 data. We then solved the forced
SEYNHRV-S model, which predicts the second wave, as confirmed by the data from Saudi
Arabia. Some final remarks are presented in Section 5.

2. The Model

We considered the mathematical model with the presence of asymptomatic infections,
as in [15], where the total population of humans denoted by Q is subdivided into the
following groups: susceptible (S), exposed (E), symptomatic (Y), asymptomatic (N), hos-
pitalized (H), and recovered (R), collectively termed SEYNHRV-S, which are represented
in Figure 1 and related according to the following equations:
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dS
dt = A− (β1Y + β2N + β3H)(1− θ)S− µS− νS + ηR,
dE
dt = (β1Y + β2N + β3H)(1− θ)S− (α + µ)E,
dY
dt = α(1− γ)E− (ΦY + ε + µ1 + µ)Y + KN,
dN
dt = αγE− (ΦN + K + µ)N,

dH
dt = εY− (r + µ2 + µ)H,

dR
dt = ΦyY + ΦN N + rH − µR− ηR,
dV
dt = νS− µV,


(1)

with the initial conditions (S(0), E(0), Y(0), N(0), H(0), R(0), V(0) ) ≥ 0, where A rep-
resents the recruitment rate of the population; β1, β2, and β3 represent the transmission
rates; 0 < θ < 1 represents the homestead isolation rate of susceptible persons; µ represents
the natural death rate; 1/α and γ represent the mean latent period and the probability
of becoming asymptomatic after infection, respectively; the quantities 1/ΦY and 1/ΦN
represent the mean symptomatic and mean asymptomatic infectious periods, respectively;
µ1 and µ2 represent the death rate of symptomatic and hospitalized patients, respectively;
ε is the rate at which symptomatic patients become hospitalized; K is the rate at which
asymptomatic persons become symptomatic; and r represents the rate of recovered hos-
pitalized patients. In this model, η is the rate of the recovered population losing their
immunity against the virus and becoming susceptible again. It can also be viewed as a
factor that denotes the emergence of a mutated (and possibly more aggressive) variation of
the virus, against which, recovered individuals have no immunity or their immunity is not
good enough to protect them from the newly mutated virus. Meanwhile, the parameter
ν represents the vaccination rate. Note that the total population (Q(t)) in Equation (1) is
given by S(t) + E(t) + Y(t) + N(t) + H(t) + R(t) + V(t) = Q(t) for t ≥ 0. We also note
that θ is set to zero throughout this study, unless stated otherwise.

3. Mathematical Analysis

In this section, we discuss the non-negativity of the solution.

Theorem 1. For the given initial conditions (S(0), E(0), Y(0), N(0), H(0), R(0), V(0) ) > 0.
The solution of the system in the SEYNHRV model (1) is non-negative for all t > 0.

Proof. We proofed this theorem by using contradiction principles. If time τ > 0 does not
exist, at least one of the unknown functions S(τ), E(τ), Y(τ), N(τ), H(τ), R(τ), and
V(τ) are nonpositive. Now, to use the continuity of the solution, t0 must exist, such that at
least one of the unknown functions S(t0), E(t0), Y(t0), N(t0), H(t0), R(t0), and V(t0)
are equal to 0. Without losing the generality, we may assume that t0 is the minimal time for
this property.

(i) If S(t0) = 0, then the other unknown functions are non-negative at t0. Hence, we
obtained the following from the first differential equation in Equation (1):

dS
dt

∣∣∣∣
t=t0

= A + ψR > 0, (2)

which tells us that we have ε > 0, such that S(t) is strictly monotone, increasing on
(t0 − ε, t0 + ε).

Now, consider t2 ∈ (t0 − ε, t0). Then, S(t2) < S(t0) = 0, on the other hand, since
S(0) > 0, there exists t3 ∈ (0, t2) such that S(t3) = 0 by Bolzano’s theorem, which
contradicts the assumption of t0. Hence, S(t0) > 0.

