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1. Introduction

The Hopf Galois extension was introduced in [1]. It was shown that for a finite
dimensional semisimple Hopf algebra H and a left H-module algebra R, the smash product
R#H is Morita equivalent to RH if and only if R/RH is an H∗-Galois extension. Now
suppose R is a differential graded (dg) algebra and the differential is compatible with the
H-module action. The Hopf Galois extension on dg algebra R and the equivalence between
dg module categories gr-(R#H) and gr-RH follows easily from [1]. However, if we consider
the derived categories D(R#H) and D(RH), then the problem is subtle.

In the present paper, we focus our attention on the relationship between the derived
categories D(R#H) and D(RH). We introduce the concept of Hopf dg Galois extensions
and show that R#H and RH is derived equivalent to each other if and only if R/RH is a
Hopf dg Galois extension. In some situations, for example, when R is a positive graded
algebra, the concept of Hopf dg Galois extensions is precisely equal to the concept of Hopf
Galois extensions. Thus, we can consider the Hopf dg Galois extension as a generality of
the Hopf Galois extension.

For this purpose, we proceed as follows. We first review the basic facts on derived
categories and derived functors. In Section 4, we define the Hopf dg Galois extensions.
We show that R#H and RH is derived equivalent to each other if and only if R/RH is a
Hopf dg Galois extension in Theorem 2. Finally, we give some conditions for the quotient
categories of derived categories D(R#H) and D(RH) to be equivalent.

2. Preliminaries

Throughout this paper, k is a field of characteristic 0 and all algebras are k-algebras;
unadorned ⊗ means ⊗k and Hom means Homk. Recall that a differential graded (dg)
algebra is a Z-graded algebra A =

⊕
n∈Z An equipped with a differential d of degree 1 such

that d(ab) = d(a)b + (−1)|a|ad(b), where a, b ∈ A are homogeneous elements and |a| is the
degree of a.

Suppose A is an algebra without gradings. We may view A as a dg algebra
⊕

n∈Z An
concentrated in degree zero, where

(1) A0 = A,
(2) An = 0, for every n 6= 0,
(3) the differential d = 0.
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Unless otherwise stated, all modules in this paper are right modules. Let A and B
be dg algebras. A (right) dg A-module M is a (right) A-module M, which has a grading
M =

⊕
n∈Z Mn and a differential d such that Mn Am ∈ Mn+m and d(ma) = d(m)a +

(−1)nmd(a), for m ∈ Mn and a ∈ Am. We call M a dg (A, B)-bimodule if M, which comes
with one grading and one differential, is both a left dg A-module and a right dg B-module.

Let A and B be dg algebras. Let M be a dg (A, B)-module and N be a right dg
B-bimodule. Let

Hom•B(M, N) =
⊕
n∈Z

Homn
B(M, N),

where Homn
B(M, N) is the set of all graded B-module maps of degree n. Then, Hom•B(M, N)

is a right dg A-module with a differential defined by d( f ) = dN ◦ f − (−1)n f ◦ dM ∈
Homn+1

B (M, N), for f ∈ Homn
B(M, N) and n ∈ Z. Let T be a right dg A-module. Then,

the tensor product T⊗A M is a right dg B-module with differential d(t⊗m) = d(t)⊗m +
(−1)nt⊗ d(m) for t ∈ Tn and m ∈ M.

Let A and B be dg algebras. M(A) will denote the dg module category of dg A-
modules. D(A) will denote the derived category of dg A-modules. For a dg (A, B)-module
M, we have two functors:

Hom•B(M,−) : M(B)→M(A),

and
−⊗A M : M(A)→M(B).

These two functors compose an adjoint pair (− ⊗A M, Hom•B(M,−)), see ([2],
Lemma 19.11).

