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Abstract: Nowadays, millions of patients suffer from physical disabilities, including lower-limb
disabilities. Researchers have adopted a variety of physical therapies based on the lower-limb
exoskeleton, in which it is difficult to adjust equipment parameters in a timely fashion. Therefore,
intelligent control methods, for example, deep reinforcement learning (DRL), have been used to
control the medical equipment used in human gait adjustment. In this study, based on the key-value
attention mechanism, we reconstructed the agent’s observations by capturing the self-dependent
feature information for decision-making in regard to each state sampled from the replay buffer.
Moreover, based on Softmax Deep Double Deterministic policy gradients (SD3), a novel DRL-based
framework, key-value attention-based SD3 (AT_SD3), has been proposed for gait adjustment. We
demonstrated the effectiveness of our proposed framework in gait adjustment by comparing different
gait trajectories, including the desired trajectory and the adjusted trajectory. The results showed
that the simulated trajectories were closer to the desired trajectory, both in their shapes and values.
Furthermore, by comparing the results of our experiments with those of other state-of-the-art methods,
the results proved that our proposed framework exhibited better performance.

Keywords: deep reinforcement learning; attention mechanism; state reconstruction; gait adjustment

MSC: 03D80; 68Q30

1. Introduction

Regaining the ability to walk is a primary goal of recovery for stroke patients. How-
ever, patients often experience restrictions on their daily communication and freedom
of movement. Therefore, gait rehabilitation is urgently needed for these patients [1]. In
the fields of gait rehabilitation and walking assistance, most lower-limb exoskeletons are
developed for assisting paraplegic patients with disabilities of both of their legs. Through
gait rehabilitation, we can achieve the goal of helping patients with mobility disorders in
the rehabilitation of their musculoskeletal strength, motor control, and gait.

In traditional rehabilitation therapies, intensive labor is involved, and physical thera-
pists have to provide patients with highly repetitive training that is usually inefficient and
time-consuming [2]. The inherent shortcomings of these therapies include their failure to
autonomously adapt to the user’s changing needs, as well as the lack of sensory feedback
that they provide to the user regarding the states of the limb and of the device. Compared
to traditional physical therapies, exoskeleton-assisted rehabilitation has the advantages
of reducing the work of therapists, and it is more convenient to use for quantitatively
assessing the patient’s level of recovery by measuring force and movement patterns [3].
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To date, studies on exoskeleton control methods have achieved remarkable results.
Mendoza-Crespo, Rafael et al. [4] developed and presented a method to acquire and
saliently analyze subject-specific gait data, with the subject donning a passive lower-
limb exoskeleton. In [5], a trajectory tracking controller based on the boundary layer
augmented sliding control (BASMC) law was implemented to guide the subject’s limbs
along physiological gait trajectories. However, patients are normally trained to passively
follow a predefined gait reference trajectory and their initiatives or motivations are usually
not considered in the abovementioned methods. Therefore, adaptive control techniques
and deep reinforcement learning (DRL)-based control methods have been proposed. DRL
can potentially be used for exoskeleton control, and a predefined gait trajectory is not
required. More importantly, interaction between the exoskeleton of the lower extremity
and the patient during rehabilitation can be achieved. Thus, in this study, we focused on
the control of a lower-limb exoskeleton using DRL.

2. Novelty and Contribution of the Study

In this study, in order to achieve the goal of gait rehabilitation and walking assistance,
we simulated an exoskeleton based on the lower-limb musculoskeletal model used in the
2019 NeurIPS “Learning to Move–Walk Around” challenge.

Firstly, we adopted the Markov decision process (MDP) to model the gait adjustment
problem, which provided an intelligent policy for the control of the exoskeleton. Secondly,
in order to solve the curse of dimensionality caused by the complexity of the musculoskele-
tal model, we proposed a DRL-based framework named AT_SD3, which incorporated
key-value attention-based state reconstruction and Softmax Deep Double Deterministic
policy gradients (SD3). Based on the key-value attention mechanism, we presented a
novel state reconstruction framework, in which all sampled sates are used in order to be
fused proportionally with the initial observations, which enables the model to extract the
self-dependent feature information of each sampled state to reconstruct an effective and in-
terpretive state. Then, the DRL agent can select a better action in accordance with the same
policy. Moreover, we used the autoencoder to extract features from the reconstructed state
to solve the curse of dimensionality. Finally, we compared gait trajectories, including the
desired trajectory, the unadjusted trajectory obtained in previous works, and the adjusted
trajectory obtained in this work. The results showed that the adjusted trajectory was closer
to the desired trajectory, in terms of its shape and value, than the unadjusted trajectory, and
the performance of our proposed framework was better than that of other state-of-the-art
DRL algorithms.

