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Abstract: A connected graph Γ is k-extendable for a positive integer k if every matching M of size
k can be extended to a perfect matching. The extendability number of Γ is the maximum k such
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1. Introduction

Cayley graphs on a group and a generating set have been an important class of graphs
in the study of interconnection networks for parallel and distributed computing [1–6].
Some recent results about topological properties and routing problems on the networks
based on Cayley graphs on the symmetric groups with the set of transpositions as the
generating sets, including two special classes, the star graphs [5] and bubble-sort graphs [1],
can be found in [6–9].

Throughout this paper, we consider finite, simple connected graph. Let Γ be a graph
with vertex set V(Γ) and edge set E(Γ). A graph H is a subgraph of Γ if V(H) ⊆ V(Γ)
and E(H) ⊆ E(Γ). The induced subgraph Γ[C] is the subgraph of Γ with vertex set C and
edge set {uv|u, v ∈ C, uv ∈ E(Γ)}. Let G be a group, S a subset of G such that the identity
element does not belong to S and S = S−1, where S−1 = {τ−1|τ ∈ S}. The Cayley graph Γ,
denoted by Γ = Cay(G, S), is the graph whose vertex set V(Γ) = G and u, v are adjacent if
and only if u−1v ∈ S. It’s known that Γ is connected if and only if S is a generating set of G.
Furthermore, obviously, all Cayley graphs are vertex-transitive (see [10]).

We denote Sn as the symmetric group on n letters (set of all permutations on
{1, 2, . . . , n}). Now let us restrict S to be a subset of transpositions on {1, 2, . . . , n}. Clearly
all Cayley graphs Cay(Sn, S) are |S|-regular bipartite graphs. The transposition generating
graph of S, denoted by T(S), is the graph with vertex set {1, 2, . . . , n} and two vertices s
and t are adjacent if and only if the transposition (st) is in S. If T(S) is a tree, it is called
transposition trees.

An edge set M ⊆ E(Γ) is called a matching of Γ if no two of them share an end-vertex.
Moreover, a matching of Γ is said to be per f ect if it covers all vertices of Γ. A connected
graph Γ having at least 2k + 2 vertices is said to be k-extendable, introduced by Plummer [11],
if each matching M of k edges is contained in a perfect matching of Γ. Any k-extendable
graph is (k − 1)-extendable, but the converse is not true [11]. The extendability number
of Γ, denoted by ext(Γ), is the maximum k such that Γ is k-extendable. Plummer [11,12]
studied the relationship between n-extendability and other graph properties. For more
research results related to matching extendability, one can refer to [13–17]. Yu et al. [18]
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classified the 2-extendable Cayley graphs of finite abelian groups. Chen et al. [19] classified
the 2-extendable Cayley graphs of dihedral groups. Recently, Gao et al. [20] characterize
the 2-extendable quasi-abelian Cayley graphs. Their research is focused on 2-extendability
of some Cayley graphs; in this paper, we focus on the general extendability, i.e., (n− 2)-
extendability of Cayley graphs generated by transposition trees.

We proceed as follows. In Section 2, we provide preliminaries and previous related
results on Cayley graphs. In Section 3, we give our main results: show that all Cayley
graphs generated by transposition trees are (n− 2)-extendable and then determine their
extendability numbers are n− 2.

2. Preliminaries

In this section, we shall give some definitions and known results which will be used
in this paper.

Denote by Sn the group of all permutations on [n] = {1, 2, . . . , n}. Obviously,
|Sn| = n!. For convenience, we use x = x1x2 . . . xn to denote the permutation ( 1 2 ... n

x1 x2 ... xn
)

(see [21]); (st) to denote the permutation (1...s...t...n
1...t...s...n), which is called a transposition. Obvi-

ously, x1 . . . xs . . . xt . . . xn(st) = x1 . . . xt . . . xs . . . xn. The identity permutation 12 . . . n is
denoted by 1 . A permutation of Sn is said to be even (resp. odd) if it can be written as a
product of an even (resp. odd) number of transpositions. Let S be a subset of transpositions.
Clearly, the Cayley graph Cay(Sn, S) is a bipartite graph with one partite set containing
the vertices corresponding to odd permutations and the other partite set containing the
vertices corresponding to even permutations.