Let
RHom•B(M,−) : D(B)→ D(A)

denote the right derived functor of Hom•B(M,−) and

−⊗L
A M : D(A)→ D(B)

denote the left derived functor of−⊗A M. Due to the adjoint above, (−⊗L
A M, R Hom•B(M,−))

is an adjoint pair, see ([3], Section 5.8).
Let H be a finite dimensional semisimple Hopf algebra with counit ε. We say that R is

a left H-module algebra, if there is a left H-module action on R such that

(1) h · a ∈ Rn,
(2) h · (ab) = Σ(h(1) · a)(h(2) · b),
(3) h · 1 = ε(h) · 1,

for every a, b ∈ R and h ∈ H.
Let R be a left H-module algebra. For a left H-module M, we write MH = {m ∈

M | h · m = ε(h)m, for all h ∈ H}. Let S̄ denote the inverse of the antipode S. It is well
known that RH is a subalgebra of R and R has an (RH , R#H)-bimodule structure defined by

r1.r.(r2#h) = (S̄h) · (r1rr2),

and R has a (R#H, RH)-bimodule structure defined by

(r1#h).r.r2 = r1(h · r)r2,

where the notation “.” denotes the multiplication on the module R and the notation “·”
denotes the H-module action on the algebra R, see ([4], Sections 1.7 and 4.1).

The Hopf Galois extension is defined in [1]. R/RH is said to be right H∗-Galois if
the map

γ : R⊗RH R→ R⊗ H∗, r1 ⊗ r2 7→ (r1 ⊗ 1)ρ(r2)
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is surjective, where R is considered as a right H∗-comodule and ρ is the comodule structure
map. By ([1], Theorem 1.2), R/RH is right H∗-Galois if and only if the map R⊗RH R →
R#H, r1 ⊗ r2 7→ (r1#t)(r2#1) is surjective.

Let C be a triangulated category and B be a full triangulated subcategory of C. We call
B a thick subcategory if the following condition is satisfied:

If f : X → Y is a map in C which is contained in a distinguished triangle

X → Y → Z → X[1]

where Z is in B, and if the map f also factors through an object W of B, then X and Y are
objects of B.

If B is a thick subcategory of C, then the quotient category CB is a triangulated category.
For the thick subcategory, we have the following proposition.

Proposition 1 ([5], Proposition 1.3). A full triangulated subcategory B of a triangulated category
C is thick if and only if every object of C that is a direct summand of an object of B is itself an object
of B.

3. The Equivalences of Triangulated Categories

Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Then, A = eBe is
a dg algebra, Be is a dg (B, A)-bimodule and eB is a dg (A, B)-bimodule. For the dg (B, A)-
bimodule Be, we may find a dg (B, A)-bimodule P and a dg (B, A)-bimodule morphism
p : P → Be such that p is a quasi-isomorphism and P is K-projective both as a left dg
B-module and as a right dg A-module. Similarly, we may find a dg (A, B)-bimodule Q
and a dg (A, B)-bimodule morphism q : Q→ eB such that q is a quasi-isomorphism and Q
is K-projective both as a left dg A-module and as a right dg B-module. Then, the functor
− ⊗L

A Be : D(B) → D(A) is isomorphic to the functor − ⊗A P : D(B) → D(A) and the
functor −⊗L

A eB : D(A)→ D(B) is isomorphic to the functor −⊗A Q : D(A)→ D(B).
Since (−⊗L

A eB, RHom•B(eB,−)) is an adjoint pair between D(B) and D(A), we have
a bijection

Ψ : HomD(B)(Be⊗L
A eB, B)→ HomD(A)(Be, Be),

since RHom•B(eB, B) ∼= Be in D(A). Below, we set

ψ = Ψ−1(IdBe), (1)

where IdBe is the identity morphism in HomD(A)(Be, Be).
Similarly, (−⊗A Q, Hom•B(Q,−)) is an adjoint pair between D(B) and D(A). For

every i ∈ Z, there exists an isomorphism of dg (B, B)-bimodules

αi : Hom•B(P⊗A Q, B[i])→ Hom•A(P, Hom•B(Q, B[i])),

such that for f ∈ Homn
B(P⊗A Q, B[i]), x ∈ P, y ∈ Q, we have

αi( f )(x) : y 7→ f (x⊗ y).