The related code and dataset are available at https://github.com/li0516/opensim-rl.
git (accessed on 17 November 2022).

3. Related Works
3.1. Adaptive Control Techniques

Adaptive control techniques utilize dynamics models for both the user and the ex-
oskeleton. Fatai Sado proposed a control strategy that integrated a dual unscented Kalman
Filter (DUKF) for trajectory generation/the prediction of the spatio-temporal features of
human walking and used an impedance-cum-supervisory controller to enable the exoskele-
ton to follow this trajectory in order to synchronize human walking [6]. In order to improve
the control performance, the authors introduced a linear quadratic regulator with integral
action (LQRi) and an unknown input observer (UIO) to compensate for disturbances [7].
In [8], an adaptive oscillator method named the amplitude omega adaptive iscillator
(AωAO), comprising both low-level classifiers (to detect activities) and high-level classifiers
to detect transitions between activities, was proposed to provide bilateral hip assistance for
human locomotion. Sado, F. et al. [9] proposed a exoskeleton controller, with the design of
a low-level linear quadratic gaussian (LQG) torque controller, a middle-level user-input
torque estimator based on the use of a dual extended Kalman filter (EKF), and a novel

https://github.com/li0516/opensim-rl.git
https://github.com/li0516/opensim-rl.git
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high-level supervisory algorithm for the detection of movement and the synchronization
of the exoskeleton with the user.

3.2. DRL-Based Control Methods

As one of learning-based control methods, Deep Reinforcement Learning (DRL), has
been used in lower limb exoskeletons control. A human–robot interactive control, designed
with Sigmoid function and the reinforcement learning algorithm, was proposed to govern
the assistance provided by a lower limb exoskeleton robot to patients in the gait rehabil-
itation training [10]. In [11], Zhang, Y. et al. proposed a reinforcement-learning-based
impedance controller, which actively reshapes the stiffness of the force-field to the sub-
ject’s performance. In [12], an optimal adaptive compliance control was proposed for a
Robotic walk assist device, where the reinforcement-learning-based strategy is a completely
dynamic-model-free scheme, and this scheme employed joint position and velocity feed-
back as well as sensed joint torque (applied by user during walk) for compliance control.
In [13], Rose, L. et al. presented for the first time an end-to-end model-free deep reinforce-
ment learning method for an exoskeleton that can learn to follow a desired gait pattern,
while considering a user’s existing gait pattern and being robust to their perturbations and
interactions. Oghogho, Martin et al. [14] employed the Twin Delayed Deep Deterministic
Policy Gradient (TD3) method for rapid learning of the appropriate controller’s gain values
and delivering personalized assistive torques by the exoskeleton to different joints to assist
the wearer in a weight handling task. In [15], Kumar, V.C.V. et al. took the Proximal Policy
Optimization (PPO) to develop a human locomotion policy which can imitates the human
walking reference motion. Based on all these achievements above, DRL-based control is
inherently both adaptive and optimal, which can adapt to uncertainty and unforeseen
changes in the robot dynamics [12].

Previous studies have shown that DRL is effective in the lower limb exoskeleton
control. Moreover, with the concept of strengthening the discrimination among all the
similar classes using the specific weights [16], in this paper, we propose a DRL-based
framework, which incorporates a novel DRL algorithm SD3 and the key-value attention
mechanism. Compared with the previous DRL methods, our framework can deal with the
curse of dimensionality caused by the musculoskeletal model with high degree of freedom.
From this perpective, our framework can greatly improve the performance of the DRL
algrithm when a reinforcement learning (RL) agent observes a high dimensional state,
and more importantly, experimental results show that our proposed framework has the
state-of-art performance for the gait adjustment.

4. Preliminaries
4.1. Reinforcement Learning

We usually model the reinforcement learning problem as a MDP. A MDP is a quintuple
(S, A, R, P, γ), where S is the state space, A is the action space, R is the reward function, P is
the transition probability distribution and γ is the discount factor. At time step t, the agent
selects and executes an action at ∈ A according to the policy π, which maps from the state
s to the probability of an action a. Then, the environment moves to a new state st+1 ∈ S,
where st+1 is determined from the transition probability P(st+1|st, at). Simultaneously, the
agent receives the immediate reward rt+1 ∼ R(st, at). The dynamic diagram of the agent
interaction with the environment is shown in Figure 1.

In RL, we aim to find an optimal policy which maximizes the return Gt = ∑∞
k=0 γkrt+k+1.

