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Abstract: Non-motorized vehicles have become one of the most commonly used means of trans-
portation for people due to their advantages of low carbon, environmental protection, convenience
and safety. Frequent interaction among non-motorized vehicle users in the shared space will bring
security risks to their movement. Therefore, it is necessary to adopt appropriate means to evaluate the
traffic efficiency and safety of non-motorized vehicle users in the passage, and using a micro model
to conduct simulation evaluation is one of the effective methods. However, some existing micro
simulation models oversimplify the behavior of non-motorized vehicle users, and cannot reproduce
the dynamic interaction process between them. This paper proposes a modified social force model
to simulate the dynamic interaction behaviors between non-motorized vehicle users on the road.
Based on the social force model, a new behavioral force is introduced to reflect the three dynamic
interaction behaviors of non motor vehicle users, namely, free movement, following and overtaking.
Non-motorized vehicle users choose which behavior is determined by the introduced decision model.
In this way, the rule-based behavior decision model is combined with the force based method to
simulate the movement of non-motorized vehicles on the road. The modified model is calibrated
using 1534 non-motorized vehicle trajectories collected from a road in Xi’an, Shaanxi, China. The
validity of the model is verified by analyzing the speed distribution and decision-making process
of non-motorized vehicles, and comparing the simulation results of different models. The effects of
the number of bicycles and the speed of electric vehicles on the flow of non-motorized vehicles are
simulated and analyzed by using the calibrated model. The relevant results can provide a basis for
urban management and road design.

Keywords: non-motorized vehicles; social force model; dynamic interaction behavior; behavioral
force model

MSC: 37M05

1. Introduction

As a primary means of transportation, non-motorized vehicles have been widely pro-
moted in many countries due to their public health and environmental benefits. The safety
of non-motorized users and the construction of non-motorized infrastructure have also
been widely promoted in these countries [1]. However, as the demand for non-motorized
vehicles increases, it also brings many bottlenecks related to traffic management [2]. Since
the riding space is shared in the non-motorized lane, the operating space between the
non-motorized users is ambiguous, which leads to frequent interaction between the non-
motorized users at different speeds, which poses serious problems for the safety and
efficiency of road traffic [3]. Thus, accurate evaluation is needed to help design and manage
passageways for non-motorized vehicles. Non-motorized vehicle micro-simulation models
are a great way to meet this need [4].

Generally, the non-motorized vehicle flow micro-simulation models can be divided
into two categories: cellular automata (CA) and social force models (SFM). The cellular
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automaton model can simulate the spatiotemporal evolution of complex systems. Tang
et al. [5] proposed an extended cellular automata model to study the movement of each
pedestrian in the university canteen. Every pedestrian’s movement within the university
canteen is flawlessly replicated by considering the characteristics of the pedestrian flow
within the university canteen and the characteristics of the university canteen. Liang
et al. [6] used a cellular automata model to simulate pedestrian flow to avoid collisions
during evacuation. At the same time, they used the proposed CA model considering colli-
sion avoidance to explore the impact of collision avoidance on the evacuation process. Cao
et al. [7] proposed a cellular automaton simulation model for the space-time distribution
of mixed bicycles. Based on the updated rules of the NaSch model, the conflict between
heterogeneous bicycles and dynamic lane-changing behaviors in two-dimensional space
was considered. At the same time, the proposed mesh density and time step of the model
have been upgraded. The CA model cannot show cyclic dynamics in two-dimensional
space because it is affected by discrete motion, which does not happen in real life [8].

The discipline of evacuation has conducted substantial research on social force models,
which can account for movements in continuous space. Li et al. [9] proposed a speed
correction method that considered the interaction between human attributes and different
groups of people and discussed the influence of different human attributes and different
personnel on evacuation efficiency in the case of a passenger ship fire. Deng et al. [10]
proposed a dynamic route optimization method based on an improved real-time informa-
tion algorithm to obtain the optimal evacuation route when a fire broke out on a cruise
ship. Huang et al. [11] used the social group force model to model how people act within
and between groups. Han et al. [12] introduced an information transfer mechanism into a
social force model to simulate the behavior of pedestrians in emergencies. Guo et al. [13]
improved the social force model by introducing the force generated by the green signal
countdown and analyzed the characteristics of pedestrians crossing the road twice. Qin
et al. [14] proposed a group vision-sharing method and added aggregation and collective
collision avoidance force to the original social force formula to simulate two-way pedestrian
flow. Even though the social force model has been extensively studied in human behavior,
it has not gotten as much attention in the non-motorized sector.

Recently, Zhou et al. [15] proposed a new data fusion method to explore the impact
of shared electric bicycles on space-time commuting demand by fusing multi-source data
such as shared electric bicycle travel data, traffic communities and building environments.
Li et al. [16] explored how members of bicycle groups interact and organize in bicycle
flows, which has important implications for bicycle traffic modeling and safe bicycle
facility design. Liu et al. [17] proposed a new force model for simulating evacuation in
complex environments that considers more environmental factors, making it suitable for
complex emergency environments. Liu et al. [18] propose an agent-space model (ASM)
to elucidate the movement of cyclists and pedestrians on shared roads, accounting for
the dispersion observed among non-motorized road users. Anvari et al. [19] proposed a
three-level micro-mathematical model capable of representing the behavior of pedestrians
and vehicles in a shared spatial layout and implemented it in a traffic simulation tool. Luo
et al. [20] studied mixed pedestrian–bicycle merging flows at T-junctions under symmetric
and asymmetric merging situations, which supports the design of mixed traffic facilities
and the management of pedestrian-bicycle flows. Schöttl et al. [21] used an individual-
based model to simulate the behavior of crowds to estimate evacuation times and crowd
density and optimize the efficiency of public transport. Some studies [22–24] expand the
force range by adding specific collision avoidance/behavior forces or changing parameters
based on the simulation implementation, which is often beneficial to make the model more
closely related to the dynamic behavior of traffic users. In practice, however, the behavioral
processes are intricate and beyond the capabilities of force-based models [25]. Therefore,
additional elements need to be introduced to the force-based model to ensure the fidelity of
the simulation results. Anvari et al. [19] integrated additional path-planning models into
the force-based model to provide traffic users with global pathfinding. Liang et al. [26] put
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rule-based behavioral constraints into a force-based model to simulate how people interact
in traffic.

