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Abstract: Arithmetic Optimization Algorithm (AOA) is a physically inspired optimization algorithm
that mimics arithmetic operators in mathematical calculation. Although the AOA has an acceptable
exploration and exploitation ability, it also has some shortcomings such as low population diversity,
premature convergence, and easy stagnation into local optimal solutions. The Golden Sine Algorithm
(Gold-SA) has strong local searchability and fewer coefficients. To alleviate the above issues and
improve the performance of AOA, in this paper, we present a hybrid AOA with Gold-SA called
HAGSA for solving industrial engineering design problems. We divide the whole population into
two subgroups and optimize them using AOA and Gold-SA during the searching process. By
dividing these two subgroups, we can exchange and share profitable information and utilize their
advantages to find a satisfactory global optimal solution. Furthermore, we used the Levy flight
and proposed a new strategy called Brownian mutation to enhance the searchability of the hybrid
algorithm. To evaluate the efficiency of the proposed work, HAGSA, we selected the CEC 2014
competition test suite as a benchmark function and compared HAGSA against other well-known
algorithms. Moreover, five industrial engineering design problems were introduced to verify the
ability of algorithms to solve real-world problems. The experimental results demonstrate that the
proposed work HAGSA is significantly better than original AOA, Gold-SA, and other compared
algorithms in terms of optimization accuracy and convergence speed.

Keywords: Meta-heuristics; arithmetic optimization algorithm; golden sine algorithm; hybrid
optimization algorithm; industrial engineering design problem

MSC: 68T20

1. Introduction

The main optimization process can be considered to obtain the best solution among
all potential solutions according to the various NP-hard and engineering problems. Many
real-world problems, such as image processing [1–3], engineering design [4–8], and job
shop scheduling [9], can be expressed as optimization problems and solved using opti-
mization techniques. In the past two decades, the complexity of real-world optimization
problems has increased sharply. However, the traditional (mathematical) methods cannot
find the optimal solution or near-optimal solution in many cases [10]. Therefore, many re-
searchers have turned their attention to meta-heuristic algorithms (MAs). Unlike traditional
techniques, MAs are flexible and reliable in solving complex optimization problems [11].
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Over the past few decades, various MAs had been proposed according to natural
phenomena, physical principles, biological behaviors, etc. [12]. MAs can be separated
into three main categories (as shown in Figure 1): (1) swarm intelligence-based methods,
(2) physics-based methods, and (3) evolution-based methods. The first kind of method
mimics the biological entities in nature that have collaboration behavior to finish hunt-
ing, migrating, etc. [13]. Developed algorithms in this category are Whale Optimization
Algorithm (WOA) [14], Particle Swarm Optimization (PSO) [15], Grey Wolf Optimizer
(GWO) [16], Salp Swarm Algorithm (SSA) [17], Ant Lion Optimization (ALO) [18], Moth
Flame Optimization (MFO) [19], Slime Mould Algorithm (SMA) [20], Harris Hawks Opti-
mization (HHO) [21], Reptile Search Algorithm (RSA) [22], and Aquila Optimizer (AO) [23].
The second type of method mainly simulates the physical phenomena of the universe
and methods designed based on these laws are Multi-Verse Optimizer (MVO) [24], Sine
Cosine Algorithm (SCA) [25], Arithmetic Optimization Algorithm (AOA) [26], Golden
Sine Algorithm (Gold-SA) [27], Henry Gas Solubility Optimization (HGSO) [28], Gravity
Search Algorithm (GSA) [29], Atom Search Optimization (ASO) [30], and Equilibrium Opti-
mizer (EO) [31]. The evolution-based methods stem from the biological evolution process
in nature. Some of the well-known algorithms developed by this behavior are Genetic
Algorithm (GA) [32], Bio-geography-Based Optimizer (BBO) [33], Differential Evolution
(DE) [34], and Evolution Strategy (ES) [35]. However, considering the No-Free-Lunch (NFL)
theorem [36], no specific optimization algorithm can solve all real-world problems, which
motivates us to design more efficient methods to solve them well.
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The Arithmetic Optimization Algorithm (AOA) [26] is a physics-based and gradient-
free method proposed by Abualigah et al. in 2021. It originated from the commonly used
mathematical operators including Addition (+), Subtraction (−), Multiplication (×), and
Division (÷). This approach integrates these four operators to realize different search
mechanisms (exploration and exploitation) in the search space. Specifically, AOA uses
the high distribution characteristics of (× and ÷) operators to realize the exploration
approach. In the same way, the (+ and −) operators are used to obtain the high-dense
results (exploitation approach). However, some researches denote that the original AOA
has some defects, such as it easily suffering from a local optimal and slow convergence
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speed. Therefore, many variant versions of AOA were proposed to improve its searchability.
For example, Azizi et al. [37] proposed an improved AOA based on Levy flight to determine
the steel structure’s optimal fuzzy controller parameters. Agushaka et al. [38] proposed an
improved version of AOA called nAOA, which integrated the high-density values and beta
distribution to enhance searchability. An Adaptive AOA, called APAOA, was proposed by
Wang et al. [39]. In the APAOA, the parallel communication strategy was used to balance
the exploration and exploitation ability of the original AOA. Another improved AOA that
utilized a hybrid mechanism, named DAOA, was proposed by Abualigah et al. [40]. In
DAOA, the differential evolution technique was integrated to enhance the local search
ability of AOA, and to help it to jump out of the local optimal solution. Elkasem et al. [41]
presented an eagle strategy AOA called ESAOA. In this work, the eagle strategy is used to
avoid premature convergence and increase the population’s efficacy to obtain the optimal
solution. Sharma et al. [42] introduced an opposition-based AOA namely OBAOA for
identifying the parameters of PEMFCs. The opposition-based learning strategy is used to
promote the algorithm to find the high-precision solution and improve the convergence
rate. Abbassi et al. [43] developed an improved AOA to determine the solar cell parameters.
In this work, the new operator called narrowed exploitation was used to narrow the
search space and focus on the potential area to find the optimal or near-optimal solutions.
Zhang et al. [44] proposed an improved AOA called IAO, which integrated the chaotic
theory. The chaotic theory improves the algorithm to escape the optimal solution with
a suitable convergence speed. Moreover, the IAO was used to optimize the weight of
neural network.

Given the above discussion, some of the variants of AOA have strong searchability,
but they cannot converge to the optimal solution at an appropriate time, i.e., they still easily
fall into the local optimal solution. Furthermore, by considering the NFL theorem and
increasingly complex real-world problems, the development of new and improved versions
of MAs is ongoing. In general, a single optimizer also exposes some shortcomings; for
example, it neglects to share useful information between populations, which may cause the
algorithm to have insufficient search capability. Therefore, many researchers utilized the
characteristic of two Mas, i.e., designing a hybrid algorithm to improve performance and
applying it to solve complex real-world optimization problems. Unlike the single algorithm,
the hybrid algorithm alleviates these shortcomings and increases diversity, and shares more
helpful information within the population. Thus, the hybrid algorithm has more powerful
searchability than the single algorithm. Gold-SA is a physics-based technique with a good
exploitation ability to find the near-optimal solution. Furthermore, Gold-SA also has fewer
parameters and is easy to program. Motivated by these considerations, in this paper, we
propose an improved hybrid version of AOA called HAGSA that combines both AOA
and Gold-SA. The proposed method uses Gold-SA to increase the population diversity
and share more useful information between search agents. At the same time, Levy flight
and a new strategy called Brownian mutation are used to enhance the exploration and
exploitation capability of hybrid algorithms, respectively. To evaluate the effectiveness of
the proposed method, we selected the CEC 2014 competition test suite as the benchmark
function and compared the results with seven well-known methods, including AOA and
Gold-SA. In addition, five classical engineering design problems, including the car side
crash design problem, pressure vessel design problem, tension spring design problem,
speed reducer design problem, and cantilever beam design problem, were also used to
evaluate HAGSA’s ability to solve real-world problems. Experimental results demonstrate
that the proposed work can provide complete results and achieve a faster convergence
speed compared to other optimizers. The main contributions of this paper are as follows:

• We propose a new hybrid algorithm based on the Arithmetic Optimization Algorithm
and Golden Sine Algorithm (HAGSA).

• Levy flight and a new mechanism called Brownian mutation are carried out to enhance
the exploration and exploitation ability of the hybrid algorithm.
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• The performance of the proposed work is assessed on the CEC 2014 competition test
suite and five classical engineering design problems.

• Several well-known MAs are compared with the proposed method.
• Experimental results indicate that HAGSA has more reliable performance than that of

other well-known algorithms.