To achieve this, we evaluate the policy π by estimating the value function, including state-
value function Vπ and action-value function Qπ . Here, the state-value function Vπ is the
expected return Gt when starting in state s and following policy π thereafter:

Vπ(s) = Eπ [Gt | st = s], (1)



Mathematics 2023, 11, 178 4 of 18

where the Eπ [·] denotes the expected value of the return Gt given that the agent follows
policy π. The action-value function, also called Q-value, Qπ(s, a), represents the expected
return Gt after taking an action a in state s and thereafter following policy π:

Qπ(s, a) = Eπ [Gt | st = s, at = a]. (2)

Figure 1. The interaction between the agent and the environment in RL.

Thereafter, the optimal policy π∗ can be obtained by maximizing the state-value
function or the action-value function, denoted V∗ and Q∗, respectively. These two functions
can be defined as follows:

V∗(s) = max
π

Vπ(s), (3)

Q∗(s, a) = max
π

Qπ(s, a) = E
[

Rt+1 + γ max
a

Q∗(st+1, a) | st = s, at = a
]
. (4)

4.2. Softmax Deep Double Deterministic Policy Gradients

DDPG algorithm is often used to solve continuous control problems [17,18]. However,
one of the dominant concerns for DDPG is that it suffers from the overestimation problem
caused by selecting an action with highest action-value estimates according to the critic
network [19]. To reduce the adverse impact of the overestimation, double estimators
were proposed for the critic in TD3 [20]. Nevertheless, another problem is the large
underestimation bias caused by direct adoption of taking minimum estimation of action-
value from the two critics in TD3 [21].

To tackle this problem, Pan, L. [19] proposed a method, called SD3, which combines the
softmax operator with the estimation of the action-value based on double critic estimators.
In SD3, double actor networks and critic networks are built to select multiple actions and
evaluate the corresponding action-values, respectively. To be specific, alternative actions
will be selected via different actor networks, and then the minimum action-value can be
obtained by calculating and comparing the action value functions of the corresponding
actions evaluated by two critic networks:

Q̂i=1,2
(
s′, a′

)
= min

(
Qi=1

(
s′, a′; θ−i=1

)
, Qi=2

(
s′, a′; θ−i=2

))
. (5)

Thereafter, the minimum Q-value will be induced by the softmax operator in expec-
tation by the importance sampling, and the specific definition of the softmax Q-value is
as follows:

softmaxβ

(
Q
(
s′, ·; θ−

))
=

Eâ′∼p

[
exp(βQ(s′ ,â′ ;θ−))Q(s′ ,â′ ;θ−)

p(â′)

]
Eâ′∼p

[
exp(βQ(s′ ,â′ ;θ−))

p(â′)

] , (6)

where β is the parameter of the softmax operator, and the implication of p(â′) is the
probability density function of the Gaussian distribution for the importance sampling. The
Eâ′∼p[·] denotes the expected value of a random variable given that â′ are sampled from
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the Gaussian distribution p(â′). And â′ is the action with additional noises for exploration,
which are sampled from the Gaussian distribution p(â′). Finally, the softmax Q-value can
be obtained to calculate the target value:

y = r + γ(1− d) softmaxβ

(
Q
(
s′, ·; θ−

))
. (7)

4.3. Key-Value Attention Mechanism

Attention mechanism [22] in neural networks is introduced to focus on the information
which is critical to the current task among the numerous input information. Therefore,
the attention mechanism is often used to solve the problem of information overload and
improve the efficiency and accuracy of task processing.

However, it is not suitable for some specific problems. So, Vaswani, A. et al. [22]
introduced the key-value attention mechanism, which uses the format of a key-value
pair to represent input information. The key is used to calculate the attention distribu-
tion αi, and the value is used to calculate aggregate information. As shown in Figure 2,
(K, V) = [(k1, v1), . . . , (kn, vn)] is used to represent N sets of the input information and the
vector q is used to represent the query vector for a given task. Then, the attention function
can be defined as follows:

att(X, q) =
N

∑
i=1

αixi =
N

∑
i=1

exp(s(ki, q))
∑j exp(s(ki, q))

vi, (8)

where s is the attention evaluation function, and xi is equal to vi which is used to represent
the value of N sets of the input information. Finally, a weighted average of the input
information vi, the final output a , can be achieved according to the distribution αi, which
is computed based on the function s.

Figure 2. The key-value attention mechanism.

4.4. Parameter Space Noise for Exploration

Traditional RL methods increase exploration by adding noise, for example the Gaus-
sian noise, to the output of the actor network. That is to say, the noise added to the actor
network is independent of the state st, in other words, state-independent exploration.
Hence, even for the same state st, a different action at will be certainly achieved and even
sometimes it has nothing to do with st.
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Therefore, Fortunato, Meire et al. [23] and Plappert, Matthias et al. [24] proposed to
add noise to the agent’s parameters. They sampled from a set of policies by adding the
noise sampled from the Gaussian noise to the current policy π(st), and in this case, the
same action at = π̂(st) can be achieved every time the same state st is taken as the input to
the actor network.