This study designs a modified non-motorized vehicle SFM model that integrates the be-
havioral decision-making behavior of non-motorized vehicle users. The main contributions
of this study are as follows:

• In the original SFM model, we introduced a behavioral force model, which involves
three common interaction behaviors of non-motorized vehicles, namely, free move-
ment, following and overtaking.

• The model was calibrated using trajectory data collected in Xi’an, Shanxi, China, and
satisfactory performance was obtained. Simulations are used to determine how the
number of bikes in the road affects the average speed of electric vehicles.

The structure of this paper is as follows. Section 2 introduces the modified social
force model and the specific implementation method. Section 3 presents data acquisition
and processing, model calibration and comparison of simulation results. Finally, Section 4
summarizes the findings and proposes future research directions.

2. Methods

In this section, we first discuss the general idea and structure of the proposed model
in Section 2.1 and then illustrate the decision model of the proposed model in Section 2.2,
which includes the decisions for free-moving, following and overtaking behaviors. Finally,
the calculation of specific behavioral forces is discussed in Section 2.3.

2.1. Modified Social Force Model

We chose the original SFM [27] as the basis for the non-motorized vehicle micro-
simulation model because it considers the user’s continuous motion.

In the original SFM, the dynamics of an object are captured by a driving force and
repulsive forces exerted by other road users [22]. The driving force motivates the object
to move freely toward the destination at its desired speed. The repulsive force represents
the expectation of maintaining a safe distance from other road users. In addition, a special
repulsive force is exerted by the boundaries of infrastructure, such as fences and markers,
defined as boundary forces, which are usually introduced to limit the extent of the area an
object can reach. The basic structure of the original SFM is shown in Figure 1a.

Figure 1. Comparison of the original SFM and the modified SFM. (a) The original SFM. (b) The
modified SFM.

The resultant force of the original SFM is presented as follows:

mu
dvu(t)

dt
= f 0

u(t) + ∑
v( 6=u)

f uv(t) + ∑
W

f uW(t)− ξu(t) (1)

The left side of Equation (1) represents the resultant instantaneous force on the ob-
ject in the form of Newton’s second law, where u represents the non-motorized vehicle
individually; mu represents the mass of the individual u; t represents the time variable;
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and vu(t) represents, at the time of t, the actual speed of the individual u. The right side
of the equal sign is the sum of the various forces received by the individual, where f 0

u(t)
represents the force generated by personal u to drive itself in the target direction; f uv(t)
represents the repulsive force between individuals u and v; the direction of the force is
from the individual v to individual u; f uW(t) represents the repulsion between individuals
u and the boundary; and ξu(t) represents the disturbance force produced by the individual
u under the effect of numerous factors.

The original SFM lacks an additional decision mechanism to ensure sufficient realism
of non-motorized vehicle interaction behavior [22]. In addition, non-motorized vehicles
typically exhibit three behavioral choices in non-motorized traffic: free movement, follow-
ing and overtaking [28]. For accurate simulation, the decision model that considers the
above three behaviors should also be added to the original SFM.

We modified the original SFM by embedding an element to describe the interactive
decision process, as shown in Figure 1b. We build a behavioral force model with a decision-
making process in which decision outcomes are selected based on the decision model
and implemented by the corresponding behavioral force. The decision model aims to
choose the appropriate behavior among three options: free movement, following and
overtaking. The decision model captures the dynamic behavior and interactions of non-
motor vehicles, bringing the model simulation results closer to reality. Therefore, compared
with Equation (1), the behavioral force fB is introduced into the original SFM. The resultant
force of the modified SFM can be expressed by Equation (2).

mu
dvu(t)

dt
= f 0

u(t) + ∑
v( 6=u)

f uv(t) + ∑
W

f uW(t) + f B − ξu(t) (2)

This revised model’s repulsive, boundary and driving forces are consistent with the
original SFM. Equations (3) and (4) can be used to describe the social force f uH between
the simulated object u and other interactive objects H (including other traffic users v and
boundary W).

f uH = AuH exp
(
−duH
BuH

)
nuHkuH (3)

kuH =

[
λ + (1− λ)

1 + cos(ϕuH)

2

]
(4)

In the equation, duH is the distance between the simulated object u and other interact-
ing objects H, as shown in Figure 2; nuH is the unit vector of H pointing to u; kuH is the
anisotropy of the interaction, which is related to the angular difference ϕuH between H the
moving direction and u the moving direction; AuH and BuH are parameters to be estimated;
and parameter λ represents ϕuH the degree of influence from 0 to 1. More details can be
found in Helbing and Molnar’s study [19].

Figure 2. The concept of duH . (a) The distance between non-motorized vehicles and the boundary.
(b) The distance between non-motorized vehicles and non-motorized vehicles.
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2.2. Decision for Free Movement, Following and Overtaking Behaviors

This paper assigns a rule-based algorithm to make behavioral decisions at each time
step. Rule-based time steps will give an appropriate behavioral decision outcome (i.e., free
movement, following and overtaking). The factors considered in this algorithm are the
non-motorized vehicle decision parameters commonly used in the literature [29], such as
speed and position relationship. The definition of the positional relationship of interactive
objects is shown in Figure 3.