The remainder of this paper is structured as follows: Section 2 briefly illustrates the
concepts of AOA and Gold-SA. Section 3 describes Levy flight, Brownian mutation, and the
details of HAGSA. Section 4 presents and analyzes the experimental results of the proposed
work. Finally, this paper’s conclusion and potential research directions are discussed in
Section 5.

2. Preliminaries

This section introduces the inspiration and mathematical model of the original AOA
and Gold-SA, in turn.

2.1. Arithmetic Optimization Algorithm (AOA)

The theory of AOA is described in this section. The main inspiration of AOA originates
from the use of arithmetic operators such as Addition (A), Subtraction (S), Multiplication
(M), and Division (D) to solve optimization problems [33]. In the following subsections, we
discuss the different influences of these operators on optimization problems and the search
method of AOA, as shown in Figure 2.
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2.1.1. Initialization Phase

Like other meta-heuristic optimization algorithms, AOA is based on population be-
havior. The set of a population X containing N search agents is illustrated in Equation (1).
In the matrix, each row indicates a search agent [33].
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X =



x1,1 · · · x1,j x1,n−1 x1,n
x2,1 · · · x2,j · · · x2,n
· · · · · · · · · · · · · · ·

...
...

...
...

...
xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n


(1)

After generating the population, the fitness of each search agent is computed, and the
best one will be determined. Next, AOA decides to perform exploration or exploitation
through the Math Optimizer Accelerated (MOA) value, which is defined as follows:

MOA(t) = Min + t×
(

Max−Min
T

)
(2)

where MOA(t) indicates the value of MOA at the t-th iteration. Min and Max denote the
minimum and maximum values of the accelerated function, respectively. t denotes the
current iteration, and T denotes the maximum iteration. The search agent performs the
exploration phase when r1 > MOA, otherwise the exploitation phase will be executed.

2.1.2. Exploration Phase

In this section, the exploration phase of AOA is described. According to the main
inspiration, the Division (D) and Multiplication (M) operators are introduced to achieve
high distributed values or decisions [33]. The Division and Multiplication operators can be
mathematically described as follows:

Xi,j(t + 1) =

{
Xbest,j(t)×MOP× ((UBj − LBj)× µ + LBj), r2< 0.5

Xbest,j(t)÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), otherwise
(3)

where Xi,j(t + 1) denotes the jth position of the ith solution in the next iteration. Xbest,j(t)
denotes the best solution obtained so far in the jth position. LBj and UBj denote the lower
and upper boundaries, respectively, of the search space at the jth dimension. ε is a small
integer number, and r2 denotes the random value between 0 and 1. µ = 0.5, which represents
the control function. Moreover, the Math Optimizer can be calculated as follows:

MOP(t) = 1− t1/α

T1/α
(4)

where α = 0.5 denotes the dynamic parameter, which determines the accuracy of the
exploitation phase throughout iterations.

2.1.3. Exploitation Phase

In this section, we discuss the exploitation phase of AOA. In contrast to the D and
M operator, AOA utilizes the Addition (A), and Subtraction (S) operators to derive high
density solutions because (S and A) can easily approach the target region due to their low
dispersion [33]. The mathematical formula can be described as follows:

Xi,j(t + 1) =

{
Xbest,j(t)−MOP× ((UBj − LBj)× µ + LBj), r3< 0.5

Xbest,j(t) + MOP× ((UBj − LBj)× µ + LBj), otherwise
(5)

where r3 denotes a random value in the range 0 to 1.
The pseudo-code of AOA is illustrated in Algorithm 1.
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Algorithm 1 pseudo-code of AOA [33]

1. Input: The parameter of AOA such as control function (µ), dynamic parameter (α), number
of search agents (N), and maximum iteration (T)

2. Output: the best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5. Check if any search agent goes beyond the search space and amend it.
6. Calculate fitness for the given search agent.
7. Update the MOA and MOP using Equations (2) and (4), respectively.
8. For i = 1 to N do
9. For j = 1 to D do
10. Update the random value r1, r2, r3.
11. If r1 > MOA then
12. If r2 > 0.5 then
13. Update position by Division (÷) operator in Equation (3).
14. Else
15. Update position by Multiplication (×) operator in Equation (3).
16. End if
17. Else
18. If r3 > 0.5 then
19. Update position by Addition (+) operator in Equation (5).
20. Else
21. Update position by Subtraction (−) operator in Equation (5).
22. End if
23. End if
24. End for
25. End for
26. t = t + 1.
27. End while

2.2. Golden Sine Algorithm (Gold-SA)

This section introduces the basic theory of the Golden Sine Algorithm (Gold-SA). The
inspiration of Gold-SA is a sine function in mathematics, and the individuals explore the
approximate optimal solution in the search space according to the golden ratio [27]. The
range of the sine function is [−1, 1], with period 2π. When the value of x1 changes, the
corresponding variable y1 also changes. Combining the sine function and golden ratio
helps to continuously reduce the search space and search in regions where the optimal
values are more likely to be generated, thereby improving the convergence speed [27]. The
calculation formula is as follows:

Xi,j(t + 1) = Xi,j(t)× |sin(p1)| − p2 × sin(p1)×
∣∣∣d1 × Xbest,j(t)− d2 × Xi,j(t)

∣∣∣ (6)

where p1 is the random value between [0, 2π], and p2 is the random between [0, π], and d1
and d2 are the coefficient factors, which are obtained by the following equation:

d1 = a× τ + b× (1− τ) (7)

d2 = a× (1− τ) + b× τ (8)

where a and b are the initial values, which are −π and π. τ denotes the golden ratio, which
is (
√

5− 1)/2. The pseudo-code of Gold-SA is shown in Algorithm 2.
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Algorithm 2 pseudo-code of Gold-SA [27]

1. Input: The parameter of Gold-SA, such as the number of search agents (N), and maximum
iteration (T).

2. Output: The best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5. Check if any search agent goes beyond the search space and amend it.
6. Calculate fitness for the given search agent.
7. For i = 1 to N do
8. Update the random value p1 and p2, respectively.
9. For j = 1 to D do
10. Update position of search agent by the Equation (6).
11. End for
12. End for
13. t = t + 1.
14. End while

3. The Proposed Algorithm

In this section, we describe the proposed method. First, Levy flight is presented.
Second, we propose a new strategy called Brownian mutation. Then, the details of the
proposed work, HAGSA, are discussed and analyzed.

3.1. Levy Flight

Numerous studies reveal that the flight trajectories of many flying animals are consis-
tent with characteristics typical of Levy flight. Levy flight is a class of non-Gaussian random
walk that follows the Levy distribution [41,42]. It performs occasional long-distance walk-
ing with frequent short-distance steps, as shown in Figure 3. The mathematical formula for
Levy flight is as follows:

Levy = 0.01× r4 × σ

|r5|
1
β

(9)

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )


1
β

(10)

where r4 and r5 are random values between [0, 1], and β is a constant equal to 1.5.
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3.2. Brownian Mutation

This paper proposes a Brownian mutation mechanism based on the mutation operator
and Brownian motion. In 1995, differential evolution (DE) was proposed by Storn et al. [34],
which was inspired by the mutation, crossover, and selection mechanisms in nature. Thus,
DE obtains the optimal or near-optimal solution according to these operators. However, the
crossover and mutation operators generate only one candidate solution in each iteration,
limiting the population diversity and searchability of MAs [8]. Brownian motion (BM) is a
stochastic process with a step size derived from a probability function defined by a normal
distribution with µ = 0 and σ2 = 1 [43]. The formula of BM is listed as follows:

fB(x; µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
=

1√
2π

exp
(
− x2

2

)
(11)

where x indicates a point following this motion, and the distribution and 2D trajectory of
BM as shown in Figure 4. We can see that BM’s trajectory can explore distant areas of the
neighborhood, which shows more efficiency than a uniform random search in the search
space. Therefore, considering the high performance of Brownian motion and the limitation
of the mutation operator, we propose Brownian mutation, which generates two trail vectors
with the Brownian motion strategy. This method generates two candidate solutions V1 and
V2 of the i-th search agent in parallel through Equations (12) and (13), respectively.
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Figure 4. Brownian distribution and 2D Brownian trajectory.

The first mutation candidate solution V1 is calculated as follows:

V1,j =

{
Xr6(t) + Brownian× (Xr7(t)− Xr8(t)), if rand() < mr1

Xi,j, otherwise
(12)

where r6, r7, and r8 denote random values between 0 and 1. mr1 is the mutation rate, and
its value is 0.3. Brownian indicates the Brownian motion.