5. Problem Modeling

In the previous work, we conducted gait simulation experiments with DRL algorithms
based on the lower limb musculoskeletal model. The experimental results show that DRL
algorithm is effective in gait simulation. However, sometimes during the simulation, there
will be abnormal gait. In this paper, we adopt MDP to model the gait adjustment problem
based on the musculoskeletal model.

5.1. The Lower Limb Musculoskeletal Model

In our work, the simulated environment used for the gait adjustment, named osim-
rl, used in 2019 NeurIPS “Learning to Move–Walk Around” challenge, incorporates the
lower limb musculoskeletal model and DRL to provide the accurate human movement
simulation. The lower limb musculoskeletal model built in OpenSim has 8 internal degrees
of freedom (4 per leg) and is actuated by 22 muscles (11 per leg). During the simulation,
muscles are driven by muscle activations (the control signals that muscles produce power),
and then states of the musculoskeletal model including joint angles, body location and
ground reaction forces will be returned. The lower limb musculoskeletal model is shown
in Figure 3. More detailed environment description can be found at the page: http://osim-
rl.kidzinski.com/docs/nips2019/environment/ (accessed on 17 November 2022).

Figure 3. The lower limb musculoskeletal model.

5.2. MDP Modeling
5.2.1. State Space

The observation of the DRL agent consists of two parts: a target velocity map T and
a body state S. Firstly, as shown in Figure 4, the target velocity map T is represented
as a randomly generated target velocity matrix, which is a 2-dimensional target velocity
vector, consisting of the target position and the current position of the model. Then, a target
velocity vector can be achieved based on these positions. Secondly, the body state S is
expressed by a 97-dimensional vector which consists of the pelvis state, ground reaction
forces, joint angles and states of lower limb muscles. To be specific, the varibles of state
space is listed in Table 1.

http://osim-rl.kidzinski.com/docs/nips2019/environment/
http://osim-rl.kidzinski.com/docs/nips2019/environment/
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Figure 4. The target velocity map.

Table 1. State space.

Symbols Description

Body state S

Sp pelvis state
Sg ground reaction forces
Sj joint angles
Sm muscle states

Target velocity map T Tg target velocity (global)
Tb target velocity (body)

5.2.2. Action Space

The action space [0, 1]22 represents muscle activations of 22 muscles. Muscles responds
to these activations and generate forces, and then the model will act accordingly, for
example, moving forward. At the same time, states of the model change accordingly.

5.2.3. Reward Function

The DRL agent will obtain a reward J(π). The specific definition is as follows:

J(π) = Rb + Rg, (9)

where Rb and Rg refer to the reward for the initial gait simulation and the gait adjustment
according to the desired trajectory. To be specific, Rb ensures that a basis human gait can be
obtained based on the musculoskeletal. However, during the simulation, deformed gaits
sometimes appeared. So Rg is designed to make up for the gait defects, which is reflected
in the deviation between the simulated angle and the desired angle of each joint of the
lower limb.

Firstly, the specific definition of Rb is as follows:

Rb = Malive + Mstep, (10)

where Malive and Mstep refer to the model remaining standing as long as possible and
moving with minimal forces according to the target velocity map, respectively. Here, Malive
and Mstep are defined as follows:

Malive = ∑
i

malive, (11)

Mstep = ∑
stepi

(
wstepmstep − wvelcvel − we f f ce f f

)
. (12)

In Equation (11), malive refers to the unit time of “model survival”. In addition, in
Equation (12), on the one hand, mstep is stepping reward which represents the total elapsed
time-steps of “model survival” in simulation. cvel and ce f f are the velocity and effort costs,
respectively. On the other hand, wstep, wvel and we f f are weights for the stepping reward,
velocity and effort costs. Another point needed to note is that wstep is used to avoid getting
higher reward by making small steps in human gait simulation.
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Secondly, Rg is designed based on the changes of the real-time angle of each joint
relative to the desired trajectory, for example, approaching or even exceeding in each
episode. The specific definition is as Equation (13):

Rg =
n

∑
i=0

(
whrih + wkrik + waria

)
, (13)

where ri and wi are the reward for each of the three joints in the lower limb and the
corresponding weight, respectively. The reward ri for timestep i is defined as follows:

ri = wFF(qi) + wGG(qi), (14)

where wF and wG are the weights for the reward F(qi) and the penalty G(qi), respec-
tively. Here, on one hand, the function F(qi), representing the reward for the tendency
approaching the desired trajectory, is defined based on the Gaussian function:

F(qi) =
1

σ
√

2π
e−

1
2

(
d−µ

σ

)2

, (15)

where µ and σ represent the mean and the SD of the desired joint angle, respectively. In
addition, d, the absolute value of the difference between the real-time angle qi and the
desired joint angle qdi

is defined as follows:

d = |qi − qdi
|. (16)

On the other hand, the function G(qi), representing the penalty for exceeding the
desired trajectory, is defined as Equation (17).