Figure 3. Schematic diagram of parameters related to following/overtaking decision/free move-
ment decision.

Here, the way to figure out which object is in front and which is behind is described in
the literature [30], and the method can be written as Equation (5):

∣∣yv(t)− yg(t)
∣∣ ≤ 1

2
wv (5)

Among them, yv(t) denotes the lateral position of the current rider; yg(t) represents
other objects’ lateral position; g represents a leading or lagging object selected from all
front and rear road users; and wv equals the current rider’s width and a different shy-away
distance. Among them, the shy-away distance is defined as the additional lateral distance.
Since the shy-away distance represents the free lateral space ahead of the cyclist who needs
to ride [30], its value is set to 0.5 m, which is the half-width of the cyclist. (Jin’s research [31]
shows that the non-motorized vehicle width is set at 1.00 m).

The specific flow of the algorithm is shown in Figure 4. In addition to the given
parameters shown in Figure 3, vv(t) represents the current speed of the non-motorized
vehicle; vv+1(t) represents the current speed of the leading object. In addition, several
numerical examples with different types of the leading object and corresponding decision
results are provided in Table 1. These examples show that cyclists will choose appropriate
behavior in their current traffic conditions.

Figure 4. Determining free movement, following and overtaking behavior at one time step.
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Table 1. Numerical examples of decision-making algorithms.

vv(t)(m/s) vv+1(t)(m/s) Sh(s) Cl(m) Cr(m) Decision Result

Have leading object 6.31 3.36 1.29 2.07 0.43 Overtaking
5.54 4.43 1.96 0.32 0.58 Following

Others - - - - - Free movement

2.3. Behavior Force Model

A specific behavior corresponds to a behavioral force model to calculate the corre-
sponding force. As mentioned above, there are three basic behaviors: free movement,
following and overtaking.

If the behavioral decision model selects a specific behavior in a simulation time step,
the corresponding force model is dedicated to calculating its behavioral force. Cyclists
interact with other cyclists by determining intermediate destinations based on selected
behaviors [32].

The direction of the behavioral force points to an intermediate destination corre-
sponding to a particular behavior. Among them, the intermediate destination of the free
movement behavior is set as the final destination of the cyclist, which is a random position
outside the passage’s exit. A follow-behavior object’s intermediate destination is at its
lead object’s tail. The intermediate destination of the overtaking behavior is located at
the side of the overtaken non-motorized vehicle, maintaining a fixed distance from the
overtaken non-motorized vehicle. Among them, the fixed distance required for overtaking
is determined by the actual data overtaking lateral displacement distance. Figure 5 displays
the schematic representations of the intermediate locations for the three behavioral force
models used in this study.

Figure 5. Intermediate destination for free movement, following and overtaking actions. (a) Free
movement-driving force. (b) Following behavior-following force. (c) Overtaking behavior-
overtaking force.

The specific models of free movement, following and overtaking behaviors are con-
structed as follows:

2.3.1. The Free Movement Force Model

This study uses the forward driving force of the original SFM as the operational model
that powers the free-motion behavior. The free-moving behavior force f B calculation is
expressed by Equations (6) and (7):

f B(t) = mv
vded − vv

τd
(6)



Mathematics 2023, 11, 170 7 of 18

ed(t) =
rd

v − rv∣∣rd
v − rv

∣∣ (7)

Among them, vd represents the desired speed; τd is the relaxation time; vV is the
current speed; ed(t) represents the desired direction; rd

v is the intermediate destination; and
rv is the current simulated non-motorized vehicle instantaneous position. For the following
behavioral force equation, the calculation of ed(t) is consistent.

2.3.2. The Bicycle-Following Force Model

The following force model is represented by the Intelligent Driver Model (IDM) devel-
oped by Treiber et al. [33], which is believed to simulate non-motorized vehicle following
behavior [34] effectively. The following behavior force f B calculation is represented by
Equations (8) and (9):

f B(t) = mvamax ·
(

1−
(

vv

vd

)δe

−
(

Sd
∆S

)2
)
· ed(t) (8)

Sd = s0 + s1 ·
√

vv

vd
+ Td · vv +

vv · ∆v
2√amax ·b f

(9)

where amax is the maximum acceleration of the simulated non-motorized vehicle; δe is the
acceleration index; Sd is the desired minimum distance; and ∆S is the distance between
two vehicles measured from the leading edge of the current non-motorized vehicle to the
rear of the previous non-motorized vehicle; and s0, s1 is the distance of the jam; Td is the
time interval of the safety time; ∆v is the speed difference with the previous non-motorized
vehicle; and b f is a comfortable deceleration.

2.3.3. The Overtaking Force Model

To simplify the complexity of the model, we decouple the overtaking behavior forces
in the lateral and longitudinal directions and consider the component forces in these two
directions separately. According to the work of Ni, the force of these two components
is calculated as follows: the Equation (10), which calculates the force of the longitudinal
component of f x

B, and Equation (11), which calculates the force of the transverse component
of f y

B.
f x

B(t) = (−0.12 · ∆s + 0.72) · ex(t) (10)

f y
B(t) =

yd
n
∗ π

(t0)
2 · cos

(
t0 − t′

t0
· π
)
· ey(t) (11)

∆s represents the longitudinal separation between the current non-motorized vehicle
and the overtaken non-motorized vehicle; yd represents the expected lateral offset of the
current non-motorized vehicle in the corresponding stage; t0 represents the duration of each
stage; ex(t) and ey(t) represent the longitudinal and lateral directions; and n represents
a parameter.