(ii) If S(t0) > 0 and E(t0) = 0, then the rest of the state variables are non-negative at t0;
Then, we have:

dE
dt

∣∣∣∣
t=t0

= (β1Y(t0) + β2N(t0) + β3H(t0)) ≥ 0. (3)
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There are two cases:

(1) If at least one of the state variable is not zero, then:

dE
dt

∣∣∣∣
t=t0

> 0, (4)

which is a contradiction similar to (i).
(2) If all state variables are zero, then:

dE
dt

∣∣∣∣
t=t0

= 0. (5)

It is not difficult to show that E(t) = 0 for all t ≥ 0 is the solution with E(0) = 0. This
is a contradiction to the uniqueness of the solution, since E(0) > 0 and E(t0) = 0.

(iii) If S(t0) > 0, E(t0) > 0 and N(t0) = 0, then:

dN
dt

∣∣∣∣
t=t0

= αγE(t0) > 0, (6)

which is a contradiction similar to (i).
(iv) If S(t0) > 0, E(t0) > 0, N(t0) > 0, and Y(t0) = 0, then:

dY
dt

∣∣∣∣
t=t0

= α(1− γ)E(t0) + KN(t0), (7)

which is a contradiction similar to (i). Similarly, H(t0) = 0, R(t0) = 0, and V(t0) = 0
lead to a contradiction. Thus, S(t), E(t), Y(t), N(t), H(t), R(t) and V(t) are all
positive for t > 0.

Adding up all equations in (1) and conducting a little algebra yields:

dQ
dt

+ µQ ≤ A. (8)

Its solution Q(t) ≤ A
µ +

(
N(0)− A

µ

)
e−µt, since t ∈ (0, ∞), we have

0 < Q(t) ≤ max
{

A
µ , N(0)

}
= Â. Therefore, the set:

Ω =
{
(S, E, Y, N, H, R) ∈ R6

+ : 0 ≤ S(t) + E(t) + Y(t) + N(t) + H(t) + R(t) + V(t) ≤ Â
}

18, (9)

is a positively invariant set of system (1). We also note that there is no need to put a
restriction on the transmission rate as constant. Instead, it can be a function of time,
provided that they are non-negative. �

Radial Kernels (Functions)

Definition 1. Let Ω be a nonempty arbitrary set. A function F : Ω x Ω → F , i.e., R or C is
called a (real- or complex-valued) kernel on Ω.

If the kernel is real-valued, then the symmetric kernel can be defined. Now, this
definition translates F

(
., xj

)
into trial functions, using certain nodes or x1, x2, . . . , xN ⊂ Rd.

The kernel in the translation-invariant on Rd can be written as:

F(x, y) = ϕ(x, y), ∀ (x, y) ∈ Rd. (10)



Mathematics 2022, 10, 1501 6 of 17

One of the most important kernels is the radial kernel, which has important properties.
The radial kernel (function) is defined as follows:

Definition 2 ([16–18]). The function ϕ : Rd → R is radial if a univariate function exists
Π : [0, ∞) → R , such that:

ϕ(x) = Π(r), r = ‖ x ‖2.

using the set of distinct nodal points as {x1, x2, . . . , xN} ⊆ Ω ⊂ Rd and the corresponding
functions fi ∈ R, i = 1, . . . , N for interpolation. We took S : Rd → R to be a multivariate
function. The approximation to S in terms of the radial kernel ϕ can be given in the following form:

S(x) =
N

∑
i=1

λi ϕ(ri), (11)

where ri = ‖ x− xi ‖2. We now describe how to find the unknown functions λi, i = 1, 2, . . . , N;
using each nodal point in the above (11), we obtained the following system of linear algebraic
equations:

AY = f , (12)

where the coefficient matrix is:

A =


ϕ‖ x1 − x1 ‖2 ϕ‖ x1 − x2 ‖2 . . . ϕ‖ x1 − xN ‖2
ϕ‖ x2 − x1 ‖2 ϕ‖ x2 − x2 ‖2 . . . ϕ‖ x2 − xN ‖2

..
ϕ‖ xN − x1 ‖2

..

..
ϕ‖ xN − x2 ‖2

..

..
ϕ‖ xN − xN ‖2

, Y =


λ1
λ1
.
.