To better describe a transposition set S as the generating set, we use a simple way to de-
pict S via a graph. The transposition generating graph T(S) is the graph with vertex set [n] and
two vertices s and t are adjacent if and only if (st) ∈ S. If T(S) is a tree, it is called transposi-
tion trees, we denote by Tn the set of Cayley graphs Cay(Sn, S) generated by transposition
trees. For any graph Tn(S) = Cay(Sn, S) ∈ Tn, x = x1x2 . . . xn is adjacent to y = y1y2 . . . yn
if and only if for (st) ∈ S, xs = yt, xt = ys and xk = yk for k 6= s, t, that is y = x(st). In this
case, we say that the edge e = xy is an (st)-edge and denote g(e) = (st), which is the edge
e corresponding to transposition. Let Est = {e ∈ E(Tn(S))|e is an (st)-edge}. Obviously,
for every transposition (st) ∈ S, Est is a perfect matching of Tn(S). We have the following
propositions about Cayley graphs generated by transpositions:

Proposition 1 ([10], p. 52). Let Γ = Cay(Sn, S) be a Cayley graph generated by transpositions.
Then, Γ is connected if and only if T(S) is connected.

Proposition 2 ([22]). Let S and S′ be two sets of transpositions on [n]. Then, Cay(Sn, S) and
Cay(Sn, S′) are isomorphic if and only if T(S) and T(S′) are isomorphic.

In all Cayley graphs Tn, there are two classes which are most important, when T(S)
is isomorphic to the star K1,n−1 and the path Pn. If T(S) ∼= K1,n−1, Cay(Sn, S) is called n-
dimensional star graph and denoted by STn. If T(S) ∼= Pn, Cay(Sn, S) is called n-dimensional
bubble-sort graph and denoted by BSn. The star graph and the bubble-sort graph are
illustrated in Figures 1 and 2 for the case n = 4. Both STn and BSn are connected bipartite
(n− 1)-regular graph of order n!. When n = 3, T3(S) ∼= ST3 ∼= BS3 ∼= C6; n = 4, up to
isomorphism, there are exactly two different graphs ST4 and BS4 (see [23]).
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Figure 1. The star graph ST4 = Cay(S4, {(12), (13), (14)}).

Figure 2. The Bubble-sort graph BS4 = Cay(S4, {(12), (23), (34)}).

Let x = x1x2 . . . xn be a vertex of Tn(S). We say that xi is the i-th coordinate of x, denoted
by (x)i. It is easy to see that the Cayley graph Tn(S) has the following proposition:

Proposition 3 ([23,24]). Let T(S) be a transposition tree of order n, j one of its leaf and T {i}n (S)
(1 ≤ i ≤ n) the subgraph of Tn(S) induced by those vertices x with (x)j = i. Then, Tn(S) consists

of n vertex-disjoint subgraphs: T {1}n (S), T {2}n (S), . . . , T {n}n (S); each isomorphic to another Cayley
graph Tn−1(S′) = Cay(Sn−1, S′) with S′ = S\τ, where τ is the transposition corresponding to
the edge incident to the leaf j.

Readers can refer to [10,21] for the terminology and notation not defined in this paper.

3. Main Results

First, we will give some useful lemmas.
The Cartesian product Γ12Γ2 of graphs Γ1 and Γ2 is a graph with vertex set

V(Γ1)×V(Γ2). Two vertices (u, v) and (u′, v′) are adjacent in Γ12Γ2 if either u = u′ and
vv′ ∈ E(Γ2) or uu′ ∈ E(Γ1) and v = v′. Clearly Γ12Γ2 = Γ22Γ1.

Lemma 1. Let T be a labeled tree of order n, e any edge of T, and T1, T2 two compo-
nents of T − e, where |V(T1)| = r. Furthermore, let S (S−, S1, S2, respectively) be the
transposition set on {1, 2, . . . , n} satisfying T(S) = T (T(S−) = T − e, T(S1) = T1,
T(S2) = T2. Then, Cay(Sn, S−) has (n

r) components and each component is isomorphic to
Cay(Sr, S1)2Cay(Sn−r, S2).