The second mutation candidate solution V2 is calculated as follows:

V2,j =

{
Xbest(t) + Brownian× (Xr9(t)− Xr10(t)), if rand() < mr2

Xi,j, otherwise
(13)
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where r9, r10, and r11 denote random values between 0 and 1. mr2 is the mutation rate equal
to 0.5.

When two candidate solutions V1 and V2 are generated, they are first modified
according to the lower and upper boundaries. Then, the best candidate solution Vbest is
selected using Equation (14) (lowest fitness as the criterion).

Vbest =

{
V1, if f (V1) < f (V2)

V2, otherwise
(14)

Afterward, the best solution between Vbest and Xi is selected as the ith search agent in
the next iteration. The following equation describes this behavior:

Xi =

{
Vbest, if f (Vbest) < f (Xi)

Xi, otherwise
(15)

3.3. The Details of HAGSA

As mentioned above, single MAs have low diversity and cannot share useful informa-
tion within the population. Moreover, the original AOA has shortcomings, such as easily
stagnating into optimal local solutions and slow convergence speed. The Gold-SA has
strong local searchability in the search space. Thus, to overcome the disadvantages of the
original AOA and take full advantage of the benefits of Gold-SA, in this paper, we present a
hybrid algorithm based on the AOA and Gold-SA, namely HAGSA. We divided the whole
population into two subgroups, Group A and Group B, and optimized them using AOA
and Gold-SA, respectively. Integrating both AOA and Gold-SA can increase population
diversity and all the exchange pf useful search information between search agents. This
operation aims to enable search agents to find the valuable solution in the search space
based on two MAs (AOA and Gold-SA) in less time and increase the diversity throughout
the entire iterations. Furthermore, to enhance the searchability of the hybrid algorithm, it
was integrated with Levy flight and Brownian mutation. Levy flight can improve the hybrid
algorithm’s exploration ability, allowing search agents to explore more potential regions in
the search space. Thus, the improved exploration phase can be calculated by Equation (16).
Furthermore, the Brownian mutation is used to strengthen the exploitation capability of
the hybrid algorithm and help the individuals escape the local optimal solution.

Xi,j(t + 1) =

{
Xbest,j(t)× Levy(j)×MOP× ((UBj − LBj)× µ + LBj), r2< 0.5

Xbest,j(t)× Levy(j)÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), otherwise
(16)

The pseudo-code of HAGSA is expressed in Algorithm 3, and the flowchart of the
proposed work is shown in Figure 5.

3.4. Computational Complexity Analysis

In the initialization phase, HAGSA produces the search agents randomly in the search
space, so the computational complexity of this phase is O(N × D), where N denotes the
number of population and D denotes the dimension size. Afterward, HAGSA evaluates
each individual’s fitness during the whole iteration with the complexity O(T × N × D),
where T indicates the number of iterations. Finally, we used AOA, Gold-SA, Levy flight,
and Brownian mutation to obtain the best solution. Thus, the computational complexities
of these phases are O(3 × T × N × D). In summary, the total computational complexity of
HAGSA is O(T × N × D).
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Algorithm 3 pseudo-code of HAGSA

1. Input: The parameter such as control function (µ), dynamic parameter (α), number of search
agent (N), and maximum iteration (T).

2. Output: best solution
3. Initialize the search agent randomly.
4. While (t < T) do
5. Check if any search agent goes beyond the search space and amend it.
6. Calculate fitness for the given search agent.
7. Update the MOA and MOP using Equations (2) and (4), respectively.
8. For i = 1 to N do
9. For j = 1 to D do
10. Update the random value r1, r2, r3.
11. If i < N/2 then
12. If r1 > MOA then
13. If r2 > 0.5 then
14. Update position by Division (÷) operator in Equation (16).
15. Else
16. Update position by Multiplication (×) operator in Equation (16).
17. End if
18. Else
19. If r3 > 0.5 then
20. Update position by Addition (+) operator in Equation (5).
21. Else
22. Update position by Subtraction (−) operator in Equation (5).
23. End if
24. End if
25. Else
26. Update position by Gold-SA operator in Equation (6).
27. End if
28. Generate candidate solution V1 and V2 by Equations (12) and (13).
29. Check if V1 and V2 goes beyond the search space and amend it.
30. Choose the best solution as Vbest with the lower fitness from V1 and V2.
31. If f (Vbest) < f (Xi) then
32. Xi = Vi.
33. End if
34. End for
35. End for
36. t = t + 1.
37. End while
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4. Experimental Results and Discussion

This section evaluates the effectiveness of the proposed HAGSA algorithm using the
CEC 2014 competition test suite and five industrial engineering design problems. First, the
benchmark functions and experimental setup are described. Next, the statistical results of
the CEC 2014 benchmark functions are analyzed and discussed. Finally, the five industrial
engineering design problems are used to prove the advantages of HAGSA.

4.1. Definition of CEC 2014 Benchmark Functions

To validate the searchability of the proposed HAGSA, we considered the CEC 2014
competition test suite as a benchmark function to evaluate the performance of HAGSA and
its peers, which include 30 extremely complex functions [44]. The details of the benchmark
functions are listed in Table 1, where fmin denotes the theoretical optimal fitness. According
to their characteristics, the CEC 2014 test suite can be categorized into four classes. C01–C03
are unimodal functions with only one global optimum without any local optima, and are
suitable for evaluating algorithms’ exploitation capability. C04–C15 are multimodal func-
tions with only one global optimal value with many local optimal values, and can evaluate
algorithms’ exploration and local minima avoidance ability. C16–C22 are hybrid functions,
including both unimodal and multimodal functions, and can simultaneously examine the
exploration and exploitation capability of algorithms. C23–C30 are composition functions
that maintain continuity around the local and global optima. All these functions are rotated
and shifted, so their complexity increases dramatically. Figure 6 provides a 2D visualization
of some functions of the CEC 2014 test suite to understand its characteristics.

Table 1. CEC 2014 benchmark functions.

Function Types No. Name of the Function D Range f min

Unimodal C01 Rotated High Conditioned Elliptic Function 30 [−100, 100] 100
C02 Rotated Bent Cigar Function 30 [−100, 100] 200
C03 Rotated Discus Function 30 [−100, 100] 300
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Table 1. Cont.

Function Types No. Name of the Function D Range f min

Multimodal C04 Shifted and Rotated Rosenbrock Function 30 [−100, 100] 400
C05 Shifted and Rotated Ackley Function 30 [−100, 100] 500
C06 Shifted and Rotated Weierstrass Function 30 [−100, 100] 600
C07 Shifted and Rotated Griewank Function 30 [−100, 100] 700
C08 Shifted Rastrigin Function 30 [−100, 100] 800
C09 Shifted and Rotated Rastrigin Function 30 [−100, 100] 900
C10 Shifted Schwefel Function 30 [−100, 100] 1000
C11 Shifted and Rotated Schwefel Function 30 [−100, 100] 1100
C12 Shifted and Rotated Katsuura Function 30 [−100, 100] 1200
C13 Shifted and Rotated HappyCat Function 30 [−100, 100] 1300
C14 Shifted and Rotated HGBat Function 30 [−100, 100] 1400

C15 Shifted and Rotated Expanded Griewank plus
Rosenbrock Function 30 [−100, 100] 1500

Hybrid C16 Shifted and Rotated Expanded Scaffer F6 Function 30 [−100, 100] 1600
C17 Hybrid Function 1(N = 3) 30 [−100, 100] 1700
C18 Hybrid Function 2(N = 3) 30 [−100, 100] 1800
C19 Hybrid Function 3(N = 4) 30 [−100, 100] 1900
C20 Hybrid Function 4(N = 4) 30 [−100, 100] 2000
C21 Hybrid Function 5(N = 5) 30 [−100, 100] 2100
C22 Hybrid Function 6(N = 5) 30 [−100, 100] 2200

Composition C23 Composition Function 1(N = 5) 30 [−100, 100] 2300
C24 Composition Function 2(N = 3) 30 [−100, 100] 2400
C25 Composition Function 3(N = 3) 30 [−100, 100] 2500
C26 Composition Function 4(N = 5) 30 [−100, 100] 2600
C27 Composition Function 5(N = 5) 30 [−100, 100] 2700
C28 Composition Function 6(N = 5) 30 [−100, 100] 2800
C29 Composition Function 7(N = 3) 30 [−100, 100] 2900
C30 Composition Function 8(N = 3) 30 [−100, 100] 3000

4.2. Experimental Setup

As stated above, the CEC 2014 test suite was utilized to evaluate HAGSA’s optimiza-
tion performance. To demonstrate the validity of the experimental results, the proposed
algorithm HAGSA was compared with the basic AOA [26], Gold-SA [27], Remora Op-
timization Algorithm (ROA) [45], Aquila Optimizer (AO) [23], Sine Cosine Algorithm
(SCA) [25], Whale Optimization Algorithm (WOA) [14], Flower Pollination Algorithm
(FPA) [46], Differential Evolution (DE) [8], and Genetic Algorithm (GA) [47]. We set the
maximum iteration T = 500, population size N = 50, dimension size D = 30, and 30 indepen-
dent runs. The best results are highlighted in bold. All the experiments were conducted on
a PC with an Intel (R) Core (TM) i5-11300H CPU @ 3.10 GHz, 16 GB RAM, Windows 10,
and MATLAB R2016b. Table 2 denotes the parameter setting of algorithms, and the details
of the compared algorithms can be listed as follows:

• AOA: simulates four commonly used arithmetic operators as Division (÷), Multiplica-
tion (×), Subtraction (−), and Addition (+).