3. Case Study
3.1. Data

Because the simulation model proposed in this paper reproduces the traffic situation
in the road through the cyclist’s decision making on its behavior, testing on non-motorized
lanes with frequent interactions is required. The research site is selected as a non-motorized
vehicle lane named Weiyang Road in Xi’an, Shanxi, China. The non-motorized vehicle
flow passing through this road comprises electric vehicles and bicycles. In this scene, the
interaction between the cyclists is clear, and the direction of their movement changes a lot.

Currently, the target tracking algorithm based on Yolov5 and Deep Sort is the best
method for extracting video trajectory data, which can realize functions such as traffic
statistics, trajectory tracking and speed detection. Cameras were set up at nearby heights
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to get a full view of the non-motorized vehicle. The video was collected from around 17:30
to 19:30 on 25 September 2022, and the weather conditions during the investigation were
clear. We obtained 1534 non-motorized vehicle trajectories in videos with 0.03 s intervals,
including 346 bicycles and 1188 electric vehicle trajectories, and the localization accuracy of
the trajectories is 0.05 m.

3.2. Model Calibration

In addition to the measurable parameters vd, yd and t0, the genetic algorithm (GA)
was used to obtain the optimal values of the relevant parameters of the modified SFM
force model. Let vd be the average value yd and t0 of the vehicle speed distribution in
the empirical data for bicycles and electric vehicles, respectively. According to bicycles
overtaking bicycles, electric vehicles overtaking electric vehicles, bicycles overtaking electric
vehicles, and electric vehicles overtaking bicycles, it is set as the average value of the vehicle
overtaking lateral displacement and overtaking time in the empirical data. The objective
function is set according to the free movement, following and overtaking behaviors of the
vehicle, such as Equations (12)–(14):

RMSPE1 =

√√√√∑M
t=1 ∑N

i=1
(
Ysim

it −Yobs
it
)2

∑M
t=1 ∑N

i=1
(
Yobs

it
)2 (12)

RMSPE2 =

√√√√∑M
t=1 ∑N

i=1
(
Xsim

it − Xobs
it
)2

∑M
t=1 ∑N

i=1
(
Xobs

it
)2 (13)

RMSPE3 =

√√√√∑M
t=1 ∑N

i=1
(
Xsim

it − Xobs
it
)2

+
(
Ysim

it −Yobs
it
)2

∑M
t=1 ∑N

i=1
(
Xobs

it
)2

+
(
Yobs

it
)2 (14)

Among them, t is the time; M is the total time; i is the vehicle; N is the number of
non-motorized vehicles; Ysim

it is the simulated ordinate of the ith vehicle at time t. Yobs
it is

the actual ordinate of the ith vehicle at time t; Xsim
it represents the simulated abscissa of the

ith vehicle at time t; and Xobs
it represents the actual abscissa of the ith vehicle at time t.

The relevant genetic parameters for the calibration of the force correlation model in
this paper are as follows: The population size is set to 200, the crossover rate is set to 0.5, the
mutation probability is set to 0.1, the maximum evolutionary generation is set to 100,000,
and the individual fitness function value is set to 1× 10−6. The maximum evolutionary
algebra controls the number of iterations. The process is repeated ten times to find a result
closer to the global optimum, and the parameter set with the slightest error is chosen [35].

Therefore, Table 2 gives the measurable state parameters and calibration parameters.

Table 2. Measurable state parameters and calibration parameters.

Model Parameter Type Parameter Value Description

Measurable
state

Vu 5.27 Average bicycle speed expected (m/s)

parameters 6.25 Average expected speed of electric vehicles (m/s)
Overtaking
force model

yd 0.98 The average value of the lateral displacement of the bicycle over the
bicycle (m)

2.06 The average value of the lateral displacement of the electric vehicle over
the electric vehicle (m)

1.28 The average value of the lateral displacement of the bicycle super electric
vehicle (m)

1.18 The average value of the lateral displacement of the electric vehicle
overtaking the bicycle (m)
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Table 2. Cont.

Model Parameter Type Parameter Value Description

t0 1.95 Average overtaking time for bicycles overtaking bicycles (s)
2.00 Average overtaking time of electric vehicles over electric vehicles (s)
3.37 Average overtaking time for bicycles over electric vehicles (s)
2.07 Average overtaking time for electric vehicles overtaking bicycles (s)

Calibration n 0.70 Bicycle Overtaking Bicycle Overtaking Coefficient
parameters 1.40 Electric vehicle overtaking electric vehicle overtaking coefficient

0.70 Bicycle overtaking electric vehicle overtaking coefficient
0.88 Electric vehicle overtaking bicycle overtaking coefficient

sa 2.00 Overtaking interval (s)
Following 9.01 Bicycle to bicycle interval (s)
force model 4.06 The time interval between electric vehicles and electric vehicles(s)

4.95 Time between bicycles and electric vehicles (s)
4.45 Time between electric vehicles and bicycles (s)

amax 1.00 Bicycle maximum acceleration/deceleration speed(m/s2)
1.10 Maximum acceleration/deceleration speed of electric vehicle (m/s2)

δe 2.20 Bicycle and Bicycle Acceleration Index
1.55 Electric vehicle and electric vehicle acceleration index
2.03 Bicycle and electric vehicle acceleration index
0.002 Electric vehicle and bicycle acceleration index

bf 1.61 Comfortable deceleration between bicycle and bicycle(m/s2)
2.32 Comfortable deceleration of electric vehicles and electric vehicles (m/s2)
2.20 Comfortable deceleration of bicycles and electric vehicles (m/s2)
1.24 Comfortable deceleration of electric vehicles and bicycles (m/s2)

s0 9.45 Distance from bicycle to bicycle jam0 (m)
2.65 The distance between electric vehicles and electric vehicles0 (m)
4.98 The distance between bicycles and electric vehicles0 (m)
4.76 The distance between electric vehicles and bicycles0 (m)

s1 6.23 Distance from bicycle to bicycle jam1 (m)
3.76 The distance between electric vehicles and electric vehicles1 (m)
2.01 The distance between bicycles and electric vehicles1 (m)
4.47 The distance between electric vehicles and bicycles 1 (m)