Proof. Without loss of generality, we can assume r ≤ b n
2 c.
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When r = 1, T1 is an isolated vertex, e is a pendant edge and S1 = ∅. Then,
Cay(S1, S1)2Cay(Sn−1, S2) = Cay(Sn−1, S2). The lemma is true, following from
Proposition 3.

When r ≥ 2, we relabel T as follows: Relabel the vertices of T1 as {1, 2, . . . , r} and the
vertices of T2 as {r + 1, r + 2, . . . , n}. Let S′, S′−, S′1, S′2 be the corresponding transposition
sets. Obviously, S′− = S′1 ∪ S′2. By Proposition 2, we know that Cay(Sn, S) ∼= Cay(Sn, S′),
Cay(Sn, S−) ∼= Cay(Sn, S′−), and so on. Thus, we only need to prove the correspond-
ing result on S′, S′−, S′1 and S′2. Since T − e is disconnected, Cay(Sn, S′−) is also dis-
connected by Proposition 1. Let Γ1 be the component of Cay(Sn, S′−) containing the
identity element 1. Since T1 and T2 are connected, S′1 generates Sr and S′2 generates
Sn−r (let Sn−r be symmetric group on {r + 1, r + 2, . . . , n}). Then, the vertices in Γ1
can be represented as v = x1x2 . . . xrxr+1 . . . xn, where x1x2 . . . xr is a permutation on
{1, 2, . . . , r} and xr+1 . . . xn is a permutation on {r + 1, r + 2, . . . , n}. Furthermore, let
v = x1x2 . . . xrxr+1 . . . xn and v′ = x′1x′2 . . . x′rx′r+1 . . . x′n be two vertices in Γ1. Then, v and
v′ are adjacent if and only if for j, k ≤ r and (jk) ∈ S′1, xk = x′j, xj = x′k and xl = x′l for other
digits, or, for j, k ≥ r + 1 and (jk) ∈ S′2, xk = x′j, xj = x′k and xl = x′l for other digits. Thus,
Γ1
∼= Cay(Sr, S′1)2Cay(Sn−r, S′2) and |V(Γ1)| = r!(n− r)!. Since Cay(Sn, S′−) is vertex-

transitive, all components of Cay(Sn, S′−) are isomorphic and there exist n!
r!(n−r)! = (n

r)

components in it.

We need to consider the extendability of the Cartesian product when we investigate
the extendability of Tn(S). The following lemmas are used several times in the proof of our
theorem.

Lemma 2 ([25,26]). If Γ is a k-extendable graph, then Γ2K2 is (k + 1)-extendable.

Lemma 3 ([25]). If Γ1 and Γ2 are k-extendable and l-extendable graphs, respectively, then their
Cartesian product Γ12Γ2 is (k + l + 1)-extendable.

Lemma 4 ([27]). A bipartite Cayley graph is 2-extendable if and only if it is not a cycle.

In order to prove the main result, we need other definitions and notations. The
symmetric difference of two sets A and B is defined as the set A4B = (A− B) ∪ (B− A).
Let Γ be a connected graph. If e = uv ∈ E(Γ), denote V(e) = {u, v} and E(v) = {e|V(e) ∩
{v} 6= ∅}.

Let x be a permutation of [n]. The smallest positive integer k for which xk is the
identity permutation, this number k is called the order of x, denoted by o(x) = k. f ix(x)
denotes the set of points in [n] fixed by x (see [10]). Let f ix(x) = [n]− f ix(x). As we know,
there is another way of writing the permutation as products of disjoint cycles which are
commutative (see [21]). For example, if x ∈ S9, x = 324, 158, 967, then x = (134)(68)(79) =
(68)(134)(79), and further f ix(x) = {2, 5}, f ix(x) = {1, 3, 4, 6, 7, 8, 9}, | f ix(x)| = 7. We say
that x is a type of (m1m2m3)(m4m5)(m6m7) permutation. Clearly x6 = 1 and o(x) = 6.

Theorem 1. Any Cayley graph Tn(S) ∈ Tn is (n− 2)-extendable for any integer n ≥ 3.

Proof. We prove the theorem by induction on n. For n = 3, the T3(S) is 6-cycle, which is
1-extendable. For n = 4, the T4(S) is a 3-regular bipartite Cayley graph, which is not a
cycle. T4(S) is 2-extendable by Lemma 4.

