Handling Irregular Many-Objective Optimization Problems via Performing Local Searches on External Archives
Abstract
:1. Introduction
2. Algorithm Design
2.1. Main Framework of LSEA
Algorithm 1: Main framework of LSEA. |
2.2. Maintain External Archive
Algorithm 2: Function MaintainExternalArchive(). |
3. Experimental Studies
3.1. Experimental Settings
- (1)
- The metric HV represents the volume of space composed of a reference vector and a non-dominated solution set in the objective space. Assuming that the reference vector is and the solution set is P, the HV value of P can be estimated as below:
- (2)
- Suppose is a set of vectors evenly distributed over the Pareto-optimal front of an MaOP. The IGD value of a solution set P can be estimated as below:
3.2. Experimental Results and Analysis
3.3. Performance Improvement of Local Search
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pham, T.P.; Fahringer, T. Evolutionary multi-objective workflow scheduling for volatile resources in the cloud. IEEE Trans. Cloud Comput. 2022, 10, 1780–1791. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, X.; Liu, G.; Pedrycz, W. Uncertainty-aware online scheduling for real-time workflows in cloud service environment. IEEE Trans. Serv. Comput. 2021, 14, 1167–1178. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Zhou, M.; Fan, Y.; Xia, Y. Multi-swarm co-evolution based hybrid intelligent optimization for bi-objective multi-workflow scheduling in the cloud. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2183–2197. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Zuo, X.; Zhao, X. Robustness enhancement of neural networks via architecture search with multi-objective evolutionary optimization. Mathematics 2022, 10, 2724. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Wang, G.G. Combining key-points-based transfer learning and hybrid prediction strategies for dynamic multi-objective optimization. Mathematics 2022, 10, 2117. [Google Scholar] [CrossRef]
- Yu, G.; Ma, L.; Jin, Y.; Du, W.; Liu, Q.; Zhang, H. A survey on knee-oriented multi-objective evolutionary optimization. IEEE Trans. Evol. Comput. 2023; in press. [Google Scholar]
- Stewart, R.H.; Palmer, T.S.; DuPont, B. A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Prog. Nucl. Energy 2021, 138, 103830. [Google Scholar] [CrossRef]
- Falcón-Cardona, J.G.; Coello, C.A.C. Indicator-based multi-objective evolutionary algorithms: A comprehensive survey. ACM Comput. Surv. 2020, 53, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Yen, G.G.; Zhang, J. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Trans. Evol. Comput. 2013, 18, 269–285. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, S. A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evol. Comput. 2017, 21, 329–346. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 23, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Trivedi, A.; Srinivasan, D.; Sanyal, K.; Ghosh, A. A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 2017, 21, 440–462. [Google Scholar] [CrossRef]
- Das, I.; Dennis, J.E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 1998, 8, 631–657. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Liu, Q.; Hao, K.; Jin, Y. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA J. Autom. Sin. 2021, 8, 303–318. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Y.; Heiderich, M.; Rodemann, T. Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems. Knowl.-Based Syst. 2022, 240, 108197. [Google Scholar] [CrossRef]
- Tian, Y.; He, C.; Cheng, R.; Zhang, X. A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 5880–5894. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Masuyama, N.; Liu, Y.; Ishibuchi, H. Reference vector adaptation and mating selection strategy via adaptive resonance theory-based clustering for many-objective optimization. arXiv 2022, arXiv:2204.10756. [Google Scholar]
- Chen, H.; Cheng, R.; Pedrycz, W.; Jin, Y. Solving many-objective optimization problems via multistage evolutionary search. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 3552–3564. [Google Scholar] [CrossRef]