λN

, f =


S(x1)
S(x2)

.

.
S(xN)

. (13)

Once we obtained λi, i = 1, 2, . . . , N, we substituted it into (11) and obtained an
approximate solution of S at the given points. For a unique solution, the system in (12)
must be well defined, i.e., the coefficient matrix must be invertible. From [16–18], it is
known that if the radial function is strictly positive and definite, this provides invertibility
in the coefficient matrix. The definition of a strictly positive property is as follows:

Definition 3 ([18]). A complex-valued continuous even function ϕ is called a positive definite on
Rd at different given points {x1, x2, . . . , xN} ∈ Rd if:

N

∑
j=1

N

∑
i=1

ζiζ j ϕ
(
xi − xj

)
≥ 0, ζ = [ζ1, . . . . . . , ζN ]. (14)

Moreover, the function is called a strictly positive definite on Rd if the quadratic form
(15) is zero only for ζ ≡ 0. Some of the most common RBFs (radial base functions) are the
following:

• The Gaussian (GA): ϕ(r) = exp
(
−(εr)2

)
;

• The Laguerre–Gaussian (LG): ϕ(r) =
(
2− r2)exp

(
−r2);

• The inverse quadratic (IQ): ϕ(r) = 1
(εr)2+1

;

• The generalized inverse multiquadric (GIMQ): ϕ(r) = 1

((εr)2+1)
i
2

, i . . . , 2, . . . .

Amongst these, the Gaussian is the most popular function because it has attractive
mathematical properties, and its hill-like shape is easy to control with parameter σ.
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4. Forced SEYNHRV-S Model

The prevention measures and variants of COVID-19 cause changes in the value of
the transmission rate (βi, i = 1, 2 and 3) and possibly the other parameters involved in
the modeling; moreover, the COVID-19 pandemic data show more than one wave, which
indicates that the transmission rates must be represented as a function of time. Herein, we
considered the forced SEYNHRV-S model, where the infection rates are a function of time.
The model parameters are defined here as piecewise constants, except for the transmission
rate, which is a continuous function of time that made our model fit COVID-19 data. In
the literature, there are several forms of transmission rates [19]. In this study, since we
only had data for the symptomatic population, we showed that the transmission rate for
the symptomatic population can be represented as a linear combination of the Gaussian
radial function:

β1(t) =
n

∑
i=1

ciexp
(
−σi(t− ti)

2
)

, t ∈ [0, ∞). (15)

In [20], the authors considered exactly the same equation in terms of statistical tools,
whereas we used real COVID-19 data from Saudi Arabia. We first smoothed the given
data and used the nonlinear differential equation, derived below in Equation (17), and
we showed that our numerical solution can be represented in the form of Equation (15).
This is the main difference between the work here and the approach in [20]. In this study,
we provide mathematical proof and also assume that β2(t) ≈ β0

2 and β3(t) ≈ β0
3. Table 1

indicates the list of parameters used in this study.

Table 1. Model parameters used in our model and their respective definitions.

Parameter Description Reported Value Experimental Value

β0
2

Transmission rate of
the asymptomatic

population
(1 × 108, 2 × 106) (0, 0.025)

β0
3

Transmission rate of
the hospitalized

population
(1 × 109, 2 × 107) (0, 0.0025)

µ
Natural death rate

3.6593 × 10−5 (Saudi Arabia)

α Incubation period (1/14, 1/21) (1/8, 1/6)

γ Fraction of the individuals ultimately becoming infected

1/ΦY
Mean symptomatic

infectious period (14, 21) (8, 16)

1/ΦN
Mean symptomatic

infectious period (14, 21) (8, 16)

ν Vaccination rate—data taken from Saudi Arabia

ψ Rate of recovered individuals losing their immunity and returning to S

ε
Rate of symptomatic
individuals becoming

hospitalized
(0.1, 0.5) (0.01, 1)

K
Rate of asymptomatic
individuals becoming

symptomatic
(0.05, 0.5) (0.01, 1)

r
Rate of recovered

individuals becoming
hospitalized patients

(0.05, 0.5) (0.01, 1)

µ2
Death rate of

hospitalized patients (0.05, 0.5) (0.01, 1)
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Driving the Transmission Rate from the Infected Population and a Numerical Solution

Since we only had data for current symptomatic population cases and η = 0 through-
out this study, nonzero cases were investigated, and we could reduce the system in
Equation (1) to a simpler form:

dS
dt = A− β1(t)YS− (µ + ν)S,

dE
dt = β1(t)YS− (α + µ)E,

dY
dt = αE− (ΦY + ε + µ1 + µ)Y.