• Gold-SA: inspired by the sine function with the golden section search in
mathematics compute.

• ROA: simulates remora’s parasitism behavior on different hosts including whales and
swordfish during the hunting process.

• AO: inspired by Aquila’s four different hunting methods.
• SCA: simulates the distribution characteristics of sine and cosine functions.
• WOA: simulates the hunting behavior of humpback whales in oceans.
• FPA: simulates the pollination process of flowering plants in nature.
• DE: integrates the differential mutation, crossover, and selection mechanisms.
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• GA: mimics the Darwinian evolution law and biological evolution of genetic mecha-
nism in nature.
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4.3. Statistical Results on CEC 2014 Benchmark Functions

Table 3 denotes the mean and standard deviation (std) values obtained by HAGSA
and other competed algorithms for each CEC 2014 function with D = 30. According to
Table 3, the statistical results illustrate that the HAGSA provides better searchability than its
peers. For unimodal functions, HAGSA better obtains the global optimal solution on C01
and C03 than others. For multimodal functions, HAGSA outperforms all other well-known
algorithms on nine functions, except functions C07–08, C11, and C14; FPA, DE, ROA, and
AO find the global optimal solution for these functions, respectively. For hybrid functions,
HAGSA achieves the best results for C16, C19, C20, and C22 among all algorithms. Finally,
HAGSA also outperforms the results for composition functions compared to the original
AOA, Gold-SA, and other compared algorithms on C23–25 and C28–C30, but not on C26.
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Figure 7 shows HAGSA and competitor algorithms’ ranking in various functions of the
CEC 2014 test suite. In light of these results, HAGSA exhibits excellent performance by
obtaining the best average over 21 functions.

Table 2. Parameter setting of each algorithm.

Algorithm Parameters

AOA [26] α = 5; µ = 0.5;
Gold-SA [27] c1 = [1, 0]; c2 ∈ [0, 1]; c3 ∈ [0, 1]

ROA [45] C = 0.1
AO [23] U = 0.00565; r1 = 10;ω = 0.005; α = 0.1; δ = 0.1;
SCA [25] a ∈ [2, 0]

WOA [14] a1 ∈ [2, 0]; a2 ∈ [−1, −2]; b = 1
FPA [46] p = 0.8; β = 1.5
DE [8] Fmin = 0.2; Fmax = 0.8; CR = 0.1

GA [47] Pc = 0.85; Pm = 0.01
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4.4. Boxplot Behavior Analysis

The distribution characteristics of data can be displayed through boxplot analysis. The
boxplot describes the data distribution as quartiles. The lowest and largest points of the
edges of the boxplot are the minimum and maximum values obtained by the algorithm.
The lower and upper quartiles are separated by the endpoints of the rectangle [5]. In
this subsection, we use boxplot behavior to represent each algorithm’s distribution of the
obtained value. Each sample runs 30 times independently for each CEC 2014 benchmark
function with D = 30. The boxplot behavior of each algorithm is shown in Figure 8.
HAGSA has better stability for most benchmark functions and shows excellent performance
compared to the others. In particular, for C01, C04, C05, C08, C09, C12, C13, and C15, the
boxplot of the proposed HAGSA method is very narrow compared to others and shows
lower values. For C06, C14, and C16, HAGSA achieves the lower values obtained than
most algorithms. However, the performance is not obvious when solving C10, C17, C18,
C19, C21, C23, C25, C27, and C30.
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Table 3. The mean fitness and std obtained with the different algorithms on the CEC 2014 test suite.

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01
Mean 1.94 × 108 1.08 × 109 6.73 × 108 3.59 × 108 7.85 × 108 5.11 × 108 1.97 × 109 4.63 × 108 5.30 × 109 2.77 × 109

Std 7.50 × 107 3.49 × 108 2.21 × 108 1.63 × 108 3.92 × 107 1.26 × 108 3.25 × 108 1.97 × 108 2.23 × 108 1.07 × 108

C02
Mean 2.40 × 1010 6.81 × 1010 6.18 × 1010 6.80 × 1010 6.83 × 1010 2.93 × 1010 8.59 × 1010 6.99 × 1010 5.09 × 1010 1.03 × 1011

Std 7.78 × 109 1.18 × 1010 9.47 × 109 7.53 × 109 1.27 × 109 5.26 × 109 7.45 × 109 2.39 × 109 1.02 × 1010 0.00

C03
Mean 8.55 × 104 8.19 × 104 8.73 × 104 6.60 × 104 8.72 × 104 7.58 × 104 9.20 × 104 1.26 × 105 7.01 × 104 1.42 × 107

Std 2.10 × 103 6.52 × 103 2.50 × 103 7.55 × 103 7.66 × 103 1.61 × 104 1.22 × 104 6.25 × 104 1.56 × 104 1.25 × 104

C04
Mean 1.45 × 104 1.05 × 104 1.27 × 104 2.54 × 103 1.40 × 104 2.57 × 103 1.73 × 104 1.74 × 103 6.37 × 103 2.58 × 104

Std 7.37 × 102 2.84 × 103 3.47 × 103 1.17 × 103 1.95 × 102 6.06 × 102 2.18 × 103 3.95 × 102 2.59 × 103 5.19 × 102

C05
Mean 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

Std 8.39 × 102 8.06 × 102 7.03 × 102 1.07 × 10−1 8.92 × 10−2 7.53 × 10−2 8.15 × 10−2 8.17 × 10−2 6.61 × 10−2 8.05 × 10−2

C06
Mean 6.17 × 102 6.38 × 102 6.42 × 102 6.35 × 102 6.42 × 102 6.39 × 102 6.45 × 102 6.39 × 102 6.34 × 102 6.50 × 102

Std 3.56 2.45 2.42 3.07 2.76 1.97 1.43 2.82 2.63 2.05

C07
Mean 1.47 × 103 1.34 × 103 1.13 × 103 9.16 × 102 1.19 × 103 9.50 × 102 1.56 × 103 7.41 × 102 1.16 × 103 1.75 × 103

Std 7.04 × 10 1.06 × 102 9.78 × 10 9.09 × 10 1.24 × 10 3. × 10 6.79 × 10 1.56 × 10 1.12 × 102 7.10 × 10

C08
Mean 1.09 × 103 1.14 × 103 1.12 × 103 1.13 × 103 1.13 × 103 1.19 × 103 1.18 × 103 1.13 × 103 1.08 × 103 1.31 × 103

Std 2.42 × 10 3.04 × 10 3.10 × 10 2.57 × 10 2.02 × 10 2.22 × 10 1.37 × 10 4.63 × 10 2.32 × 10 2.23 × 10

C09
Mean 1.14 × 103 1.22 × 103 1.26 × 103 1.37 × 103 1.26 × 103 1.22 × 103 1.29 × 103 1.20 × 103 1.20 × 103 1.38 × 103

Std 1.65 × 10 2.17 × 10 2.71 × 10 2.23 × 10 1.89 × 10 2.49 × 10 1.67 × 10 5.07 × 10 2.70 × 10 2.31 × 10−13

C10
Mean 6.12 × 103 7.26 × 103 8.04 × 103 6.34 × 103 8.16 × 103 7.97 × 103 9.45 × 103 6.57 × 103 8.93 × 103 1.07 × 104

Std 6.25 × 102 3.79 × 102 5.47 × 102 7.11 × 102 5.84 × 102 4.49 × 102 3.61 × 102 7.50 × 102 2.87 × 102 5.36 × 102

C11
Mean 7.56 × 103 7.85 × 103 8.90 × 103 7.28 × 103 7.81 × 103 8.96 × 103 1.01 × 104 7.47 × 103 9.31 × 103 1.10 × 104

Std 7.10 × 102 4.20 × 102 5.68 × 102 6.88 × 102 6.68 × 102 2.55 × 102 3.79 × 102 7.89 × 102 4.51 × 102 4.69 × 102

C12
Mean 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.21 × 103

Std 5.52 × 10 5.78 × 10−1 5.35 × 10−1 5.62 × 10−1 5.98 × 10−1 5.89 × 10−1 6.48 × 10−1 6.75 × 10−1 5.80 × 10−1 9.19 × 10−1

C13
Mean 1.30 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103 1.31 × 103

Std 8.34 × 10−1 9.07 × 10−1 8.99 × 10−1 8.64 × 10−1 4.09 × 10−1 3.93 × 10−1 8.37 × 10−1 9.22 × 10−1 7.67 × 10−1 4.48 × 10−1
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Table 3. Cont.