- Feng, W.; Gong, D.; Yu, Z. Multi-objective evolutionary optimization based on online perceiving Pareto front characteristics. Inf. Sci. 2021, 581, 912–931. [Google Scholar] [CrossRef]
- Ma, X.; Yu, Y.; Li, X.; Qi, Y.; Zhu, Z. A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2020, 24, 634–649. [Google Scholar] [CrossRef]
- Li, M.; Yao, X. What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multiobjective optimisation. Evol. Comput. 2020, 28, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Jin, Y.; Heiderich, M.; Rodemann, T. Coordinated Adaptation of Reference Vectors and Scalarizing Functions in Evolutionary Many-Objective Optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2023; in press. [Google Scholar]
- Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, J. Two-stage hybrid learning-based multi-objective evolutionary algorithm based on objective space decomposition. Inf. Sci. 2022, 610, 1163–1186. [Google Scholar] [CrossRef]
- Gu, F.; Cheung, Y.M. Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans. Evol. Comput. 2018, 22, 211–225. [Google Scholar] [CrossRef]
- Liu, Y.; Ishibuchi, H.; Masuyama, N.; Nojima, Y. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts. IEEE Trans. Evol. Comput. 2020, 24, 439–453. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Y.; Heiderich, M.; Rodemann, T.; Yu, G. An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems. IEEE Trans. Cybern. 2022, 52, 2698–2711. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Elarbi, M.; Bechikh, S.; Coello, C.A.C.; Makhlouf, M.; Said, L.B. Approximating complex Pareto fronts with predefined normal-boundary intersection directions. IEEE Trans. Evol. Comput. 2020, 24, 809–823. [Google Scholar] [CrossRef]
- Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 2016, 27, 1–30. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, C.; Fan, Q. Self-adaptive constrained multi-objective differential evolution algorithm based on the state–action–reward–state–action method. Mathematics 2022, 10, 813. [Google Scholar] [CrossRef]
- Abed-alguni, B.H.; Alawad, N.A.; Barhoush, M.; Hammad, R. Exploratory cuckoo search for solving single-objective optimization problems. Soft Comput. 2021, 25, 10167–10180. [Google Scholar] [CrossRef]
- Alkhateeb, F.; Abed-alguni, B.H.; Al-rousan, M.H. Discrete hybrid cuckoo search and simulated annealing algorithm for solving the job shop scheduling problem. J. Supercomput. 2022, 78, 4799–4826. [Google Scholar] [CrossRef]
- Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [Google Scholar] [CrossRef]
- Meghwani, S.S.; Thakur, M. Adaptively weighted decomposition based multi-objective evolutionary algorithm. Appl. Intell. 2020, 51, 1–23. [Google Scholar] [CrossRef]
- Li, K. Decomposition Multi-Objective Evolutionary Optimization: From State-of-the-Art to Future Opportunities. arXiv 2021, arXiv:2108.09588. [Google Scholar]
- Yang, M.; Li, C.; Cai, Z.; Guan, J. Differential evolution with auto-enhanced population diversity. IEEE Trans. Cybern. 2014, 45, 302–315. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Li, M.; Jin, Y. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems. IEEE Comput. Intell. Mag. 2019, 14, 61–74. [Google Scholar] [CrossRef]
- Li, L.; Yen, G.G.; Sahoo, A.; Chang, L.; Gu, T. On the estimation of Pareto front and dimensional similarity in many-objective evolutionary algorithm. Inf. Sci. 2021, 563, 375–400. [Google Scholar] [CrossRef]
- Takagi, T.; Takadama, K.; Sato, H. A distribution control of weight vector set for multi-objective evolutionary algorithms. In Proceedings of the International Conference on Bio-inspired Information and Communication, Pittsburgh, PA, USA, 13–14 March 2019; pp. 70–80. [Google Scholar]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Zhang, T. Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 2016, 20, 821–837. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Li, M.; Tian, Y.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X. A benchmark test suite for evolutionary many-objective optimization. Complex Intell. Syst. 2017, 3, 67–81. [Google Scholar] [CrossRef]