Td 1.34 The time gap between bicycle and bicycle safety time (s)
1.75 The time gap between electric vehicles and electric vehicles (s)
1.50 The time gap between the safety time of bicycles and electric vehicles (s)
2.09 The time gap between electric vehicles and bicycles (s)

Boundary AuW 1.20 Boundary force
force model BuW 600
Driving
force model

τd 0.20 Buffer time

Repulsive AuV 0.48 Repulsive force
force model BuV 600

3.3. Simulation Results and Discussion

Based on the calibration results, this section will discuss the performance of the
proposed model. Simulation results are compared with observations in empirical data
with the original SFM [19] simulation performance. Table 2 shows that the calibration
parameters of the original SFM are the same as the model’s optimal values (for the driving
force model, the repulsive force model and the boundary force model).

3.3.1. Speed Analysis

Figure 6 is a video randomly selected for 60 s from the empirical data, and the speed of
non-motorized vehicles (electric vehicles and bicycles) at each moment is summarized. The
speed distribution map of non-motorized vehicles is obtained. In addition, the simulation
experiment takes the speed, position and time of non-motorized vehicles in the empirical
data as the starting value. The simulation velocity distribution of non-motorized vehicles
is obtained by simulating a free-movement model. The abscissa of the figure represents
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the distribution of the speed of non-motorized vehicles, and the ordinate represents the
percentage of the total number of vehicles that speed. Average the speeds of electric vehicles
and bicycles, respectively, to obtain the expected speeds of electric vehicles and bicycles in
this experiment.

Figure 6. Speed distribution of non-motorized vehicles. (a) Electric vehicle speed distribution map.
(b) Bicycle speed distribution map.

3.3.2. Decision Process Analysis

To reveal and justify the proposed model in determining riders’ decision making and
interactions, we conduct simulation and empirical data comparisons on the following and
overtaking behaviors of riders with significant interaction, discussing changes in their
behavioral decisions and their longitudinal and The change of lateral position with time is
shown in Figures 7 and 8.

Among them, Figure 7 shows the simulation effect of a randomly selected situation at
each moment. Figure 8 shows the decision-making process that the rider follows. Initially,
the simulated cyclist is free to move. Timing starts when the following behavior occurs,
and the simulated cyclist decides to perform the following behavior. It can be seen from
Figure 8 that the following in the simulation is very close to the observed results. The
entire simulation motion process is similar to the observed results. It may be because the
proposed simulation model can accurately replicate the cyclist’s behavioral choices, thus
proving the good effect of the following models in the decision-making model.

Among them, Figure 9 shows the effect on the simulation of a random overtaking
situation at each point in time. Figure 10 shows the decision-making process of the rider
overtaking. Initially, the simulated cyclist is free to move. Timing starts when the overtaking
behavior occurs, and the simulated cyclist decides to execute the overtaking behavior. It
can be seen from Figure 10 that the overtaking in the simulation is very close to the
observation results. The entire simulation motion process is similar to the observed results.
It may be because the proposed simulation model can accurately replicate the cyclist’s
behavioral choices, thus proving the good effects of the overtaking model in the decision-
making model.
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Figure 7. Simulation diagram of a bicycle following a bicycle at each moment.

Figure 8. Rider follows the decision-making process. (a) Bike following bike. (b) Electric vehicles
follow electric vehicles. (c) Bikes follow electric vehicles. (d) Electric vehicle following bicycle.
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Figure 9. The simulation diagram of each moment of the bicycle overtaking the bicycle.

Figure 10. The rider’s decision-making process for overtaking. (a) Bicycle super bike. (b) Electric car
super electric car. (c) Bicycle ultra electric vehicle. (d) Electric vehicle super bike.
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3.3.3. Model Comparison

The effect of the bicycle ratio on the average speed of the road is shown in Figure 11.
The number of non-motorized vehicles is 5, the abscissa indicates the number of bicycles,
and the ordinate indicates the average speed of non-motorized vehicles in the road. We can
see that, compared with the original social force model, the average velocity distribution of
the improved social force model is closer to the empirical data, with the mean and standard
deviation being 5.94 s and 0.74 s, respectively. The mean and standard deviation of the
empirical data are 5.96 s and 0.86 s, respectively, and the mean and standard deviation of
the original social force model are 5.53 s and 0.44 s, respectively. The results show that
the improved social force model outperforms the original social force model in simulating
the behavior of non-motorized vehicles due to the dynamic control of the behavioral
decision-making process.

Figure 11. The effect of bicycle ratio on the average speed of the road.

3.4. Model Application
3.4.1. The Influence of Bicycle Ratio on the Speed of Electric Vehicles

Based on the results of calibration and comparison between the simulated trajectory
and the actual trajectory, we conducted an applied study on the effect of the bicycle ratio in
the road on the average speed of electric vehicles. We set the number of non-motorized
vehicles passing through the passage to 5, 15 and 30, respectively, and we discuss the
change in the average speed of electric vehicles in the passage by changing the proportion
of bicycles.

Analysis of Figure 12 shows that, when there are 5 non-motorized vehicles in the
passage, the electric vehicle’s speed will increase when the number of bicycles is small due
to overtaking. As the number of bicycles increases, bicycles block the passage of electric
vehicles, so the speed of electric vehicles decreases significantly.
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Figure 12. The effect of the number of bicycles on the average speed of electric vehicles.