Note that both Q and eB are K-projective as right dg B-modules. It follows that the
quasi-isomorphism q : Q→ eB, when viewed as a right dg B-module morphism, is indeed
a homotopic equivalence. Hence the dg (B, B)-bimodule morphism

Hom•A(P, Hom•B(q, B[i])) : Hom•A(P, Hom•B(eB, B[i]))→ Hom•A(P, Hom•B(Q, B[i]))

is a quasi-isomorphism. Since Hom•B(eB, B[i]) ∼= Be[i] as dg (B, A)-bimodules, let βi denote
the quasi-isomorphism from Hom•A(P, Be[i]) to Hom•A(P, Hom•B(Q, B[i])). Thus, we have
the following isomorphism

Φi = (H0(βi))
−1 ◦ H0(αi) : HomD(B)(P⊗A Q, B[i])→ HomD(A)(P, Be[i]).
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Let φ := m ◦ (p⊗A q) be the composition

P⊗A Q
p⊗q−→ Be⊗A eB m−→ B, (2)

where m is the multiplication map in B, that is, m(b1 ⊗ b2) = b1b2. Then, φ is a dg (B, B)-
bimodule morphism. For b ∈ Bi such that d(b) = 0, let lb denote the map lb : B→ B[i], a 7→
ba for a ∈ B, and let l′b denote the map l′b : Be→ Be[i], ae 7→ bae, for a ∈ B. Then, we have
the following lemma.

Lemma 1. Retain the notation above, Φi(lb ◦ φ) = l′b ◦ p.

Proof. By the definitions, for x ∈ P, y ∈ Q, αi(lb ◦ φ)(x) : y 7→ bp(x)q(y) and βi(l′b ◦
p)(x) : y 7→ bp(x)q(y). Thus, Φi(lb ◦ φ) = l′b ◦ p.

Since P ∼= Be in D(A) and Be ⊗L
A eB ∼= P ⊗A Q in D(B), we have the following

commutative diagram.

HomD(B)(Be⊗L
A eB, B) Ψ //

∼=
��

HomD(A)(Be, Be)

∼=
��

HomD(B)(P⊗A Q, B)
Φ0 // HomD(A)(P, Be).

Hence the morphism ψ may be represented by φ as defined in (2). That is, we have
cone(φ) ∼= cone(ψ) in D(B). Moreover, we may use Φ0 to conduct calculations instead of
using Ψ.

Let A, B be dg algebras. Let N be a dg (A, B)-bimodule. The bimodule structure
implies a natural map lA : A → RHom•B(N, N), sending a ∈ A to the left module action
on N. In [5], Rickard characterized the Morita equivalence of derived categories. For dg
algebras, we have the following lemma.

Lemma 2 ([5], Theorem 6.4). Let A, B be dg algebras. Let N be a dg (A, B)-bimodule. Then, the
functor −⊗L

A N : D(A)→ D(B) gives an equivalence of triangulated categories if and only if

(1) N is a compact object of D(B).
(2) N is a weak generator in D(B).
(3) The map lA : A→ RHom•B(N, N) is a quasi-isomorphism.

Now we can get the following theorem.

Theorem 1. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Set A = eBe.
The following conditions are equivalent.

(1) F = −⊗L
A eB : D(A)→ D(B) is an equivalence of triangulated categories.

(2) G = −⊗L
B Be : D(B)→ D(A) is an equivalence of triangulated categories.

(3) The morphism ψ : Be⊗L
A eB→ B is an isomorphism in D(B).

Proof. (1)⇔(2) F is left adjoint to G′ = RHom•B(eB,−) : D(B) → D(A). The functors G
and G′ are naturally isomorphic to each other since eB is a compact K-projective dg module
in D(B) and Hom•B(eB, B) ∼= Be, see ([6], Section 2.1). Then, (F, G) is an adjoint pair.
Therefore F is an equivalence of triangulated categories if and only if G is an equivalence
of triangulated categories.
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(1)⇒(3) Since F and G are equivalences, the functors −⊗A P : D(B) → D(A) and
− ⊗B Q : D(A) → D(B) are equivalences. For every n ∈ Z, we have the following
morphisms of groups.

HomD(A)(P, P[n])
−⊗AQ−−−−−−−−−−→ HomD(B)(P⊗A Q, P⊗A Q[n])

HomD(B)(P⊗AQ,φ[n])
−−−−−−−−−−−−→ HomD(B)(P⊗A Q, B[n])

Φn−−−−−−−−−→ HomD(A)(P, Be[n])
HomD(A)(P,p[n])−1

−−−−−−−−−−−−→ HomD(A)(P, P[n]).

By Lemma 1, the composition above is the identity morphism. Since the morphisms
− ⊗A Q, Φn and HomD(A)(P, p[n])−1 are isomorphisms, HomD(B)(P ⊗A Q, φ[n]) is an
isomorphism.