- Hua, Y.; Jin, Y.; Hao, K. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts. IEEE Trans. Cybern. 2019, 49, 2758–2770. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, R.; Wen, J.; Li, H.; Weng, J. Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations. Inf. Sci. 2020, 509, 457–469. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Bosman, P.A.; Thierens, D. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhen, L.; Yao, X. How to read many-objective solution sets in parallel coordinates. IEEE Comput. Intell. Mag. 2017, 12, 88–100. [Google Scholar] [CrossRef]
MOPs | m | MOEA/D-CWV | DEA-GNG | MaOEA/IGD | NSGA-III | MOEA/D-PaS | LSEA |
---|---|---|---|---|---|---|---|
MaF1 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF2 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () + | () − | () | |
13 | () − | () − | () − | () + | () − | () | |
15 | () − | () − | () − | () + | () − | () | |
MaF3 | 5 | () − | () − | () − | () + | () ≈ | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF4 | 5 | () − | () ≈ | () − | () − | () − | () |
10 | () − | () + | () − | () − | () − | () | |
13 | () − | () ≈ | () − | () + | () − | () | |
15 | () − | () ≈ | () − | () + | () − | () | |
MaF5 | 5 | () − | () + | () − | () + | () + | () |
10 | () − | () + | () − | () + | () + | () | |
13 | () − | () + | () − | () + | () + | () | |
15 | () − | () + | () − | () + | () + | () | |
MaF6 | 5 | () − | () ≈ | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF7 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () ≈ | () − | () + | () − | () | |
13 | () − | () + | () − | () ≈ | () − | () | |
15 | () ≈ | () ≈ | () ≈ | () ≈ | () ≈ | () | |
MaF8 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF9 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
−/+/≈ | 35/0/1 | 25/6/5 | 35/0/1 | 23/11/2 | 30/4/2 |
MOPs | m | MOEA/D-CWV | DEA-GNG | MaOEA/IGD | NSGA-III | MOEA/D-PaS | LSEA |
---|---|---|---|---|---|---|---|
MaF1 | 5 | () − | () + | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () + | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF2 | 5 | () − | () ≈ | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () + | () − | () | |
15 | () − | () − | () − | () + | () − | () | |
MaF3 | 5 | () − | () ≈ | () − | () + | () ≈ | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF4 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () ≈ | () − | () − | () − | () | |
13 | () − | () + | () − | () ≈ | () − | () | |
15 | () − | () + | () − | () + | () − | () | |
MaF5 | 5 | () − | () + | () + | () + | () + | () |
10 | () − | () + | () − | () + | () + | () | |
13 | () − | () + | () − | () + | () − | () | |
15 | () − | () + | () − | () + | () ≈ | () | |
MaF6 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | 2.4674 × 10+2 () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF7 | 5 | () − | () + | () − | () − | () − | () |
10 | () − | () + | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () ≈ | () ≈ | () ≈ | () ≈ | () ≈ | () | |
MaF8 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | (1.46 × 10+1) − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
MaF9 | 5 | () − | () − | () − | () − | () − | () |
10 | () − | () − | () − | () − | () − | () | |
13 | () − | () − | () − | () − | () − | () | |
15 | () − | () − | () − | () − | () − | () | |
−/+/≈ | 35/0/1 | 23/9/4 | 34/1/1 | 25/9/2 | 32/2/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Wu, R.; Chen, J.; Li, J. Handling Irregular Many-Objective Optimization Problems via Performing Local Searches on External Archives. Mathematics 2023, 11, 10. https://doi.org/10.3390/math11010010
Xing L, Wu R, Chen J, Li J. Handling Irregular Many-Objective Optimization Problems via Performing Local Searches on External Archives. Mathematics. 2023; 11(1):10. https://doi.org/10.3390/math11010010
Chicago/Turabian StyleXing, Lining, Rui Wu, Jiaxing Chen, and Jun Li. 2023. "Handling Irregular Many-Objective Optimization Problems via Performing Local Searches on External Archives" Mathematics 11, no. 1: 10. https://doi.org/10.3390/math11010010
APA StyleXing, L., Wu, R., Chen, J., & Li, J. (2023). Handling Irregular Many-Objective Optimization Problems via Performing Local Searches on External Archives. Mathematics, 11(1), 10. https://doi.org/10.3390/math11010010