When the number of non-motorized vehicles in the passage is 10, overtaking is not
obvious due to a large number of electric vehicles, which leads to a significant reduction
in the speed of electric vehicles when the number of bicycles is small. As the number of
bicycles increases, the speed of electric vehicles decreases gradually in fluctuations.

When the number of non-motorized vehicles in the passage is 15, the situation is
similar to that of 10. Compared with the number of non-motorized vehicles in the road of
10, the speed of electric vehicles decreased significantly when 15 vehicles were in the road.

When the overall number of non-motorized vehicles is small, a small number of
bicycles can promote the traffic efficiency of electric vehicles to a certain extent. When the
overall number of non-motorized vehicles is large, the existence of bicycles will reduce
the traffic efficiency of electric vehicles. As the proportion of bicycles increases, the traffic
efficiency of electric vehicles gradually decreases, and the greater the overall number
of non-motorized vehicles, the more pronounced the decline in the traffic efficiency of
electric vehicles.

3.4.2. The Impact of the Average Speed of Electric Vehicles on the Overall Traffic Speed

Based on the calibration of the simulated and actual trajectories, we conducted applied
research on the relationship between the average speed of electric vehicles and the overall
traffic speed. We set the number of non-motorized vehicles passing in the passage to 5, 10
and 15, respectively, and the ratio of the number of electric vehicles to bicycles is 3:2. We
discuss the change in overall passing speed in the passage by changing the average speed
of electric vehicles.

From the analysis in Figure 13, it can be seen that when the number of non-motorized
vehicles in the road is 5, when the speed of electric vehicles is relatively slow, the speed of
electric vehicles tends to increase due to the situation involving overtaking. The overall
traffic speed of the road will increase accordingly. As the speed of electric vehicles increases,
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bicycles hinder the passage of electric vehicles, and the overtaking phenomenon becomes
more pronounced. Therefore, the overall passage speed of the road will continue to rise.

Figure 13. The influence of the average speed of electric vehicles on the overall traffic speed of
the road.

When there are 10 non-motorized vehicles in the road, the relationship between
the average speed of electric vehicles and the road’s overall speed is comparable to that
observed when there are 5 non-motorized vehicles. With the increase in the average speed
of electric vehicles and the number of non-motorized vehicles in the road, the increase in
the overall speed decreases and gradually becomes flat. In addition, the overall passage
speed decreased as a whole compared with when the number of non-motorized vehicles
was 5.

When the number of non-motorized vehicles in the road is 15, the overall speed of
the road will gradually increase due to the large number of non-motorized vehicles. The
overtaking phenomenon is not apparent when the speed of electric vehicles is relatively
slow. With the increase in the speed of electric vehicles, the overall traffic speed of the road
gradually rises, fluctuates less, and finally tends to be flat. With the increase in the number
of non-motorized vehicles in the road, the road is more congested, and the overall speed of
the road is significantly lower than when the number of non-motorized vehicles is 5.

In the case of a small number of non-motorized vehicles, the increase in the average
speed of electric vehicles promotes the overall traffic efficiency of the road. When the
number of non-motorized vehicles is large, the number of non-motorized vehicles will
significantly affect the overall traffic efficiency. As the number of non-motorized vehicles
increases, the average speed of electric vehicles increases, and the overall efficiency of traffic
decrease. The greater the number of non-motorized vehicles, the smaller the improvement
in the overall traffic efficiency, which eventually tends to be flat.

Based on the application of the above two models, the overall number of non-motorized
vehicles, the proportion of bicycles, and the average speed of electric vehicles all have a sig-
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nificant influence on the overall traffic efficiency of the road. The number of non-motorized
vehicles in the road should, in the case of a specific road width, be kept as close to a specific
range as is practical. The average speed of electric vehicles should also be limited to a
certain extent.

4. Conclusions

The negative effects of frequent interactions with other cyclists in shared spaces of
non-motorized traffic flow greatly affect the safety and efficiency of traffic. Therefore,
accurate evaluation tools are needed to meet the urgent needs for facility planning, in-
frastructure design and traffic management, and microsimulation models are considered
effective evaluation tools. However, most existing models greatly simplify the complexity
of interactions. Because of this, more changes should be made to meet the requirement of
simulating reality as closely as possible.

To address these shortcomings, based on the natural advantages of the original SFM
in describing the 2D motion simulation of the cyclist, we embedded a decision model
in the original SFM model to represent the interaction between non-motorized vehicles
and the dynamics of non-motorized vehicles through the behavioral force decision model.
Through simulation, we found that the decision-making process of cyclists’ behavior is
consistent with reality, which makes up for the lack of decision-making modules in the
original SFM. In conclusion, this new microsimulation model can help us figure out how
well non-motorized traffic flows, how safe they are and how to design infrastructure.

However, the model proposed in this paper has certain limitations. The model still
needs to be expanded with samples to verify its applicability. This model is a microscopic
model, which is mainly suitable for simulating the specific behavior of each non-motorized
vehicle in a local area. Since the overall behavior is more critical when simulating larger
areas (for example, cities with road networks), the model is limited. In addition, this model
also needs to consider personal characteristics such as gender, bicycle type and behavior
orientation of different cyclists to improve the model’s performance. For the determination
of model parameters, more empirical data need to be obtained to verify and determine the
model’s parameters to improve its general applicability. The above shortcomings will be
addressed in future work.