G(qi) = −M(ymax)−M(ymin), (17)

where M(·) is defined as follows:

M(y) =

{
0 y ≤ 0
y y > 0

, (18)

and
ymax = qi − qmax, (19)

ymin = qmin − qi, (20)

where qmax and qmin are the maximum and the minimum joint angle, respectively.

6. Methodology
6.1. Overall Framework

As depicted in Figure 5, the overall framework for gait adjustment consists of two
parts: state reconstruct and SD3. First of all, the simulated environment initialization.
Secondly, we reconstruct the initial observation via extracting features from existing states
based on the attention mechanism, where the states are sampled in pairs with actions from
the replay buffer randomly.

In the second part, the reconstructed state is taken as the input of SD3. Then, the
actor network selects an action ai according to the observation where i refers to the serial
number of the action corresponding to different actor networks, and following, the critic
network evaluates the value of the state action pair Q(s, ai). Moreover, the final action
a depends on the result of comparing action-values which are evaluated by two critic
networks. It is worth noting that, we add noise directly to the actor network parameters
for a state-dependent exploration, which ensures a dependency between the sampled state
and the corresponding selected action.
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Figure 5. The overall framework for gait adjustment.

6.2. Key-Value Attention-Based State Reconstruction

In this work, the initial observation is a 339-dimensional state which consists of a
97-dimensional body state and a 242-dimensional target velocity map. Therefore, the RL
agent cannot extract effective information easily, and then choose better actions due to too
much redundant information in this high-dimensional observation. Moreover, in RL, the
observed state s and the selected action a of an RL agent often plays a significant role for
the training of RL algorithms, and the information in each state usually play an important
role in the choice of the action. For example, in the case of the same policy and different
states, RL agent takes different actions without active exploration. As shown in Figure 6,
the actions taken to reach s3, s4 are shown by arrows. Although s1 and s2 are very close in
space, they are functionally different, and these states contain necessary self-dependent
feature information for the agent to perform the corresponding action. In other words,
the self-dependent feature information in a state, for example s1, is different from shared
information that exists in all states, and necessary for decision making, for example a1,
which differs to the action a2. In our work, the musculoskeletal model moves accoring to
the target velocity map, if the musculoskeletal model moves to the target position, and then
a new target position will be randomly generated. Immediately, the RL agent will make a
new action, for example turning right, to move towards another target position. Therefore,
in this case, we refer to the specific information contained in the state that signals that the
musculoskeletal model has reached the target position as the self-dependent information,
which makes the agent makes a specific action.

Figure 6. The choice of different actions under the same policy and different states.
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The attention mechanism is introduced to focus on the information which is critical to
the current task among the input information. Therefore, on one hand, based on the key-
value attention mechanism, we try to reconstruct the current observation via capturing self-
dependent feature information in each sampled state. To be specific, firstly, we randomly
sample n sets of state action pairs (s1, a1), (s2, a2), . . . , (sn, an) from the replay buffer. Here,
the role of the sampled state action pairs (si, ai) in our proposed framework is equal to
(ki, vi) in the key-value attention mechanism. The state si and the action ai are used to
calculate the attention distribution and aggregate information, respectively. Moreover, we
take the state-dependent exploration for the dependency between the sampled state si and
the sampled action ai. In other words, in the case of the same policy, the selected action
is only related to the state inputted to the policy. Secondly, considering the advantage of
the critic network in dealing with continuous action spaces, for example the simulated
environment in our work, the critic network is usually used to approximate action-value
function [25], so we take the critic network as the attention evaluation function. Thus, we
calculate the action-value qi of the above sampled actions with the critic network which
takes the current observation and each sampled action ai as input.

Based on the above method, a series of action-value qi for the sampled actions can
be achieved, which will serve as a basis for distinguishing the corresponding sampled
state and reconstructing the initial observation. Thus, next to this operation, Softmax is
used to normalize the corresponding action-value qi, where the normalized action-value wi
represents the proportion of the sampled state in the reconstructed state. Significantly, the
computed proportion wi can be seen as the attention distribution αi in key-value attention
mechanism. Then, based on the attention distribution wi, the sampled states si will be
fused with the initial observation proportionally. In a word, the self-dependent feature
information in each sampled state corresponding to the sampled action with higher action-
value qi will account for a larger proportion in reconstructed state. It is worth noting that,
the way we perform feature fusion is element-wise addition. Based on this approach, the
reconstructed state is influenced by the agent’s action, and accordingly the state contains
the information necessary to the action. Thus, the RL agent can select the corresponding
action based on the information.