Now we assume the statement is true for all integers smaller than n (n ≥ 5). Let S be
a subset of transpositions on [n]. The transposition generating graph T(S) is a tree. We will
show that any matching M of size (n− 2) can be extended to a perfect matching of Tn(S).

Let M be a matching with (n− 2) edges. There are (n− 1) classes of edges in Tn(S)
because of |S| = n − 1. We may suppose that Es4t4 ∩ M = ∅. Let S− = S\(s4t4). By
Lemma 1, Cay(Sn, S−) has (n

r) connected components and each component is isomorphic
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to Cay(Sr, S1)2Cay(Sn−r, S2). We may assume 1 ≤ r ≤ b n
2 c by the symmetry of Cartesian

product. For the convenience, we denote the components of Tn(S)\Es4t4 = Cay(Sn, S−) by
Ci(i = 1, 2, . . . , l), where l = (n

r).

Claim 1. Ci is (n− 3)-extendable.

If r = 1, the transposition (s4t4) corresponding to the edge is a leaf of T(S), Ci
∼=

Tn−1(S′) by Proposition 3, where S′ = S− = S\(s4t4), Ci is (n − 3)-extendable by the
inductive hypothesis.

If r = 2, T2(S) = K2, Ci
∼= K22Cay(Sn−2, S2) = K22Tn−2(S2). Tn−2(S2) is (n− 4)-

extendable by the inductive hypothesis. Ci is (n− 3)-extendable by Lemma 2.
If r ≥ 3, by the inductive hypothesis Cay(Sr, S1) ∼= Tr(S1) is (r− 2)-extendable and

Cay(Sn−r, S2) ∼= Tn−r(S2) is (n− r− 2)-extendable. Hence, Cay(Sr, S1)2Cay(Sn−r, S2)
is (n− 3)-extendable by Lemma 3. We get the Claim.

Let J = {i|E(Ci) ∩M 6= ∅}. If |J| ≥ 2, then |E(Ci) ∩M| ≤ n− 3. When i ∈ J, each
edge set E(Ci) ∩M can be extended to a perfect matching of Ci, which is defined by M(Ci).
Clearly, M ⊂ ⋃

i∈J
M(Ci). When i /∈ J, let M(Ci) be an arbitrary perfect matching of Ci. Then,

l⋃
i=1

M(Ci) =

(⋃
i∈J

M(Ci)

)
∪
(⋃

i/∈J
M(Ci)

)
is a perfect matching of Cay(Sn, S−), which is

also a perfect matching of Tn(S).
When |J| = 1, without loss of generality, we assume that M ⊂ E(C1) and C1 contains

the identity permutation 1. If M can be extended to a perfect matching of C1, we are done.
Suppose that M cannot be extended to a perfect matching of C1. Let e2 = v1v2 be an edge
in M. M\e2 can be extended to a perfect matching of C1 (since |M\e2| = n− 3), which
is denoted by M′(C1). Let E(v1) ∩ M′(C1) = e1, E(v2) ∩ M′(C1) = e3, V(e1) = {v0, v1},
V(e3) = {v2, v3} and e4 = E(v3) ∩ Es4t4 . By the transitivity of C1 and without loss of

generality, we can assume that v0 = 1. Let o(g(e1)g(e2)g(e3)g(e4)) = a, vi =
i

∏
j=1

g(ej),

and e4b+1 ∈ Es1t1 , e4b+2 ∈ Es2t2 , e4b+3 ∈ Es3t3 , e4b+4 ∈ Es4t4 (b = 0, . . . , a − 1), where
{(s1t1), (s2t2), (s3t3), (s4t4)} ⊂ S. It is easy to see g(e2) 6= g(ei) (i = 1, 3), g(e4) 6= g(ei)
(i = 1, 2, 3), g(e1)g(e2)g(e3) 6= g(e4), v3 = g(e1)g(e2)g(e3) is an odd permutation and
v4 = g(e1)g(e2)g(e3)g(e4) is an even permutation. The cardinality of f ix(v3) can only be 2,
4, 5 and 6. We discuss these four cases one by one in order to prove that M can be extended
to a perfect matching of Tn(S).