Author Contributions: Conceptualization, J.Q. and S.M.; methodology, J.Q.; software, J.Q. and Q.W.;
validation, Q.W. and G.F.; formal analysis, J.Q.; investigation, J.Q.; resources, S.M. and L.Z.; data
curation, J.Q. and Q.W.; writing—original draft preparation, J.Q.; writing—review and editing,
J.Q.; visualization, J.Q. and Q.W.; supervision, S.M. and L.Z.; project administration, S.M.; funding
acquisition, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China under Grant
62003127, Natural Science Foundation of Hebei Province under Grant A2020202034, the Youth
Foundation of Hebei Education Department under No. QN2020195.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available from the corresponding author of this paper. Data
sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gavriilidou, A.; Wierbos, M.J.; Daamen, W.; Yuan, Y.; Knoop, V.L.; Hoogendoorn, S.P. Large-Scale Bicycle Flow Experiment: Setup

and Implementation. Transp. Res. Rec. 2019, 5, 709–719. [CrossRef]
2. Billot-Grasset, A.; Hours, M. How cyclist behavior affects bicycle accident configurations? Transp. Res. Part F Traffic Psychol. Behav.

2016, 41, 261–276. [CrossRef]
3. Langford, B.C.; Chen, J.; Cherry, C.R. Risky riding: Naturalistic methods comparing safety behavior from conventional bicycle

riders and electric bike riders. Accid. Anal. Prev. 2015, 82, 220–226. [CrossRef] [PubMed]

http://doi.org/10.1177/0361198119839974
http://dx.doi.org/10.1016/j.trf.2015.10.007
http://dx.doi.org/10.1016/j.aap.2015.05.016
http://www.ncbi.nlm.nih.gov/pubmed/26093098


Mathematics 2023, 11, 170 17 of 18

4. Yuan, Y.; Daamen, W.; Goñi-Ros, B.; Hoogendoorn, S. Investigating cyclist interaction behavior through a controlled laboratory
experiment. J. Transp. Land Use 2008, 11, 833–847. [CrossRef]

5. Tang, T.Q.; Zhang, B.T.; Xie, C.Z. Modeling and simulation of pedestrian flow in university canteen. Simul. Model. Pract. Theory
2019, 95, 96–111. [CrossRef]

6. Chen, L.; Tang, T.Q.; Huang, H.J.; Wu, J.J.; Song, Z. Modeling pedestrian flow accounting for collision avoidance during
evacuation. Simul. Model. Pract. Theory 2018, 82, 1–11. [CrossRef]

7. Cao, S.C.; Sun, F.Y.; Li, Y. A Cellular Automaton Simulation Model Considering Spatial-temporal Distribution for Mixed Bicycle
Flows. J. Transp. Inf. Saf. 2022, 40, 98–107.

8. Taherifar, N.; Hamedmoghadam, H.; Sree, S.; Saberi, M. A macroscopic approach for calibration and validation of a modified
social force model for bidirectional pedestrian streams. Transp. Transp. Sci. 2019, 15, 1637–1661. [CrossRef]

9. Li, J.; Liu, W.; Zhang, F.; Li, T.; Wang, R. A Ship Fire Escape Speed Correction Method Considering the Influence of Crowd
Interaction. Mathematics 2022, 10, 2749. [CrossRef]

10. Deng, K.; Zhang, Q.; Zhang, H.; Xiao, P.; Chen, J. Optimal Emergency Evacuation Route Planning Model Based on Fire Prediction
Data. Mathematics 2022, 10, 3146. [CrossRef]

11. Huang, L.; Gong, J.; Li, W.; Xu, T.; Shen, S.; Liang, J.; Feng, Q.; Zhang, D.; Sun, J. Social force model-based group behavior
simulation in virtual geographic environments. ISPRS Int. J. Geo-Inf. 2018, 7, 79. [CrossRef]

12. Han, Y.; Liu, H. Modified social force model based on information transmission toward crowd evacuation simulation. Physica A
2017, 469, 499–509. [CrossRef]

13. Guo, Y.; Ma, S.; Wei, F.; Lu, L.; Sun, F.; Wang, J. Analysis of Behavior Characteristics for Pedestrian Twice-Crossing at Signalized
Intersections Based on an Improved Social Force Model. Sustainability 2022, 14, 2003. [CrossRef]

14. Qin, X.; Liu, H.; Zhang, H.; Liu, B. A collective motion model based on two-layer relationship mechanism for bi-direction
pedestrian flow simulation. Simul. Model. Pract. Theory 2018, 84, 268–285. [CrossRef]

15. Zhou, X.; Ji, Y.; Yuan, Y.; Zhang, F.; An, Q. Spatiotemporal characteristics analysis of commuting by shared electric bike: A case
study of Ningbo, China. J. Clean. Prod. 2022, 362, 132337. [CrossRef]

16. Li, M.; Chen, T.; Du, H.; Ma, N.; Xi, X. The speed and configuration of cyclist social groups: A field study. Phys. A Stat. Mech.
Appl. 2022, 592, 126849. [CrossRef]

17. Liu, Q.; Lu, L.; Zhang, Y.; Hu, M. Modeling the dynamics of pedestrian evacuation in a complex environment. Phys. A Stat. Mech.
Appl.. 2022, 585, 126426. [CrossRef]

18. Liu, M.; Chen, T.; Matunaga, C.; Oeda, Y.; Sumi, T. Simulation of dispersion effects by considering interactions of pedestrians and
bicyclists using an agent space model. Comput. Environ. Urban Syst. 2022, 91, 101725. [CrossRef]

19. Anvari, B.; Bell, M.; Sivakumar, A.; Ochieng, W.Y. Modelling shared space users via rule-based social force model. Transp. Res.
Part C Emerg. Technol. 2015, 51, 83–103. [CrossRef]

20. Luo, L.; Luo, Y.; Feng, Y.; Li, T.; Fu, Z. Experimental investigation on pedestrian–bicycle mixed merging flow in T-junction. Phys.
A Stat. Mech. Appl. 2022, 600, 127492. [CrossRef]