 (16)

Since E(t) ≥ 0, we should have dY
dt + (ΦY + ε + µ1 + µ)Y > 0, and since β1(t)YS > 0,

we should have dE
dt + (α + µ)E > 0, or using the last equation of the system above, we can

obtain d2Y(t)
dt2 + (α + µ + π)

dY(t)
dt + π(µ + α)Y(t) > 0.

After lengthy but straightforward calculations, solving S(t) from the second equation
of Equation (16), and substituting it into one of the above equations in Equation (16), we
found (as in [21]) that:

M(Y(t))
dβ1(t)

dt
+ N(Y(t))β2

1(t) + P(Y(t))β1(t) = 0. (17)

This is the Bernoulli differential equation, where:

M(Y(t)) = −Y(t)
α

(
d2Y(t)

dt2 + (α + µ + π)
dY(t)

dt
+ π(µ + α)Y(t)

)
, N(Y(t)) = −Y(t)M(Y(t))− AαY2(t), (18)

P(Y(t)) = −M(Y(t))(µ + ν) +
Y(t)

α

(
(α + µ + π)

d2Y(t)
dt2 +

d3Y(t)
dt3

)
− 1

α

(
(α + µ + π)

(
dY(t)

dt

)2
+

dY(t)
dt

d2Y(t)
dt2

)

and:
π = ΦY + ε + µ1 + µ

Theorem 2. For a given positive function f (t), π > 0, α > 0, µ > 0, ν > 0, β10 > 0 and
T > 0, K > 0 exists, such that if β10 < K, there is the solution β1(t) with β1(0) = β10, such

that Y(t) = f (t) for 0 < t ≤ T if (and only if) d f
dt + (ΦY + ε + µ1 + µ) f > 0 and d2 f (t)

dt2 +

(α + µ + π)
d f (t)

dt + π(µ + α) f (t) > 0. This solution is also unique (see, for example, [20]).

Since an analytical solution was not possible, we needed a numerical method to solve
Equation (17); here, we used the finite difference technique. We then tried to compute a
grid function consisting of the values X1,, X2, . . . , Xm, where Xi is our approximation to the
solution 1/β1(ti); here, ti = ih and h = ti+1 − ti is the step size, and we used the centered

finite difference to approximate dY(t)
dt , d2Y(t)

dt2 and d3Y(t)
dt3 . We replaced dY(t)

dt , dβ1(t)
dt , d2Y(t)

dt2 , and
d3Y(t)

dt3 with the centered finite difference approximation:

Dyj =
yj+1 − yj−1

2h
, D2yj =

yj+1 − 2yj + yj−1

h2 , D3yj =
yj+2 − 2yj+1 + 2yj−1 − yj−2

2h3 ,

and dX(t)
dt with forward difference approximation:

DXi =
Xi+1 − Xi

h
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We then obtained following the algebraic equations after changing the dependent
variable from the nonlinear differential Equation (17):

−yi
α [(−2 + π(τ + α))yi +

(
1− 1

2 α− 1
2 τ − 1

2 π
)

yi−1

+
(

1 + 1
2 α + 1

2 τ + 1
2 π
)

yi+1](Xi+1 − Xi)