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C14
Mean 1.45 × 103 1.63 × 103 1.57 × 103 1.47 × 103 1.41 × 103 1.49 × 103 1.73 × 103 1.42 × 103 1.59 × 103 1.79 × 103

Std 1.44 × 10 4.41 × 10 4.36 × 10 2.20 × 10 5.87 × 10 1.99 × 10 2.46 × 10 9.00 3.95 × 10 3.58 × 10

C15
Mean 4.34 × 103 2.50 × 105 4.92 × 104 9.04 × 103 8.92 × 104 2.54 × 104 5.38 × 105 4.74 × 103 1.03 × 105 9.16 × 105

Std 2.25 × 103 1.31 × 105 3.55 × 104 8.15 × 103 3.54 × 10 1.62 × 104 1.55 × 105 2.24 × 103 1.35 × 105 4.74 × 10−10

C16
Mean 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103 1.61 × 103

Std 3.71 × 10−1 3.70 × 10−1 3.21 × 10−1 4.71 × 10−1 4.08 × 10−1 1.95 × 10−1 2.08 × 10−1 4.66 × 10−1 2.37 × 10−1 1.88 × 10−1

C17
Mean 8.59 × 107 8.90 × 107 1.36 × 108 1.61 × 107 1.64 × 108 1.56 × 107 2.47 × 108 2.35 × 107 9.17 × 106 5.48 × 108

Std 7.10 × 106 6.17 × 107 8.13 × 107 1.40 × 107 5.24 × 106 5.76 × 106 6.66 × 107 2.13 × 107 1.30 × 107 2.33 × 108

C18
Mean 1.36 × 107 2.44 × 109 2.78 × 109 2.90 × 108 3.80 × 109 4.77 × 108 7.52 × 109 6.11 × 106 2.65 × 108 1.20 × 1010

Std 2.06 × 107 2.04 × 109 1.67 × 109 6.85 × 108 2.05 × 106 2.52 × 108 2.30 × 109 7.19 × 106 3.73 × 108 3.82 × 109

C19
Mean 2.01 × 103 2.24 × 103 2.27 × 103 2.30 × 103 2.30 × 103 2.25 × 103 2.49 × 103 2.32 × 103 2.10 × 103 2.80 × 103

Std 5.12 × 10 1.05 × 102 9.98 × 101 9.65 × 10 3.15 × 10 3.29 × 10 7.58 × 10 5.24 × 10 6.27 × 10 2.51 × 10

C20
Mean 3.67 × 104 1.86 × 105 2.45 × 105 9.06 × 104 4.34 × 105 5.90 × 104 3.43 × 106 4.97 × 105 2.75 × 104 1.07 × 108

Std 3.96 × 104 9.23 × 104 1.27 × 105 6.04 × 104 5.11 × 104 2.94 × 104 4.51 × 106 7.78 × 105 2.08 × 104 2.87 × 107

C21
Mean 1.12 × 106 3.36 × 107 5.47 × 107 9.65 × 106 5.65 × 107 5.18 × 106 1.07 × 108 1.25 × 107 5.17 × 105 2.80 × 108

Std 6.21 × 105 2.39 × 107 2.92 × 107 9.83 × 106 1.66 × 106 2.86 × 106 5.82 × 107 9.65 × 106 7.13 × 105 2.14 × 108

C22
Mean 2.85 × 103 4.93 × 103 4.69 × 103 3.28 × 103 6.49 × 103 3.37 × 103 3.08 × 104 3.32 × 103 3.08 × 103 1.68 × 105

Std 2.12 × 102 2.12 × 107 1.78 × 103 7.41 × 102 2.78 × 102 1.72 × 102 3.05 × 104 2.89 × 102 2.52 × 102 7.01 × 104

C23
Mean 2.50 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.72 × 103 2.50 × 103 2.72 × 103 2.84 × 103 2.50 × 103

Std 0.00 0.00 0.00 0.00 0.00 3.17 × 10 0.00 4.01 × 10 9.01 × 10 0.00

C24
Mean 2.60 × 103 2.60 × 103 2.60 × 103 2.60 × 103 2.60 × 103 2.63 × 103 2.60 × 103 2.61 × 103 2.69 × 103 2.60 × 103

Std 0.00 8.87 × 10−2 0.00 1.46 × 10−7 2.34 × 10−5 1.87 × 10 0.00 5.81 1.34 × 10 0.00

C25
Mean 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.75 × 103 2.70 × 103 2.72 × 103 2.73 × 103 2.70 × 103

Std 0.00 0.00 0.00 0.00 0.00 1.15 × 10 0.00 1.83 × 10 8.74 0.00

C26
Mean 2.77 × 103 2.77 × 103 2.77 × 103 2.77 × 103 2.78 × 103 2.70 × 103 2.79 × 103 2.74 × 103 2.73 × 103 2.79 × 103

Std 4.33 × 10 4.41 × 10 4.25 × 10 4.62 × 10 4.99 × 10 4.96 × 10−1 2.35 × 101 8.00 × 10 4.33 × 10 2.39 × 10
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Table 3. Cont.

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C27
Mean 2.90 × 103 4.05 × 103 2.90 × 103 2.90 × 103 2.90 × 103 3.91 × 103 2.90 × 103 3.99 × 10 3.86 × 103 2.90 × 103

Std 0.00 3.71 × 102 0.00 0.00 3.98 2.65 × 102 0.00 2.42 × 102 2.46 × 102 0.00

C28
Mean 3.00 × 103 5.34 × 103 3.00 × 103 3.00 × 103 3.00 × 103 5.95 × 103 3.00 × 103 5.40 × 103 5.36 × 103 3.00 × 103

Std 0.00 2.75 × 103 0.00 0.00 0.00 6.11 × 102 0.00 8.95 × 102 4.64 × 102 0.00

C29
Mean 3.10 × 103 4.32 × 108 3.10 × 103 7.17 × 106 1.46 × 104 4.43 × 107 3.10 × 103 1.79 × 107 6.87 × 107 3.10 × 103

Std 0.00 1.80 × 108 0.00 7.00 × 106 6.28 × 104 1.75 × 107 0.00 1.63 × 107 5.50 × 107 0.00

C30
Mean 3.20 × 103 4.16 × 106 3.20 × 103 3.29 × 105 1.66 × 105 6.97 × 105 3.20 × 103 4.02 × 105 4.17 × 105 3.20 × 103

Std 0.00 2.65 × 106 0.00 2.80 × 105 1.44 × 105 2.87 × 105 0.00 2.76 × 105 2.34 × 105 0.00
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Figure 8. Cont.
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Figure 8. Boxplot behavior of algorithms on some functions.

4.5. Convergence Behavior Analysis

In this subsection, we analyze the convergence behavior of each algorithm used
over some benchmark functions. Figure 9 shows the convergence behavior of HAGSA,
AOA, Gold-SA, ROA, AO, SCA, WOA, FPA, DE, and GA for selected functions. As can
be seen from this figure, HAGSA achieves excellent behavior for most functions, which
suggests the convergence of the proposed method. For unimodal functions (C01 and C03),
although the convergence speed is slower than WOA in the early iteration (for C01), the
convergence accuracy is higher than WOA at the end of the iteration. For C03, HAGSA
has the fastest convergence speed and highest convergence accuracy. On the multimodal
functions, HAGSA still maintains the fastest convergence speed and highest accuracy on
most functions. In particular, for C05 and C06, although the global optimal is not found,
HAGSA still has excellent performance compared to the others. However, the optimal value
of HAGSA is ranked third and the WOA and AO are ranked first and second, respectively,
when solving C07. For C10 and C11, it can be seen that the convergence curve of HAGSA
is accelerated in the later stage of iteration; this is due to the excellent ability to jump out of
the local optimal as a result of Brownian mutation. On hybrid functions, the convergence
accuracy is still good compared to the others. For C16, C20, C21, and C22, the proposed
HAGSA algorithm demonstrates its better performance compared to the original AOA
and Gold-SA. On composition functions, the improvement is not obvious compared to the
original Gold-SA and other well-known algorithms such as GA and FPA.