On the other hand, notably, autoencoder [26] is a kind of unsupervised neural network,
and the goal of dimensionality reduction can be achieved by adjusting the number of
hidden layers in both modules including the encoder and the decoder. Therefore, we use
autoencoders to overcome the curse of dimensionality caused by the high-dimensional
musculoskeletal model. The specific process is depicted as Figure 7.

Figure 7. State reconstruction.
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6.3. AT_SD3 for Gait Adjustment

Algorithm 1 presents the pseudocode of AT_SD3 for the gait adjustment.

Algorithm 1: AT_SD3 for the gait adjustment.

1 Initialize the simulated musculoskeletal model environment
2 Initialise critic networks α1,α2 and actor networks β1,β2 with random parameters

θ1,θ2,φ1,φ2
3 Initialise target networks θ−1 ← θ1, θ−2 ← θ2, φ−1 ← φ1, φ−2 ← φ2
4 Initialise replay buffer B
5 Add noise to the actor network β1, β2
6 for t = 1 to T do
7 Observe the environmental state s (including the musculoskeletal state S and

the target velocity map T)
8 if t >10000 then
9 n state-action pairs (s1, a1), (s2, a2), . . . , (sn, an) from the replay buffer B

10 Calculate the action value qi of the sampled action ai and the current
observation with the critic network

11 Get the attention distribution wi by normalizing the Q-value (q1, q2, . . . , qn)
with Softmax operation

12 Get state s′ through fusing sampled state si according to the wi
13 Fuse the current observation s and the s′ to get reconstructed state
14 Based on the reconstructed state s′′, use auto-encoder to extract state

features ϕ(s′′)
15 Store transition tuple (ϕ(s′′),a, J,s,d) in B

16 else if t <10000 then
17 Execute an action a referring to the muscle activations
18 Observe reward J using Equation (12), new state s and done flag d
19 Store transition tuple (s, a, J, s, d) in B

20 for i = 1, 2 do
21 Sample a batch of N transitions from B
22 Sample K noises ε ∼ N(0, σ̄)
23 Add the additional noises to the action a
24 Compute the action value using Equation (5)
25 Compute the target value using Equation (7)
26 Update actor networks using 1/N ∑s

[
∇aαi(s, a | θi)∇φi β(s | φi)

]
27 Update critic networks using 1/N ∑s(yi − αi(s, a | θi))

2

28 Update target networks using
θ−i ← τθi + (1− τ)θ−i ,φ−i ← τφi + (1− τ)φ−i

7. Experiment Analysis
7.1. Experiment Preparation
7.1.1. Dataset

To validate the effectiveness of the kinematic and ground reaction forces obtained
via the simulation based on DRL algorithms, we compare the simulated data with the
experimental data in a public dataset [27], where more details of the experiment refer
to Section 7.2.2. The dataset contains a single-source, readily accessible repository of
comprehensive gait data for a large group of children walking at a wide variety of speeds
including very slow (below average speed), slow, free, fast and very fast (above average
speed). Specifically, there are seven kinds of gait data: joint rotations, ground reaction
forces, joint moments, joint power, EMG (electromyographic), cycle events and an ANOVA
table with results for selected parameters in this dataset.
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7.1.2. Evaluation Metrics

In order to compare the similarity between the experimental gait data and the simu-
lated gait data, two evaluation metrics are adopted in this paper, namely mean absolute
error (MAE), root mean square error (RMSE). These two metrics are defined as follows:

MAE = 1/m
m

∑
i=1

∣∣yi − y′i
∣∣, (21)

RMSE =

√
1/m

m

∑
i=1

(
yi − y′i

)2, (22)

where m denotes the total number of gait data, yi and y
′
i represent the simulated and

experimental data of the i− th sample, respectively.

7.1.3. Parameter Settings

The hyperparameters of all methods are summarized in Table 2. It can be observed
that two hidden layers are used, and the number of neurons in each hidden layer are
128 and 64, respectively. Considering the high-dimensional environment, we set the
replay buffer size to 5× 106 and the batch size is 256. Regarding the learning rate, TD3,
AT_SD3, SD3, SD3_AE and PPO methods are all set to 0.0001, while DDPG method is
set to 0.01. In addition, the hyperparameters, related to the noise added to the actor
network, are also listed in Table 1. Note that all parameters are obtained through extensive
numerical experiments.