By (1) and (2), (F, G) is an adjoint pair and then (−⊗A P,−⊗B Q) is an adjoint pair. So,
we have P⊗A Q ∼= B⊗B P⊗A Q ∼= B in D(B). Thus, HomD(B)(B, φ[n]) is an isomorphism
for every n ∈ Z. Hence, φ is an isomorphism in D(B) and φ is a quasi-isomorphism of dg
modules. Then, ψ is an isomorphism.

(3)⇒(1) The morphism of dg modules φ : P⊗A Q→ B is a quasi-isomorphism since
ψ is an isomorphism. Then, P⊗A Q ∼= B in D(B). By Lemma 2, the functor −⊗B P⊗A
Q : D(B)→ D(B) is an equivalence. Since we have isomorphisms Q⊗B P ∼= eB⊗B Be ∼= A
in D(A), the functor −⊗A Q⊗B P : D(A) → D(A) is an equivalence. Thus, the functor
−⊗A Q : D(A) → D(B) is an equivalence. Hence, F = −⊗L

A eB : D(A) → D(B) is an
equivalence of triangulated categories.

4. Hopf DG Galois Extensions

Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Suppose that R is a dg algebra with the differential d. We call R a left dg H-
module algebra if R is a left graded H-module algebra and the differential of R is compatible
with the H-module action, that is,

d(h · r) = h · d(r)

for h ∈ H and r ∈ R. Since R is a dg algebra, the smash product R#H is a dg algebra with
the differential δ = d#Id and RH is a dg subalgebra of R. Let e = 1R#t ∈ R#H. Then, e is an
idempotent in R0 and δ(e) = 0. Thus, e(R#H)e is a dg algebra with differential δ. By direct
calculation, we have the following isomorphisms ([7], Lemma 3.1).

(1) The map RH → e(R#H)e, r 7→ e(r#1)e, is an isomorphism of dg algebras.
(2) The map R→ (R#H)e, r 7→ (r#1)e, is an isomorphism of dg (R#H, RH)-bimodules.
(3) The map R→ e(R#H), r 7→ e(r#1), is an isomorphism of dg (RH , R#H)-bimodules.

Let B = R#H and A = eBe ∼= RH . Let p : P → R be the dg (R#H, RH)-bimodule
quasi-isomorphism such that P is K-projective on both sides. Let q : Q → R be the dg
(RH , R#H)-bimodule quasi-isomorphism such that Q is K-projective on both sides. Recall
the dg (R#H, R#H)-bimodule morphism

φ : P⊗RH Q→ R#H, x⊗ y 7→ p(x)q(y)

defined above. Now we can define the Hopf dg Galois extension.

Definition 1. For a dg left H-module algebra R, R/RH is called dg H∗-Galois if the morphism
φ : P⊗RH Q→ R#H is a quasi-isomorphism.

Now we have the following theorem for dg H∗-Galois extensions.
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Theorem 2. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left dg H-module algebra. The following conditions are equivalent.

(1) R/RH is dg H∗-Galois.
(2) (a) The map lR#H : R#H → RHom•RH (R, R) is a quasi-isomorphism,

(b) R is a compact object in D(RH).
(3) R is a weak generator in D(R#H).

Proof. Let B = R#H, e = 1R#t, then A = eBe = RH . Thus, the condition (1) is equivalent
to Theorem 1 (3). By Lemma 2, the condition (2) is equivalent to Theorem 1 (2) and the
condition (3) is equivalent to Theorem 1 (1). Then, by Theorem 1, (1)⇔ (2)⇔ (3).

The following results will show the relation between Hopf Galois extensions and Hopf
dg Galois extensions.

Lemma 3. Let H be a finite dimensional semisimple Hopf algebra and R be a dg left H-module
algebra. Then, RR#H is a weak generator in D(R#H) if and only if for every dg R#H-module M,
Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every n ∈ Z.

Proof. Given a dg R#H-module (M, dM), by ([7], Lemma 2.2), for every n ∈ Z,

HomR#H(R, M[n]) ∼= HomR(R, M[n])H ∼= (Ker dn
M)H .

Then, for every n ∈ Z, we have

HomK(R#H)(R, M[n]) ∼= (Ker dn
M/Im dn−1

M )H ∼= (Hn(M))H .