+
y2

i
α [(−2 + π(τ + α))yi +

(
1− 1

2 α− 1
2 τ − 1

2 π
)

yi−1

+
(

1 + 1
2 α + 1

2 τ + 1
2 π
)

yi+1 − Aα] +
[

1
α

(
− τ

4 −
π
4 + 1

2 −
α
4

)
y2

i

+
(

1
α

(
τ
2 + π

2 + α
2
)
yi+1 +

(
− τ

2 −
µπ
2α + 1− τ2

2α + 2τ
α + π

α

)
yi

)
yi−1

+ 1
α

(
− τ

4 −
π
4 −

1
2 −

α
4

)
y2

i+1 +
(

τ
2 + τπ

2α + 1 + τ2

2α + 2τ
α + π

α

)
yi yi+1 + (τπ − 2

+ τ2π
2α −

4τ
α −

2π
α

)
y2

i +
1

2α (yi+2 − yi−2)yi

]
Xi = 0, i

= 1, .., N,

(19)

where X(t) = 1
β1(t)

. We used the data provided by the Ministry of Health in Saudi Arabia

for daily infection cases. Mathematically, there are infinite choices of X(0) = 1
β1(0)

, and we
used some well-known values [22].

We can give the stability and convergence of the Euler method for a numerical solution
of Equation (17) using the following theorem. First, after changing the dependent variable
to x(t) = 1

β1(t)
, the resulting equation can be written in a more compact form:

dx(t)
dt

= f
(

Y(t),
dY(t)

dt
,

d2Y(t)
dt2 ,

d3Y(t)
dt3 , x(t)

)
, x(t0) =

1
β1(0)

, (20)

Additionally, utilizing the above finite differences in Equation (5), we can obtain:

xj+1 = xj + h f
(

Yj,
Yj+1−Yj−1

2h + O
(
h2), Yj+1−2Yj+Yj−1

h2

+O
(
h2), Yj+2−2Yj+1+2Yj−1−Yj−2

2h3 + O
(
h2), xj

)
+ h2

2 x′′ (ξi)

If we drop all of the terms with orders of h2 and higher, we can obtain:

Xj+1 = Xj + hϕ

(
yj,

yj+1−yj−1
2h , y(ti+1)−2y(ti)+y(ti−1)

h2 ,
y(ti+2)−2y(ti+1)+2y(ti−1)−y(ti−2)

2h3 , Xj

)
, X(t0) = X0 =

1
β1(0)

.

Theorem 3. Suppose the initial-valued problem:

dx(t)
dt

= f
(

Y(t),
dY(t)

dt
,

d2Y(t)
dt2 ,

d3Y(t)
dt3 , x(t)

)
, x(t0) =

1
β1(0)

, (21)

is approximated by a one-step method in the form of:

xj+1 = xj + hϕ

(
yj,

yj+1−yj−1
2h , y(ti+1)−2y(ti)+y(ti−1)

h2 ,
y(ti+2)−2y(ti+1)+2y(ti−1)−y(ti−2)

2h3 , Xj

)
.

Assume that ϕ
(

X, h, y(t), dy(t)
dt , d2y(t)

dt2 , d3y(t)
dt3

)
is continuous and satisfies the Lipschitz

condition in variable X with the Lipschitz constant K on the set:

D = {(t, X, h) : a ≤ t ≤ b and−∞ < X < ∞, 0 ≤ h ≤ h0 } . (22)

Then:
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(i) The method is stable;
(ii) The differences method is convergent if it is equivalent to

ϕ
(

X, h, y(t), dy(t)
dt , d2y(t)

dt2 , d3y(t)
dt3

)
= f

(
x, Y(t), dY(t)

dt , d2Y(t)
dt2 , d3Y(t)

dt3

)
for all a ≤ t ≤ b;

(iii) If the ζ function of h exists, then for each, j = 1, 2, . . . , N, the local truncation error
ζi(h) satisfies

∣∣ζ j(h)
∣∣ ≤ ζ(h) whenever 0 ≤ h ≤ h0, then:

∣∣x(tj
)
− Xj

∣∣ ≤ ζ(h)
L

eL(tj−a)

Proof. See, for example, Gear’s book [23] (pp. 57–58). We also note that after four steps, we
also used the fourth-order Adams–Bashforth technique and compared the results of both
methods. We found no significant difference between the two methods. �

5. Methodology

Saudi Arabia has a population of over 34 million people, and non-Saudis form approx-
imately 37% of the total population. Saudi Arabia has a well-established and advanced
healthcare system that is offered for free to all residents, and Saudi Arabia might have
been one of the first countries that took early actions to prevent and control the spread of
COVID-19.