21. Schöttl, J.; Seitz, M.J.; Köster, G. Investigating the randomness of passengers’ seating behavior in suburban trains. Entropy 2019,
21, 600. [CrossRef] [PubMed]

22. Han, Y.; Chao, Q.; Jin, X. A simplified force model for mixed traffic simulation. Comput. Animat. Virtual Worlds 2021, 32, e1974.
[CrossRef]

23. Lü, Y.X.; Wu, Z.X.; Guan, J.Y. Pedestrian dynamics with mechanisms of anticipation and attraction. Phys. Rev. Res. 2020, 2, 043250.
[CrossRef]

24. Qu, Z.; Cao, N.; Chen, Y.; Zhao, L.; Bai, Q.; Luo, R. Modeling electric bike–car mixed flow via social force model. Adv. Mech. Eng.
2017, 9, 1687814017719641. [CrossRef]

25. Ma, Z.; Sun, J.; Wang, Y. A two-dimensional simulation model for modelling turning vehicles at mixed flow intersections. Transp.
Res. Part C 2017, 75, 103–119. [CrossRef]

26. Liang, X.; Xie, M.; Jia, X. New Microscopic Dynamic Model for Bicyclists’ Riding Strategies. J. Transp. Eng. Part A Syst. 2018, 144,
04018034. [CrossRef]

27. Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286. [CrossRef] [PubMed]
28. Li, Y.X.; Ni, Y.; Sun, J. A modified social force model for high-density through bicycle flow at mixed-traffic intersections. Simul.

Model. Pract. Theory 2021, 108, 102265. [CrossRef]
29. Li, Y.X.; Ni, Y.; Sun, J.; Ma, Z. Modeling the illegal lane-changing behavior of bicycles on road segments: Considering lane-

changing categories and bicycle heterogeneity. Phys. Stat. Mech. Its Appl. 2020, 541, 123302. [CrossRef]
30. Hoogendoorn, S.; Daamen, W. Bicycle Headway Modeling and Its Applications. Transp. Res. Rec. J. Transp. Res. Board 2016, 2587,

34–40. [CrossRef]
31. Jin, S.; Qu, X.; Zhou, D.; Xu, C.; Ma, D.; Wang, D. Estimating cycleway capacity and bicycle equivalent unit for electric bicycles.

Transp. Res. Part A Policy Pract. 2015, 77, 225–248. [CrossRef]
32. Gavriilidou, A.; Daamen, W.; Yuan, Y.; Hoogendoorn, S.P. Modelling cyclist queue formation using a two-layer framework for

operational cycling behaviour. Transp. Res. Part Emerg. Technol. 2019, 105, 468–484. [CrossRef]
33. Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev.

E 2000, 62, 1805. [CrossRef]

http://dx.doi.org/10.5198/jtlu.2018.1155
http://dx.doi.org/10.1016/j.simpat.2019.04.011
http://dx.doi.org/10.1016/j.simpat.2017.12.011
http://dx.doi.org/10.1080/23249935.2019.1636156
http://dx.doi.org/10.3390/math10152749
http://dx.doi.org/10.3390/math10173146
http://dx.doi.org/10.3390/ijgi7020079
http://dx.doi.org/10.1016/j.physa.2016.11.014
http://dx.doi.org/10.3390/su14042003
http://dx.doi.org/10.1016/j.simpat.2018.03.005
http://dx.doi.org/10.1016/j.jclepro.2022.132337
http://dx.doi.org/10.1016/j.physa.2021.126849
http://dx.doi.org/10.1016/j.physa.2021.126426
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101725
http://dx.doi.org/10.1016/j.trc.2014.10.012
http://dx.doi.org/10.1016/j.physa.2022.127492
http://dx.doi.org/10.3390/e21060600
http://www.ncbi.nlm.nih.gov/pubmed/33267314
http://dx.doi.org/10.1002/cav.1974
http://dx.doi.org/10.1103/PhysRevResearch.2.043250
http://dx.doi.org/10.1177/1687814017719641
http://dx.doi.org/10.1016/j.trc.2016.12.005
http://dx.doi.org/10.1061/JTEPBS.0000148
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://www.ncbi.nlm.nih.gov/pubmed/9963139
http://dx.doi.org/10.1016/j.simpat.2020.102265
http://dx.doi.org/10.1016/j.physa.2019.123302
http://dx.doi.org/10.3141/2587-05
http://dx.doi.org/10.1016/j.tra.2015.04.013
http://dx.doi.org/10.1016/j.trc.2019.06.012
http://dx.doi.org/10.1103/PhysRevE.62.1805


Mathematics 2023, 11, 170 18 of 18

34. Treiber, M.; Kesting, A. The intelligent driver model with stochasticity-new insights into traffic flow oscillations. Transp. Res.
Procedia 2017, 23, 174–187. [CrossRef]

35. Zhu, M.; Wang, X.; Tarko, A.; Fang, S. Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving
study. Transp. Nat. Res. C Emerg. Technol. 2018, 93, 425–445. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.trpro.2017.05.011
http://dx.doi.org/10.1016/j.trc.2018.06.009

	Introduction
	Methods
	Modified Social Force Model
	Decision for Free Movement, Following and Overtaking Behaviors
	Behavior Force Model
	The Free Movement Force Model
	The Bicycle-Following Force Model
	The Overtaking Force Model


	Case Study
	Data
	Model Calibration
	Simulation Results and Discussion
	Speed Analysis
	Decision Process Analysis
	Model Comparison

	Model Application
	The Influence of Bicycle Ratio on the Speed of Electric Vehicles
	The Impact of the Average Speed of Electric Vehicles on the Overall Traffic Speed


	Conclusions
	References