Table 2. Hyperparameters of TD3 [14], DDPG [13], SD3, SD3_AE, PPO [15] and AT_SD3.

Method Parameters Results

Shared hyperparameters

Batch size 256
Critic network 256→128→64→1
Actor network 256→128→64→22

Optimizer Adam
Replay buffer size 5 ×106

Discount factor 0.99
Target update rate 0.01

SD3

Learning rate 0.0001
TAU 0.005

Policy noise 0.2
Sample size 50
Noise clip 0.5

Beta 0.05
Importance sampling 0

PPO Learning rate 0.0001
Iteration 8

AT_SD3

Learning rate 0.0001
Encoder 256→128→64→32→16→3
Decoder 3→16→32→64→100

Initial standard deviation (SD) 1.55
Desired action SD 0.001

Adaptation coefficient 1.05
DDPG Learning rate 0.01

TD3 Learning rate 0.0001
TAU 0.005

SD3_AE Encoder 256→128→64→32→16→3
Decoder 3→16→32→64→100

Learning rate 0.0001
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7.2. Results and Analysis
7.2.1. Algorithm Performance

In order to verify the effectiveness of AT_SD3 in the respect of gait adjustment based
on the musculoskeletal model, we compare it with other state-of-the-art DRL algorithms,
including TD3 [14], DDPG [13], PPO [15], SD3_AE and SD3, on the gait adjustment problem.
The result is shown in Figure 8.

Figure 8. Performance of AT_SD3 and other state-of-the-art DRL algorithms.

Figure 8 shows the performance of AT_SD3 and other state-of-the-art DRL algorithms
for the gait adjustment, where the horizontal axis represents the number of episodes and the
vertical axis is the average reward. In this figure, each curve indicates the average reward
for the gait adjustment using different DRL algorithms over a total of 12,000 episodes.
The shaded area represents the SD varying from the mean value of the three independent
experiments with same hyperparameters.

It can be noted that, on the one hand, the performance of AT_SD3 outperforms other
traditional DRL algorithms after a certain number of episodes, including DDPG, PPO, TD3
and a novel DRL algorithm SD3. On the other hand, the performance of PPO keeps stable
throughout the simulation, and the performance of DDPG is always poor compared to other
algorithms, which may result from the limited algorithmic power in dealing with the curse
of dimensionality in DRL. On the contrary, TD3, with more complex network structure,
has better performance than PPO and DDPG. In our work, the current observation is a
339-dimensional musculoskeletal state, which may lead to this phenomenon. So, we
introduce SD3 into our work to deal with the difficulty of gait adjustment caused by this
problem. Due to the complexity of network structure, SD3 has a relative advantage over
other RL algorithms in dealing with ‘the curse of dimensionality’. However, as can be seen
from Figure 8, after a certain number of episodes, the performance of SD3 keeps stable
gradually but the rewards are relatively low. Therefore, an attention mechanism-based
framework for gait adjustment is proposed. Based on the reward difference between
AT_SD3 and other algorithms observed in Figure 8, we can conclude that AT_SD3 is more
efficient than other traditional algorithms for the gait adjustment. Moreover, we provide an
ablation experiment, named SD3_AE, to prove the effectiveness of our proposed framework.
To be specific, we combine SD3 with the autoencoder for the gait adjustment. As can be seen
in Figure 8, the performance of SD3_AE is better than SD3 due to the advantage of feature
extraction and solving the curse of dimensionality. More importantly, by comparing the
performance of AT_SD3 and SD3_AE, we can conclude that state reconstruction through
the key-value attention mechanism is effective in gait adjustment. Through the above
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groups of comparative experiments, the experimental result demonstrates the effectiveness
of fusing the self-dependent feature information necessary for decision making in each
sampled state with the current observation.

7.2.2. Gait Adjustment

We compare different gait trajectories including the unadjusted trajectory obtained
in previous work, the adjusted trajectory obtained in this work and the desired trajectory
obtained in [27].

a. Unadjusted Trajectory and Desired Trajectory
Figure 9 shows the gait trajectories for different joints, including the ankle flex-

ion/extension, the knee flexion/extension, the hip adduction/abduction and the hip
flexion/extension corresponding to sub-figure (a) to (d), respectively, where the horizontal
axis represents the gait cycle and the vertical axis represents different gait trajectories. In
each sub-figure, red curve indicates the desired trajectory and another curve represents the
unadjusted trajectory obtained by the human gait simulation in previous work. In terms of
RMSE and MSE, Table 3 shows these similarity metrics between the desired trajectory and
the unadjusted trajectory simulated in previous work.