Case 1. | f ix(v3)| = 2.
In this case, v3 is a transposition and o(v3) = 2. There are two subcases for the order

of v4.
Subcase 1.1. v4 is a type of (m1m2)(m3m4) permutation.

We have o(v4) = 2, (v4)
2 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [8]. Hence, there

is an 8-cycle C8 = v0e1v1e2 . . . v7e8v8 (v8 = v0). The vertex v4b+i ∈ V(Cb+1) (i = 0, 1, 2, 3;
b = 0, 1). We may take a perfect matching M′(C2) of C2 such that e5 ∈ M′(C2), e7 ∈ M′(C2)
and e6 /∈ M′(C2) because of C2 ∼= C1. Now we take M′′ = (M′(C1)

⋃
M′(C2))4E(C8).

Clearly M ⊂ M′′, M′′ is a perfect matching of subgraph Tn(S)[V(C1)
⋃

V(C2)]. Let M(Ci)

be a perfect matching of Ci (i = 3, . . . , l). Hence,
l⋃

i=3
M(Ci)

⋃
M′′ is a perfect matching of

Tn(S).
Subcase 1.2. v4 is a type of (m1m2m3) permutation.

We have o(v4) = 3, (v4)
3 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [12]. Hence,

there is a 12-cycle C12 = v0e1v1e2 . . . v11e12v12 (v12 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2). We may take a perfect matching M′(Cb+1) of Cb+1 such that
e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2) because of Cb+1

∼= C1.
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Now we take M′′ =
(

3⋃
i=1

M′(Ci)

)
4E(C12). Clearly M ⊂ M′′, M′′ is a perfect matching

of subgraph Tn(S)[
3⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 4, . . . , l). Hence,

l⋃
i=4

M(Ci)
⋃

M′′ is a perfect matching of Tn(S).

Case 2. | f ix(v3)| = 4.
In this case, v3 is a type of (m1m2m3m4) permutation and o(v3) = 4. There are two

subcases.
Subcase 2.1. v4 is a type of (m1m2m3m4)(m5m6) permutation.

We have o(v4) = 4, (v4)
4 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [16]. Hence,

there is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16 (v16 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2, 3). We may take a perfect matching M′(Cb+1) of Cb+1 such
that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2, 3) because of

Cb+1
∼= C1. Now we take M′′ =

(
4⋃

i=1
M′(Ci)

)
4E(C16). Clearly M ⊂ M′′, M′′ is a perfect

matching of subgraph Tn(S)[
4⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 5, . . . , l).

Hence,
l⋃

i=5
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Subcase 2.2. v4 is a type of (m1m2m3m4m5) permutation.

We have o(v4) = 5, (v4)
5 = 1. Note that vi =

i
∏
j=1

g(ej), where i ∈ [20]. Hence,

there is a 20-cycle C20 = v0e1v1e2 . . . v19e20v20 (v20 = v0). The vertex v4b+i ∈ V(Cb+1)
(i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4). We may take a perfect matching M′(Cb+1) of Cb+1 such
that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1) (b = 1, 2, 3, 4) because of

Cb+1
∼= C1. Now we take M′′ =

(
5⋃

i=1
M′(Ci)

)
4E(C20). Clearly M ⊂ M′′, M′′ is a perfect

matching of subgraph Tn(S)[
5⋃

i=1
V(Ci)]. Let M(Ci) be a perfect matching of Ci (i = 6, . . . , l).

Hence,
l⋃

i=6
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Case 3. | f ix(v3)| = 5.
In this case, v3 is a type of (m1m2m3)(m4m5) permutation and o(v3) = 6. There are

four subcases.
Subcase 3.1. v4 is a type of (m1m2m3)(m4m5m6) permutation.
We have o(v4) = 3, (v4)

3 = 1. There is a 12-cycle C12 = v0e1v1e2 . . . v11e12v12

(v12 = v0) in subgraph Tn(S)[
3⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2.