4.6. Wilcoxon Rank-Sum Test

Because the results obtained by each algorithm are random, in this subsection, we
utilize the Wilcoxon rank-sum test (WRS) to evaluate the statistical significance difference
between two samples at a significance level of 5% [2]. Specifically, if the p-value is less
than 0.05, it indicates the statistical difference is significant; otherwise, the difference is not
obvious. Furthermore, NaN denotes there is no difference between the two samples. The
statistical results of the Wilcoxon rank-sum test are listed in Table 4; from this table, we can
see that the proposed HAGSA algorithm shows better significant performance than the
other algorithms on most benchmark functions.

4.7. Computational Time Analysis

To show the computational cost of the proposed HAGSA, in this subsection, we
record the computational time cost obtained by algorithms on the CEC 2014 test suite.
The statistical results are listed in Table 5; although HAGSA has the same computational
complexity as AOA and Gold-SA, the computational time cost of HAGSA is more than that
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of AOA and Gold-SA. This is because HAGSA uses Brownian mutation to generate two
candidates’ solutions to enhance the algorithm’s searchability and Levy flight is used to
improve the exploitation ability of the hybrid algorithm. In addition, considering the NFL
theorem, it is acceptable to increase computational time to obtain reliable solutions.

4.8. Industrial Engineering Design Problems

This subsection introduces five real-world industrial engineering design problems
to evaluate the proposed algorithm’s searchability, including the car side crash design
problem, pressure vessel design problem, tension spring design problem, speed reducer
design problem, and cantilever beam design problem. Unlike benchmark functions, these
industrial engineering design problems have many inequality and equality constraints,
which is a vital challenge to MAs. In addition, using these problems helps evaluate the
potential of algorithms to solve real-world problems.
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4.8.1. Car Side Crash Design Problem

This problem aims to maintain the side impact crash performance and minimize the
vehicle weight [48]. It has 11 parameters that need to be optimized; also, ten constraints
were integrated into this problem. The model of this problem can be established as follows:

Consider x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11]
Minimize f (x) = Weight,

Subject to



g1(x) = Fa(load in abdomen) ≤ 1 kN,
g2(x) = V × Cu (dummyupperchest) ≤ 0.32 m/s,
g3(x) = V × Cm (dummymiddlechest) ≤ 0.32 m/s,
g4(x) = V × Cl (dummylowerchest) ≤ 0.32 m/s,
g5(x) = ∆ur (upperribdeflection) ≤ 32 mm,
g6(x) = ∆mr (middleribdeflection) ≤ 32 mm,
g7(x) = ∆lr (lowerribdeflection) ≤ 32 mm,
g8(x) = F (Publicforce)p ≤ 4 kN,
g9(x) = VMBP(Velocity of V− Pillarat middle point) ≤ 9.9 mm/ms,
g10(x) = VFD(Velocity of front door at V− Pillar) ≤ 15.7 mm/ms,

Variable range
{

0.5 ≤ x1 − x7 ≤ 1.5, 0.192 < x8, x9 < 0.345,
−30 ≤ x10, x11 ≤ 30,
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Table 4. Statistical results of Wilcoxon rank-sum test obtained by each algorithm.

Function
HAGSA vs.

AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01 3.02 × 10−11 3.02 × 10−11 2.71 × 10−2 2.13 × 10−4 4.08 × 10−11 2.64 × 10−1 3.02 × 10−11 1.29 × 10−9 2.37 × 10−12

C02 3.02 × 10−11 3.02 × 10−11 7.01 × 10−2 3.02 × 10−11 5.83 × 10−13 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12

C03 3.02 × 10−11 3.02 × 10−11 3.32 × 10−6 2.49 × 10−6 2.00 × 10−5 6.52 × 10−9 3.02 × 10−11 3.82 × 10−10 3.02 × 10−11

C04 3.02 × 10−11 3.02 × 10−11 2.06 × 10−2 2.61 × 10−10 4.71 × 10−4 1.31 × 10−8 3.02 × 10−11 3.69 × 10−11 1.21 × 10−12

C05 1.78 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C06 4.62 × 10−10 3.02 × 10−11 2.75 × 10−3 7.73 × 10−2 2.23 × 10−9 1.29 × 10−11 3.02 × 10−11 1.30 × 10−1 2.95 × 10−11

C07 3.02 × 10−11 6.07 × 10−11 1.45 × 10−1 3.02 × 10−11 2.13 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 3.16 × 10−12

C08 3.02 × 10−11 3.02 × 10−11 1.73 × 10−6 1.25 × 10−7 3.02 × 10−11 2.84 × 10−4 3.02 × 10−11 5.49 × 10−11 9.40 × 10−12

C09 3.02 × 10−11 3.02 × 10−11 1.44 × 10−2 7.70 × 10−8 3.34 × 10−11 4.42 × 10−6 3.02 × 10−11 6.12 × 10−10 1.21 × 10−12

C10 2.23 × 10−9 3.02 × 10−11 5.09 × 10−8 2.97 × 10−1 3.02 × 10−11 1.46 × 10−10 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C11 3.50 × 10−9 3.02 × 10−11 1.37 × 10−3 5.01 × 10−1 3.34 × 10−11 2.96 × 10−5 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C12 6.91 × 10−4 2.39 × 10−8 1.76 × 10−2 2.90 × 10−1 1.69 × 10−9 5.27 × 10−5 4.50 × 10−11 3.02 × 10−11 2.80 × 10−11

C13 3.02 × 10−11 3.69 × 10−11 1.38 × 10−2 6.07 × 10−11 1.68 × 10−3 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11 7.88 × 10−12

C14 3.02 × 10−11 3.02 × 10−11 4.22 × 10−4 1.33 × 10−10 1.39 × 10−6 1.09 × 10−10 3.02 × 10−11 3.02 × 10−11 1.72 × 10−12

C15 3.02 × 10−11 3.02 × 10−11 5.49 × 10−1 3.02 × 10−11 1.69 × 10−9 2.37 × 10−10 3.02 × 10−11 3.02 × 10−11 1.21 × 10−12

C16 1.56 × 10−8 4.18 × 10−9 1.64 × 10−5 2.23 × 10−9 4.50 × 10−11 3.20 × 10−9 3.02 × 10−11 3.02 × 10−11 3.02 × 10−11

C17 3.02 × 10−11 3.02 × 10−11 6.97 × 10−3 3.95 × 10−1 7.22 × 10−6 2.43 × 10−5 3.02 × 10−11 2.32 × 10−2 3.00 × 10−11

C18 3.02 × 10−11 3.02 × 10−11 4.86 × 10−3 1.21 × 10−10 6.70 × 10−11 3.96 × 10−8 3.02 × 10−11 4.08 × 10−11 2.63 × 10−11

C19 3.02 × 10−11 3.34 × 10−11 2.39 × 10−4 4.35 × 10−5 5.61 × 10−5 3.55 × 10−1 3.02 × 10−11 4.57 × 10−9 1.72 × 10−12

C20 3.02 × 10−11 1.41 × 10−9 1.00 × 10−3 9.83 × 10−8 1.91 × 10−2 2.20 × 10−7 3.69 × 10−11 7.96 × 10−3 3.02 × 10−11

C21 3.02 × 10−11 3.02 × 10−11 3.18 × 10−4 4.17 × 10−2 2.28 × 10−5 1.07 × 10−7 3.02 × 10−11 3.38 × 10−2 3.02 × 10−11

C22 5.49 × 10−11 1.46 × 10−10 5.32 × 10−3 3.03 × 10−2 7.70 × 10−8 1.64 × 10−5 3.02 × 10−11 4.06 × 10−2 3.02 × 10−11

C23 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
C24 1.21 × 10−12 NaN 1.61 × 10−1 6.62 × 10−4 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
C25 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.93 × 10−9 NaN 1.21 × 10−12 NaN
C26 8.11 × 10−8 3.55 × 10−1 2.86 × 10−4 4.56 × 10−2 3.98 × 10−6 9.59 × 10−9 8.00 × 10−1 7.40 × 10−3 1.89E-02
C27 1.21 × 10−12 NaN NaN 4.19 × 10−2 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
C28 1.21 × 10−12 NaN NaN NaN 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
C29 1.21 × 10−12 NaN 6.61 × 10−5 1.61 × 10−1 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
C30 1.21 × 10−12 NaN 6.25 × 10−10 1.31 × 10−7 1.21 × 10−12 1.21 × 10−12 NaN 1.21 × 10−12 NaN
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Table 5. The computational time for HAGSA and its peers.