(a) Gait trajectories for the ankle flexion/extension (b) Gait trajectories for the knee flexion/extension

(c) Gait trajectories for the hip adduction/abduction (d) Gait trajectories for the hip flexion/extension

Figure 9. The simulated kinematics compared to the experimental data in [27].

As can be seen from Figure 9, the unadjusted trajectory for different joints obtained in
previous work are similar in shape to the desired trajectory, which is the mean kinematics
calculated from the maximum and minimum value of the kinematics. However, as shown
in Table 3 and Figure 9, there is a deviation between the unadjusted trajectory and the
desired trajectory, which result from the randomness of the gait simulated by the algorithms
in previous work. As can be seen from Table 3, these two kinds of metrics obtained in
previous work are no more than 2.64 SD and no less than 1.22 SD.
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Table 3. Metrics between desired trajectory and the unadjusted trajectory.

Metrics Hip
Ad/Abduction

Hip
Flex/Extension Knee Ankle

RMSE 1.66 2.64 1.58 2.13
MAE 1.22 2.19 1.32 1.74

b. Adjusted Trajectory and Desired Trajectory
Figure 10 shows the trajectories for different joints, including the ankle flexion/extension,

the knee flexion/extension, the hip adduction/abduction and the hip flexion/extension
corresponding to sub-figure (a) to (d), respectively, where the horizontal axis represents
the gait cycle and the vertical axis represents the gait trajectory for different joints. In
each sub-figure, red curve indicates the desired trajectory and another curve represents
the adjusted trajectory obtained in this work. Table 4 summarizes the similarity metrics
between the desired trajectory and the adjusted trajectory obtained in this work, in terms
of RMSE and MSE.

(a) Gait trajectories for the ankle flexion/extension (b) Gait trajectories for the knee flexion/extension

(c) Gait trajectories for the hip adduction/abduction (d) Gait trajectories of the hip flexion/extension

Figure 10. Desired trajectory and the adjusted trajectory based on the simulated lower limb exoskeleton.

Table 4. Metrics between desired trajectory and the adjusted trajectory.

Metrics Hip
Ad/Abduction

Hip
Flex/Extension Knee Ankle

RMSE 0.32 0.18 0.14 0.28
MAE 0.23 0.1 0.1 0.22

As can be found from Figure 10, the gait trajectories for different joints obtained
in this work are almost consistent with the desired trajectory in shape and value. This
phenomenon demonstrates the effectiveness of gait adjustment with the simulated lower
limb exoskeleton, which is modeled as a MDP problem in this work. However, in sub-
figure (c), the adjusted trajectory for the hip adduction/abduction deviate from the desired
trajectory in part of the gait cycle, which may result from the randomness. As can be found
from Table 3, these metrics are no more than 0.32 SD which is much lower the figures in
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Table 4, and these figures also demonstrate the effectiveness of the gait adjustment with the
simulated exoskeleton.

8. Conclusions and Future Work

In order to verify the effect of gait rehabilitation for patients with mobility disorders,
one available approach is to adjust gait without using physical equipment, where the
musculoskeletal model is used in 2019 NeurIPS “Learning to Move–Walk Around” chal-
lenge. In this paper, we adopt MDP to model the gait adjustment problem. Moreover,
based on DRL algorithms and the attention mechanism, a framework named AT_SD3
for the gait adjustment is proposed. Taking advantages of the attention mechanism, the
self-dependent feature information for decision making in the sampled states generated by
the agent’s actions can be captured, with which we can reconstruct the initial observation
with more interpretive information. Considering the high dimension of RL state and the
advantage of autoencoder, the autoencoder is applied to solve the problem of ‘the curse of
dimensionality’. To investigate the performance of the proposed framework, the proposed
framework and other traditional DRL algorithms are applied to the gait adjustment. The
comparison results suggest that the performance of the proposed framework is superior
to other traditional RL algorithms. Moreover, we compare different trajectories, including
the unadjusted trajectory and adjusted trajectory obtained in previous work and in this
paper, respectively, and comparative results suggest the trajectories simulated by using our
proposed framework are closer to the desired trajectory in both shape and value, which
outperforms the related previous work. In terms of the evaluation metrics of MAE and
RMSE, results show the trajectories obtained in this paper are more accurate than those
obtained in previous work.

As for the future work, the way to extract the information in each sampled state that is
critical to the selected action is still worth studying. Moreover, we will purchase an actual
lower limb exoskeleton to verify the effectiveness of the proposed exoskeleton control
framework. Therefore, in the process of controlling the actual lower limb exoskeleton, the
adjustment of exoskeleton parameters and the RL modeling for the exoskeleton control are
worth studying.
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