Since H is semisimple, (−)H ∼= HomH(k,−) is an exact functor. Therefore, (Hn(M))H ∼=
Hn(MH) for every n ∈ Z. By [7] Proposition 2.5, R is a K-projective dg R#H-module. Thus, for
every n ∈ Z,

HomD(R#H)(R, M[n]) ∼= HomK(R#H)(R, M[n]) ∼= (Hn(M))H ∼= Hn(MH).

Hence, RR#H is a weak generator in D(R#H) if and only if for every dg R#H-module
M, HomD(R#H)(R, M[n]) = 0 for every n ∈ Z implies M ∼= 0 in D(R#H), if and only if
for every dg R#H-module M, Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every
n ∈ Z.

Corollary 1. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left H-module dg algebra. If R/RH is right dg H∗-Galois, then the map
ϕ : R⊗RH R→ R#H, r1 ⊗ r2 7→ (r1#t)(r2#1) is a quasi-isomorphism.

Proof. Consider the short exact sequence of dg R#H-modules

0→ Ker ϕ→ R⊗RH R→ Im ϕ→ 0.

Since (−)H is an exact functor, we have the short exact sequence

0→ (Ker ϕ)H → (R⊗RH R)H → (Im ϕ)H → 0.

Since (R ⊗RH R)H = t(R ⊗RH R) = (tR) ⊗RH R = RH ⊗RH R ∼= R, for every α ∈
(Ker ϕ)H , there exists r ∈ R such that α = 1⊗ r ∈ (R⊗RH R)H . Then, ϕ(α) = ϕ(1⊗ r) =
(1#t)(r#1) = 0. However, by [1] [Lemma 0.5], (1#H)(R#1) ∼= H ⊗ R as vector spaces by

η : (1#H)(R#1)→ H ⊗ R, (1#h)(r#1) 7→ h(2) ⊗ (h(1) · r),
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and
η−1 : H ⊗ R→ (1#H)(R#1), h⊗ r 7→ (1#h(2))((S

−1h(1)) · r#1).

Thus, (1#t)(r#1) = 0 if and only if r = 0, which means (Ker ϕ)H = 0. Therefore,
Hn((Ker ϕ)H) = 0 for every n ∈ Z. By Lemma 3, Hn(Ker ϕ) = 0 for every n ∈ Z. Then,
Hn(R⊗RH R) ∼= Hn(Im ϕ) for every n ∈ Z.

Consider another short exact sequence of dg R#H-modules

0→ Im ϕ→ R#H → Coker ϕ→ 0.

Since (−)H is an exact functor, we have the short exact sequence

0→ (Im ϕ)H → (R#H)H → (Coker ϕ)H → 0.

By ([1], Lemma 0.5), (R#H)H = (1#t)(R#1). However,

(Im φ)H = ((R#t)(R#1))H

= (1#t)(R#t)(R#1)
= (RH#t)(R#1)
= (1#t)(RH#1)(R#1)
= (1#t)(R#1).

Thus, the map (Im ϕ)H → (R#H)H is surjective. Then, (Coker ϕ)H = 0. Therefore,
Hn((Coker ϕ)H) = 0 for every n ∈ Z. By Lemma 3, Hn(Coker ϕ) = 0 for every n ∈ Z.
So, we have Hn(Im ϕ) ∼= Hn(R#H) for every n ∈ Z. Thus, Hn(R⊗RH R) ∼= Hn(R#H) for
every n ∈ Z. Hence, ϕ is a quasi-isomorphism.

Corollary 2. Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R =

⊕
n≥0 Rn be a left H-module dg algebra. Then, R/RH is dg H∗-Galois if and

only if R/RH , forgetting the differentials, is right H∗-Galois.

Proof. Suppose that R/RH is dg H∗-Galois. Then, by Corollary 1, the map ϕ : R ⊗RH

R → R#H, r1 ⊗ r2 7→ (r1#t)(r2#1) is a quasi-isomorphism. Since H0(R) = Ker d0
R and

1R ∈ Ker d0
R, the map ϕ is surjective. Thus, R/RH is right H∗-Galois.

Suppose that R/RH is right H∗-Galois. Then, by [1] Theorem 1.2, R is a dg finitely
generated projective left RH-module, and for every dg R#H-module M, MH ⊗RH R ∼= M as
dg R#H-modules. Thus, Hn(MH) = 0 for every n ∈ Z implies Hn(M) = 0 for every n ∈ Z.
By Lemma 3, RR#H is a weak generator in D(R#H). Thus, R/RH is dg H∗-Galois.