Function HAGSA AOA Gold-SA ROA AO SCA WOA FPA DE GA

C01 0.5375 0.1722 0.1260 0.3587 0.3303 0.1756 0.1482 0.2102 0.2743 0.1516
C02 0.5998 0.1487 0.0918 0.2918 0.2854 0.1491 0.1332 0.1697 0.2010 0.1048
C03 0.5519 0.1659 0.1094 0.2395 0.2817 0.1588 0.1391 0.1558 0.2050 0.1043
C04 0.5085 0.1585 0.0929 0.2545 0.2499 0.1490 0.1803 0.1472 0.1971 0.1027
C05 0.5959 0.1564 0.1334 0.3615 0.3404 0.1521 0.1794 0.1705 0.2365 0.1136
C06 6.7234 1.1244 1.4928 5.5571 2.3889 1.5203 1.5837 1.5670 3.1240 1.3135
C07 0.6473 0.1605 0.1203 0.2872 0.3283 0.1850 0.1192 0.1661 0.2290 0.1047
C08 0.4786 0.1447 0.1027 0.2972 0.2493 0.1391 0.1212 0.1707 0.1799 0.1051
C09 0.6048 0.1847 0.1061 0.3045 0.2735 0.1681 0.1289 0.1791 0.2101 0.1046
C10 0.8256 0.1980 0.1440 0.4217 0.4360 0.2012 0.1474 0.2088 0.3306 0.1520
C11 0.8986 0.2100 0.1596 0.7439 0.4011 0.2126 0.1802 0.2147 0.3569 0.2055
C12 1.2724 0.3245 0.2602 1.1208 0.6199 0.3206 0.2946 0.3260 0.7370 0.3250
C13 0.5331 0.1451 0.0933 0.2555 0.2930 0.1541 0.1137 0.1541 0.2013 0.0944
C14 0.5130 0.1508 0.1108 0.3054 0.2816 0.1956 0.1180 0.1509 0.1855 0.1184
C15 0.4946 0.1610 0.1320 0.3372 0.3080 0.1914 0.1421 0.1771 0.2245 0.1277
C16 0.5078 0.1538 0.0978 0.3274 0.3163 0.1599 0.1164 0.1952 0.2397 0.1200
C17 0.6081 0.1684 0.1537 0.4210 0.3202 0.1730 0.1852 0.1790 0.2857 0.1479
C18 0.4803 0.1439 0.1028 0.3162 0.3332 0.2505 0.1138 0.2067 0.2115 0.1057
C19 1.6777 0.3450 0.3121 1.2646 0.7030 0.5136 0.3195 0.5490 0.8568 0.2681
C20 0.4975 0.1584 0.0987 0.3122 0.3295 0.1577 0.1371 0.1958 0.2195 0.1226
C21 0.5846 0.2016 0.1269 0.4338 0.3211 0.1794 0.1587 0.1744 0.2701 0.1310
C22 0.6756 0.1951 0.1308 0.5880 0.3688 0.1932 0.1534 0.2029 0.3152 0.1749
C23 1.8811 0.3695 0.3146 1.3598 0.7576 0.3692 0.4163 0.3930 0.9236 0.3200
C24 1.4512 0.2916 0.2459 1.1242 0.5935 0.4264 0.2725 0.4199 0.9495 0.2777
C25 1.6396 0.3334 0.2878 1.3109 0.7071 0.3465 0.3106 0.4518 1.0307 0.3435
C26 6.4800 1.5258 2.0984 5.0402 3.0212 2.0210 1.7759 1.7384 4.3710 1.6796
C27 6.3308 1.5334 1.2872 4.7350 2.8645 1.8617 1.8453 1.7505 4.3188 1.5384
C28 1.7570 0.4684 0.3955 1.1151 0.8401 0.4585 0.5362 0.6638 1.1272 0.3811
C29 2.0752 0.4942 0.6205 1.5271 0.9543 0.7252 0.6315 0.6343 1.4255 0.6466
C30 1.2367 0.3321 0.2759 0.8986 0.6684 0.3431 0.3148 0.3581 0.7941 0.4417

Table 6 shows the best results obtained by all algorithms. As shown in this table, the
results of the proposed HAGSA are superior to those of other optimization techniques, and
ROA and AO approaches are ranked second and third, respectively.

Table 6. Statistical results of car side crash design problem.

Algorithm
Optimum Variables Optimum

Costx1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

HAGSA 0.5 1.253 0.5 1.109 0.5 0.5 0.501 0.344 0.192 3.904 6.381 22.9765
AOA 0.5 1.262 0.5 1.156 0.5 0.772 0.5 0.310 0.192 0.365 1.162 23.2139

Gold-SA 0.5 1.278 0.612 1.102 0.544 1.323 0.5 0.345 0.345 0.170 0.294 23.9711
ROA 0.5 1.235 0.5 1.166 0.5 1.110 0.5 0.341 0.192 0.275 2.926 23.0801
AO 0.724 1.175 0.502 1.200 0.5 0.792 0.5 0.308 0.192 0.739 2.837 23.1694
SCA 0.567 1.334 0.540 1.167 0.5 1.109 0.5 0.233 0.263 0.301 2.393 24.3513

WOA 0.953 1.106 0.5 1.206 0.524 0.559 0.501 0.282 0.298 0.246 7.326 24.6495
FPA 0.532 1.322 0.515 1.143 0.616 0.516 0.534 0.197 0.197 0.710 1.892 24.1309
DE 0.505 1.446 0.521 1.182 0.5 1.466 0.5 0.312 0.192 1.008 13.266 24.7181
GA 1.073 1.0465 0.595 1.096 0.714 0.502 0.521 0.322 0.264 5.549 8.215 25.4504

4.8.2. Pressure Vessel Design Problem

The pressure vessel design problem is shown in Figure 10. The goal of this problem
is to minimize the total cost [49]. It has four design parameters: shell thickness (Ts), ball
thickness (Th), shell radius (R), and shell length (L). The constraints and objective function
can be expressed as follows:

Consider x = [x1 x2 x3 x4] = [Ts Th R L]
Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3
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Subject to

{
g1(x) = −x1 + 0.0193x3 ≤ 0, g2(x) = −x3 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3 πx3

3 + 1, 296, 000 ≤ 0, g4(x) = x4 − 240 ≤ 0

Variable range

{
0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200
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ROA 0.5 1.235 0.5 1.166 0.5 1.110 0.5 0.341 0.192 0.275 2.926 23.0801 

AO 0.724 1.175 0.502 1.200 0.5 0.792 0.5 0.308 0.192 0.739 2.837 23.1694 

SCA 0.567 1.334 0.540 1.167 0.5 1.109 0.5 0.233 0.263 0.301 2.393 24.3513 

WOA 0.953 1.106 0.5 1.206 0.524 0.559 0.501 0.282 0.298 0.246 7.326 24.6495 

FPA 0.532 1.322 0.515 1.143 0.616 0.516 0.534 0.197 0.197 0.710 1.892 24.1309 

DE 0.505 1.446 0.521 1.182 0.5 1.466 0.5 0.312 0.192 1.008 13.266 24.7181 

GA 1.073 1.0465 0.595 1.096 0.714 0.502 0.521 0.322 0.264 5.549 8.215 25.4504 
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Table 7 shows the statistical results obtained by HAGSA and other comparison algo-
rithms including AOA, Gold-SA, ROA, AO, SCA, WOA, FPA, DE, and GA. As can be seen
from this table, HAGSA achieves competitive results in this design problem, and the results
of ROA and AO are ranked second and third, respectively.

Table 7. Statistical results of the pressure vessel design problem.