The rest of the proof is similar to Subcase 1.2.
Subcase 3.2. v4 is a type of (m1m2m3m4)(m5m6) permutation.
We have o(v4) = 4, (v4)

4 = 1. There is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16

(v16 = v0) in subgraph Tn(S)[
4⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3;

b = 0, 1, 2, 3. The rest of the proof is similar to Subcase 2.1.
Subcase 3.3. v4 is a type of (m1m2m3m4m5) permutation.
We have o(v4) = 5, (v4)

5 = 1. There is a 20-cycle C20 = v0e1v1e2 . . . v19e20v20

(v20 = v0) in subgraph Tn(S)[
5⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3;

b = 0, 1, 2, 3, 4. The rest of the proof is similar to Subcase 2.2.
Subcase 3.4. v4 is a type of (m1m2m3)(m4m5)(m6m7) permutation.
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We have o(v4) = 6, | f ix(v4)| = 7 and n ≥ 7, l = (n
r) ≥ 7, (v4)

6 = 1. vi =
i

∏
j=1

g(ej),

where i ∈ [24]. Hence, there is a 24-cycle C24 = v0e1v1e2 . . . v23e24v24 (v24 = v0). The
vertex v4b+i ∈ V(Cb+1) (i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4, 5). We may take a perfect matching
M′(Cb+1) of Cb+1 such that e4b+1 ∈ M′(Cb+1), e4b+3 ∈ M′(Cb+1) and e4b+2 /∈ M′(Cb+1)

(b = 1, 2, 3, 4, 5) because of Cb+1
∼= C1. Now we take M′′ =

(
6⋃

i=1
M′(Ci)

)
4E(C24). Clearly,

M ⊂ M′′, M′′ is a perfect matching of subgraph Tn(S)[
6⋃

i=1
V(Ci)]. Let M(Ci) be a perfect

matching of Ci (i = 7, . . . , l). Hence,
l⋃

i=7
M(Ci)

⋃
M′′ is a perfect matching of Tn(S).

Case 4. | f ix(v3)| = 6.
In this case, v3 is a type of (m1m2)(m3m4)(m5m6) permutation and o(v3) = 2. There

are three subcases.
Subcase 4.1. v4 is a type of (m1m2)(m3m4)(m5m6)(m7m8) permutation.
We have o(v4) = 2. There is an 8-cycle C8 = v0e1v1e2 . . . v7e8v8 (v8 = v0) in subgraph

Tn(S)[
2⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1. The rest of the proof is

similar to Subcase 1.1.
Subcase 4.2. v4 is a type of (m1m2m3m4)(m5m6) permutation.
We have o(v4) = 4. There is a 16-cycle C16 = v0e1v1e2 . . . v15e16v16 (v16 = v0) in

subgraph Tn(S)[
4⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2, 3. The rest of

the proof is similar to Subcase 2.1.
Subcase 4.3. v4 is a type of (m1m2m3)(m4m5)(m6m7) permutation.
We have o(v4) = 6. There is a 24-cycle C24 = v0e1v1e2 . . . v23e24v24 (v24 = v0) in

subgraph Tn(S)[
6⋃

i=1
V(Ci)], where v4b+i ∈ V(Cb+1) for i = 0, 1, 2, 3; b = 0, 1, 2, 3, 4, 5. The

rest of the proof is similar to Subcase 3.4.
In conclusion, any matching M of size n− 2 can be extended to a perfect matching of

Tn(S). The proof is complete.

The extendability number of Γ, denoted by ext(Γ), is the maximum k such that Γ is
k-extendable. As we know that Tn(S) ∈ Tn is an (n− 1)-regular bipartite Cayley graph and
not (n− 1)-extendable. We can obtain the extendability number of Tn(S) by Theorem 1.

Corollary 1. ext(Tn(S)) = n− 2 for n ≥ 3.

4. Concluding Remarks

In this paper, we prove that Cayley graph Tn(S) generated by transposition trees on
{1, 2, . . . , n} is (n− 2)-extendable and determine that the extendability number is n− 2,
which enriches the results on the extendability of Cayley graphs. Here, the transposition
generating graph of S is a tree. A natural problem is whether we can generalize transposi-
tion trees to general connected graphs which is worth of further investigation. We present
a conjecture.

Conjecture 1. Let S be a transposition generating set of the symmetric group Sn. Then, the Cayley
graph Cay(Sn, S) is (|S| − 1)-extendable.
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