If R is a dg algebra concentrated in degree 0, then Corollary 2 shows that R/RH is
dg H∗-Galois if and only if R/RH , forgetting the differentials, is H∗-Galois. Thus, the
definition of dg H∗-Galois is an extension of the definition of H∗-Galois.

5. The Equivalences of Quotient Categories

Suppose that B is a dg algebra and e is an idempotent in B0 such that d(e) = 0. Then,
eBe is a dg algebra. Let A = eBe. Let

D0(B) = {M ∈ D(B) | HomD(B)(M, B[n]) = 0, n ∈ Z}

and
D0(A) = {N ∈ D(A) | HomD(A)(N, Be[n]) = 0, n ∈ Z}.

By Proposition 1, it is clear thatD0(B) (resp. D0(A)) is a thick triangulated subcategory
of D(B) (resp. D(A)). Let Dq(B) denote the quotient category D(B)

D0(B) and Dq(A) denote

the quotient category D(A)
D0(A)

. Let π denote the natural quotient functor. Theorem 1 shows

that the map φ : Be⊗L
A eB→ B is an isomorphism in D(B) if and only if D(A) ∼= D(B). In
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this section, we will give some equivalent conditions for the quotient categories Dq(B) and
Dq(A) being equivalent.

Theorem 3. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Let A = eBe
be a dg algebra. The following conditions are equivalent.

(1) The map lB : B→ RHom•A(Be, Be) is a quasi-isomorphism.
(2) HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z.
(3) The functor −⊗L

B Be : D(B)→ D(A) implies an equivalence of triangulated categories from
Dq(B) to Dq(A).

Proof. (1)⇔(2) Consider the composition Φn ◦HomD(B)(φ, B[n]),

HomD(B)(B, B[n])
HomD(B)(φ,B[n])
−−−−−−−−−→ HomD(A)(P, P[n])

Φn−−−−−−−→ HomD(A)(P, Be[n]).

Since Φn is an isomorphism for every n, by Lemma 1, the condition (1) is equivalent to
HomD(B)(φ, B[n]) being an isomorphism for every n. Consider the distinguished triangle
in D(B),

P⊗A Q
φ // B // cone(φ) // P⊗A Q[1].

In the following proving process, we write (−)∗n for the functor HomD(B)(−, B[n])
temporarily to simplify the notation. Then, we have the long exact sequence

· · · → (B)∗n
(φ)∗n−−→ (P⊗A Q)∗n → (cone(φ))∗n+1 → (B)∗n+1

(φ)∗n+1−−−→ (P⊗A Q)∗n+1 → · · · .

Thus, we have that the functor (φ)∗n is an isomorphism for every n if and only if
(cone(ψ))∗n ∼= (cone(φ))∗n = 0 for every n.

(2)⇔(3) Consider the distinguished triangle in D(B)

Be⊗L
A eB

ϕ // B // cone(ϕ) // Be⊗L
A eB[1].

Then, we have a distinguished triangle in Dq(B)

π(Be⊗L
A eB)

π(ϕ) // π(B) // π(cone(ϕ)) // π(Be⊗L
A eB[1]).

Suppose that HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z, then π(cone(ϕ)) = 0 in
Dq(B). Thus, π(Be ⊗L

A eB) ∼= π(B) in Dq(B). Since eB ⊗L
B Be ∼= A in D(A), we have

π(eB⊗L
B Be) ∼= π(A) in Dq(A). Therefore, the functor −⊗L

B Be : D(B)→ D(A) implies an
equivalence of triangulated categories from Dq(B) to Dq(A).

Suppose that the functor −⊗L
B Be : D(B) → D(A) implies an equivalence of trian-

gulated categories from Dq(B) to Dq(A); then, π(Be ⊗L
A eB) ∼= π(B) in Dq(B). Thus,

π(cone(ϕ))=0 in Dq(B), that is, HomD(B)(cone(ψ), B[n])=0 for all n ∈ Z.

Let H be a finite dimensional semisimple Hopf algebra with integral t such that
ε(t) = 1. Let R be a left H-module algebra. Let B = R#H and e = 1#t in Theorem 3; then,
A ∼= eBe ∼= RH as dg algebras. Thus, Theorem 3 shows some equivalent conditions of the
quasi-isomorphism R#H → RHom•RH (R, R).