The Saudi Ministry of Health (MOH) publishes daily COVID-19 data that include
the number of total cases, recoveries, mortalities, critical cases, and active cases. It also
provides free doses of the COVID-19 vaccine and conducts daily examinations.

Model Calibration

We adopted a similar approach to [22] for model calibration and to adjust our model
parameters. Parameters such as recovery rates (1/ΦY, 1/ΦN) and the incubation period
(α) are well studied in the literature, so we aimed to calibrate the parameters that are not
readily available in previous works (such as β1(t), β2(t), and β3(t)) or that are unique
to our presented model. We also included variables that are more sensitive to the output
variable, such as γ. Since there are no available data to estimate β2(t) and β3(t), we
assumed that they were constant. Finding the transmission rate β1(t) for the symptomatic
population was carried out as explained above.

6. Results

Based on laboratory data published in [22], the population of asymptomatic indi-
viduals is much higher than that estimated before, with the average SAR-CoV-2-positive
infection rate being more than ten times the reported value. To examine different theories of
the spread of COVID-19 and to validate their possibilities, we tried to capture the curvature
of the line representing the reported number of infections as much as possible. This was
achieved by introducing the new technique described above. From Equation (1), the ratio
between the symptomatic and asymptomatic populations is dictated by:

Y
N

=
α(1− γ)

αγ
=

1
γ
− 1. (23)

The selection of value γ is important, and our meaningful results suggest that the
asymptomatic population is a third of the symptomatic population, which support the
findings in [22].

One of the most critically important parameters that affects compartmental modeling is
the initial susceptible population, S(0). What makes the COVID-19 pandemic unique is the
abundance of information and public awareness about this virus. When the first infections
in many communities were encountered, a significant portion of the population was already
on high alert and practiced self-isolation. Thus, the initial susceptible population must be
investigated in detail.
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Since we only had data for symptomatic cases, we derived the transmission rate (B(t))
for the symptomatic population. We first solved Equation (18) to obtain the transmission
rate (B(t)), where we used the COVID-19 data of Saudi Arabia, after using the exponential
smoothing technique. The total numbers of COVID-19 and active cases are given in
Figure 2a,b. The data in Figure 2a were used in Equation (19), and we solved Equation
(19) for Bi, i = 1, 2, . . . N. We found that the transmission rate (B(t)) increased in the first
10 days and reached the maximum value on day 10, and then greatly decreased during
the first 40 days, as seen in Figure 3. After 40 days, we saw oscillation and a decrease in
the value of the transmission rate (B(t)) until 320 days (see Figure 4). We then suddenly
found an increase in the value of the transmission rate (B(t)), which reached a peak point
at around 350 days. After that, the transmission rate began to decrease until day 370, after
which it formed another peak at around 405 days (see Figure 4). From this day and on, the
transmission rate (B(t)) decreased with small oscillations (see Figure 5). The previously
mentioned figures show that the transmission rate (B(t)) is not constant, but it is rather
a complex function of time. This comprehensive and elegant numerical solution has not
been given before. Of course, we can use numerical values of the transmission rate [24] in
our model (Equation (1)) to obtain numerical solutions, which will be undertaken in our
forthcoming paper. In this study, we explored the radial function to fit the discrete values of
the transmission rate, which was obtained from our numerical solution of the transmission
rate (B(t)). It is extremely important to obtain analytical approximation, because other
researchers can readily use it. After examining all possibilities in Definition 3, we found
that the linear combination of the Gaussian radial function is more suitable than the others
to represent the numerical values of the transmission rate (B(t)). We need a simple yet
effective representation of the transmission rate function. We can write large a number of
linear combinations of the Gaussian radial function and can obtain the constant to fit the
numerical results, which will provide a satisfactory small error, as stated earlier. We need a
simple analytical representation for the transmission rate (B(t)). We carried out such an
approximation for the transmission rate B(t) as follows:

β1(t) ≈ B(t) = 6.35555554.10−8
(

1 + 5e−0.01(t−10)2
+ 0.3e−0.001(t−350)2

+ 0.48e−0.001(t−450)2
)

,

β0(t) ≈ 9.35555554.10−8 ,
(24)

which can be seen in Figure 6b. When comparing the actual and numerical values, we
can see a similar structure in Figure 6a. We compared the prediction of the model with
the constant transmission rate and the other models, where the transmission rate was a
function of time. The function (β1(t)) was a linear combination of the Gaussian radial
function and the real published COVID-19 data of Saudi Arabia, where the value of the
other parameters involved in the modeling were the same as before. Figure 7 shows
the active COVID-19 cases of Saudi Arabia, where the asterisks represent the real data,
and the continuous line represents the model prediction for the current active cases for
symptomatic individuals. Since the government of Saudi Arabia implemented many rules
to prevent the spread of COVID-19, such as a lockdown for almost three months, a strict
curfew, the requirement of wearing face masks, and social distancing, these must be taken
into account for the initial suspected population. Because of these reasons, we took the
initial susceptible population as S(0) = 3418169

5 and ν = 0.0025, so that after 300 days,
approximately 75% of the total population became vaccinated. Figure 8 shows the model
prediction of the symptomatic, asymptomatic, and hospitalized population evaluation
with time, where the continuous, dashed, and dashed/dotted lines represent the current
active cases for symptomatic, asymptomatic, and hospitalized individuals, respectively.
We can also see a second wave for the current active cases of the asymptomatic and
hospitalized populations as expected, where the time-dependent transmission rate B(t)
for the symptomatic population is taken as:

β1(t) ≈ B(t) = 6.35555554.10−8
(

1 + 5e−0.01(t−10)2
+ 3e−0.001(t−350)2

+ 4.8e−0.001(t−450)2)
. (25)
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Figure 2. (a) Total COVID-19 cases in Saudi Arabia. (b) Current active cases in Saudi Arabia (https:
//www.worldometers.info/coronavirus/country/saudi-arabia/ accessed on 18 December 2021).
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Figure 6. Time development of the transmission rate for the symptomatic population: (a) numerical
results; (b) approximation by linear combinations of Gaussian radial functions.
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This is exactly in the form of Equation (22), where the only difference is that the second
and third Gaussian radial functions were multiplied by 10. Of course, we could find a
better approximation if we used more Gaussian radial functions, but we wanted to use
the derived transmission rate function from the real COVID-19 data. We now assumed
that β1(t) = 6.35555554.10−8 is a constant and all parameters were the same as before,
and we compared the model prediction with real COVID-19 data, as in Figure 9. We can
see that those compartmental models with constant parameters cannot be used to model
the COVID-19 epidemic. Let us now examine the effect of vaccination on the spread of
COVID-19 disease. Figures 10 and 11 were generated with the same parameters as in
Figures 7 and 8, except the vaccination rate (ν = 0). Figures 10 and 11 represent the time
development of the suspected, recovered, symptomatic, asymptomatic, and hospitalized
populations, respectively. Figure 11 shows that the effect of the COVID-19 pandemic would
have been much more severe without vaccination.
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7. Discussion

We presented a new technique to compute the time-dependent transmission rate from
the published COVID-19 data from Saudi Arabia. To obtain the best optimized initial value
β1(0), we ran our model with a constant coefficient several times for several constants
β1; we then selected the best suitable value as the initial value of the transmission rate.
Recently, Pollicott et al. [21] derived the same nonlinear differential functions; they tried
to represent the discrete data using analytical functions, but it is well known that one can
use any orthogonal function or polynomial approach given the discrete data within the
required error. One can also increase the number of orthogonal polynomials or the degree
of polynomials if necessary. The technique they used was not suitable for COVID-19 data;
instead, we approached each derivative using the finite difference technique, and in this
way, we obtained novel results.

The crucial part of this paper showed that we can approach discrete values of the
transmission rate in terms of linear combinations of Gaussian radial functions; we then ran
our model to show the second wave as seen in real data.
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