Algorithm
Optimum Variables Optimum

CostTs Th R L

HAGSA 0.8304795 0.3770664 44.00935 154.9557 5982.8355
AOA 0.8395475 0.4113845 44.27936 156.8883 6068.3284

Gold-SA 0.7140179 0.4619435 40.49522 197.7362 6090.4062
ROA 0.8610026 0.3934984 44.96907 144.2921 6023.0145
AO 0.8030047 0.4524486 43.65139 158.3146 6024.2153
SCA 0.963087 0.476939 51.4412 87.3095 6246.7789

WOA 0.937726 0.473373 49.9436 98.8134 6195.7655
FPA 0.971843 0.478402 52.5479 81.3225 6393.2109
DE 1.009677 0.498834 54.0470 69.2270 6398.6641
GA 1.025422 0.484037 54.7458 64.6720 6439.9228

4.8.3. Tension Spring Design Problem

The main goal of this problem is to find the optimal parameters to minimize the
production cost [50]. There are three parameters: wire diameter (d), mean diameter of the
spring (D), and number of active coils (N), as shown in Figure 11. The mathematical model
is expressed as follows:

Consider x = [x1 x2 x3] = [d D N]

Minimize f (x) = (x3 + 2)x2x2
1

Subject to


g1(x) = 1− x3

2x3

71,785x4
1
≤ 0, g2(x) = 4x2

2−x1x2
12,566(x2x3

1−x4
1)
+ 1

5108x2
1
≤ 0,

g3(x) = 1− 140.45x1
x2

2x3
≤ 0, g4(x) = x1+x2

1.5 − 1 ≤ 0

Variable range

{
0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30
2.00 ≤ x3 ≤ 15.00
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Figure 11. Tension spring design problem.

The statistical results of the tension spring design problem were obtained by HAGSA
and other comparison algorithms as listed in Table 8. As can be seen from this table, the
best cost of this design problem is 0.011196, and the three parameters are 0.050411, 0.37384,
and 9.7854, respectively.

Table 8. Statistical results of the tension spring design problem.

Algorithm
Optimum Variables

Optimum Cost
d D N

HAGSA 0.050411 0.37384 9.7854 0.011196
AOA 0.051791 0.388 9.5556 0.012026

Gold-SA 0.060683 0.67982 3.1063 0.012783
ROA 0.059221 0.6308 3.5188 0.012209
AO 0.05 0.337193 13.0905 0.012721
SCA 0.061365 0.70355 2.9232 0.013043

WOA 0.0502069 0.351224 12.336 0.012692
FPA 0.10187 1.093 9.5387 0.130890
DE 0.06766 0.907935 2.0871 0.016985
GA 0.05401 0.465113 9.6797 0.015848

4.8.4. Speed Reducer Design Problem

This problem aims to construct a speed reducer with a minimum weight under con-
straints [51]. There are seven parameters: face width, the module of teeth, number of teeth
in the pinion, length of the first shaft between bearings, length of the second shaft between
bearings, the diameter of the first shafts, and the diameter of second shafts. Figure 12 shows
the design of this problem, and its mathematical formula is as follows:

Consider x = [x1 x2 x3 x4 x5 x6 x7]

Minimize f (x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7) +
7.4777(x3

6 + x3
7),

Subject to



g1(x) = 27
x1x2

2x3
− 1 ≤ 0, g2(x) = 397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(x) = 1.93x3
4

x2x3x4
6
− 1 ≤ 0, g4(x) = 1.93x3

5
x2x3x4

7
− 1 ≤ 0,

g5(x) =

√
(

745x4
x2x3

)
2
+16.9×106

110.0x3
6

− 1 ≤ 0, g6(x) =

√
(

745x4
x2x3

)
2
+157.5×106

85.0x3
6

− 1 ≤ 0,

g7(x) = x2x3
40 − 1 ≤ 0, g8(x) = 5x2

x1
− 1 ≤ 0,

g9(x) = x1
12x2
− 1 ≤ 0, g10(x) = 1.5x6+1.9

x4
− 1 ≤ 0,

g11(x) = 1.1x7+1.9
x5

− 1 ≤ 0,
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Variable range


2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5
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Figure 12. Speed reducer problem.

The proposed HAGSA is compared with AOA, Gold-SA, ROA, AO, SCA, WOA, FPA,
DE, and GA. The statistical results are shown in Table 9. As can be seen, HAGSA is excellent
for solving speed reducer design problems, and the results obtained by HAGSA are ranked
first. The results of AOA and ROA are ranked second and third, respectively.

Table 9. Statistical results of the speed reducer design problem.

Algorithm
Optimum Variables Optimum

Costx1 x2 x3 x4 x5 x6 x7

HAGSA 3.49767 0.7 17 7.3 7.8001 3.34982 5.28559 2995.4897
AOA 3.50776 0.7 17 7.77685 7.96133 3.35075 5.28557 3007.0806

Gold-SA 3.49441 0.7 17 7.3 7.8 3.42383 5.2872 3016.2163
ROA 3.50776 0.7 17 7.77685 7.96133 3.35075 5.28557 3007.0806
AO 3.49748 0.7 17 8.07645 7.8 3.35162 5.28573 3002.8462
SCA 3.6 0.7 17 8.3 8.3 3.43032 5.30013 3085.2732

WOA 3.5247 0.7 17 8.14441 8.05897 3.35091 5.28568 3019.883
FPA 3.6 0.7 17 7.3 7.8 3.41261 5.28143 3056.8032
DE 3.5119 0.7 17 8.3 8.3 3.37356 5.38151 3088.6759
GA 3.4896 0.7 17 7.71388 7.8 3.65614 5.29218 3094.3185

4.8.5. Cantilever Beam Design

The design of the cantilever beam is shown in Figure 13, and the goal of this problem
is to minimize the total weight [52]. There are five parameters that need to be optimized.
The objective function and constraints of this problem are as follows:

Consider x = [x1 x2 x3 x4 x5]

Minimize f (x) = 0.6224(x1 + x2 + x3 + x4 + x5)

Subject to g(x) = 60
x3

1
+ 27

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5
− 1 ≤ 0

Variable range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100
The statistical results obtained by HAGSA, AOA, Gold-SA, ROA, AO, SCA, WOA,

FPA, DE, and GA are shown in Table 10. From this table, HAGSA shows a lower cost than
that of other optimization techniques, and the results of ROA and AO are ranked second
and third, respectively.
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Figure 13. Cantilever beam structure.

Table 10. Statistical results of the cantilever beam design problem.

Algorithm
Optimum Variables Optimum

Costx1 x2 x3 x4 x5

HAGSA 5.9271 5.3962 4.5081 3.476 2.1726 1.3404
AOA 6.4746 5.515 4.1138 3.7827 1.8724 1.3577

Gold-SA 5.7908 5.0142 4.9397 3.4175 2.5713 1.3562
ROA 5.8567 5.4316 4.4342 3.6542 2.1263 1.3418
AO 5.8219 5.4572 4.4551 3.5517 2.2198 1.342
SCA 5.781 5.5669 4.9992 3.5049 2.5094 1.3954

WOA 6.6424 5.0184 4.8451 3.0428 2.287 1.3626
FPA 5.7763 6.4239 4.6938 3.6501 1.6685 1.3861
DE 7.1323 4.9612 4.2559 3.3748 2.5797 1.3918
GA 6.5195 4.1943 5.7643 4.1847 2.2862 1.4320

5. Conclusions and Future Work

Considering the characteristic of AOA and Gold-SA, this paper proposes a hybrid
optimization algorithm, namely HAGSA. First, Gold-SA is utilized to alleviate the short-
comings of AOA, such as low population diversity, premature convergence, and easy
stagnation into local optimal solutions. Second, Levy flight and a new strategy called
Brownian mutation are used to enhance the searchability of the hybrid algorithm.

We first used the CEC 2014 competition test suite to validate the optimization per-
formance of HAGSA and its peers. The experimental results demonstrate that HAGSA
outperforms other competitors in terms of optimization accuracy, convergence speed, ro-
bustness, and statistical difference. In addition, five industrial engineering design problems
were carried out to test the ability of HAGSA to solve real-world problems. The experi-
mental results also show that HAGSA is significantly better than its peers. Therefore, it
is believed that HAGSA is a valuable method and can provide high-quality solutions to
solve these kinds of problems. Although HAGSA has significant improvements over the
original AOA and Gold-SA, its time consumption is a potential issue. This is because the
BM strategy produces two candidate solutions and uses fitness evaluation to select the best
solution. Thus, determining how to reduce the computational time under the premise of
ensuring performance needs further research. In future works, we will: (1) improve the
BM strategy to reduce the computational time without degrading HAGSA’s performance;
(2) seek to hybridize other MAs to improve AOA’s optimization performance; and (3) apply
HAGSA to solve combinatorial optimization problems (e.g., the traveling salesman prob-
lem, knapsack problem, and graph coloring problem). In addition, multilevel thresholding
image segmentation would also be an interesting and meaningful research area.
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