Corollary 3. Let B be a dg algebra and e be an idempotent in B0 such that d(e) = 0. Let A = eBe
be a dg algebra. If HomD(B)(B, B[n]) = 0, HomD(A)(Be, Be[n]) = 0, for n ≤ α or n ≥ β, then
the following conditions are equivalent.

(1) The map lB : B→ RHom•A(Be, Be) is a quasi-isomorphism.
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(2) HomD(B)(cone(ψ), B[n]) = 0 for α + 1 ≤ n ≤ β.
(3) HomD(B)(cone(ψ), B[n]) = 0 for all n ∈ Z.
(4) The functor −⊗L

B Be : D(B)→ D(A) implies an equivalence of triangulated categories from
Dq(B) to Dq(A).

Proof. By Theorem 3, it is clear that (1) ⇔ (3) ⇔ (4) and (3) ⇒ (2). It suffices to show
(2)⇒ (3).

(2) ⇒ (3) By the proof of Theorem 3, if we have HomD(B)(B, B[n]) = 0 and
HomD(A)(Be, Be[n]) = 0, for n ≤ α or n ≥ β, then the long exact sequence shows that
HomD(B)(B, B[n]) ∼= HomD(A)(P, Be[n]) for α + 1 ≤ n ≤ β− 1. Thus HomD(B)(B, B[n]) ∼=
HomD(A)(P, Be[n]) for all n.

Remark 1. If α = −1 and we let j(M) = min{i | Exti
D(B)(M, B) 6= 0} for M ∈ D(B), then

the condition (2) is equivalent to j(cone(ψ)) ≥ β + 1. Thus, Corollary 3 is a dg version of ([8],
Theorem 2.4).

6. Conclusions

The Hopf dg Galois extension shows the relationship between dg algbras R and
RH , which relate to the equivalences of some derived categories. Since the Hopf dg
Galois extension is compatible with the usual Hopf Galois extension, we can promote
the propositions related to Hopf Galois extension, and relate these to derived categories
in a similar way. For an H-comodule algebra and its subalgebras, there exists a kind of
Hopf Galois extensions. These may be promoted to dg algebras and derived categories in
some way.

Funding: This research received no funding.

Acknowledgments: Many thanks to Jiwei He for giving useful advice on the subject.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cohen, M.; Fischman, D.; Montgomery, S. Hopf Galois Extensions, Smash Products, and Morita Equivalence. J. Algebra 1990, 133,

351–372. [CrossRef]
2. Anderson, F.W.; Fuller, K.R. Rings and Categories of Modules; Springer: New York, NY, USA, 1974.
3. Zhang, P. Triangulated Categories and Derived Categories (Chinese); Science Press: Beijing, China, 2015.
4. Montgomery, S. Hopf Algebras and Their Actions on Rings; American Mathematical Soc.: Rhode Island, PO, USA, 1992.
5. Rickard, J. Morita Theory for Derived Categories. J. Lond. Math. Soc. 1989, 2, 436–456. [CrossRef]
6. Jørgensen, P. Recollements for differential graded algebras. J. Algebra 1991, 299, 589–601. [CrossRef]
7. He, J.-W.; Van Oystaeyen, F.; Zhang, Y.H. Hopf Algebra Actions on Differential Graded Algebras and Applications. Bull. Belg.

Math. Soc.-Simon 2011, 18, 99–111. [CrossRef]
8. Bao, Y.-H.; He, J.-W.; Zhang, J.J. Pertinency of Hopf actions and quotient categories of Cohen-Macaulay algebras. J. Noncommun.

Geometry 2019, 13, 283–319. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0021-8693(90)90274-R
http://dx.doi.org/10.1112/jlms/s2-39.3.436
http://dx.doi.org/10.1016/j.jalgebra.2005.07.027
http://dx.doi.org/10.36045/bbms/1299766491
http://dx.doi.org/10.4171/JNCG/336
http://www.ncbi.nlm.nih.gov/pubmed/36567999

	Introduction
	Preliminaries
	The Equivalences of Triangulated Categories
	Hopf DG Galois Extensions
	The Equivalences of Quotient Categories
	Conclusions
	References

