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Abstract: The original formulation of the firefighter problem defines a discrete-time process where
a fire starts at a designated subset of the vertices of a graph G. At each subsequent discrete time
unit, the fire propagates from each burnt vertex to all of its neighbors unless they are defended
by a firefighter that can move between any pair of vertices in a single time unit. Once a vertex is
burnt or defended, it remains in that state, and the process terminates when the fire can no longer
spread. In this work, we present the moving firefighter problem, which is a generalization of the
firefighter problem where the time it takes a firefighter to move from a vertex u to defend vertex v is
determined by a function τ. This new formulation models situations such as a wildfire or a flood,
where firefighters have to physically move from their current position to the location of an entity
they intend to defend. It also incorporates the notion that entities modeled by the vertices are not
necessarily instantaneously defended upon the arrival of a firefighter. We present a mixed-integer
quadratically constrained program (MIQCP) for the optimization version of the moving firefighter
problem that minimizes the number of burnt vertices for the case of general finite graphs, an arbitrary
set F ⊂ V of vertices where the fire breaks out, a single firefighter, and metric time functions τ.

Keywords: firefighter problem; np-hard; mathematical programming; mixed-integer quadratically
constrained programming (MIQCP); exact algorithm; spread and containment in networks

MSC: 90-10; 90C35; 90C27; 90C11

1. Introduction

The firefighter problem was originally formulated by Bert Hartnell in 1995 [1]. It
defines a discrete-time model of a diffusive process (e.g., a fire, a flood, an infectious
disease, information, a computer virus, or an invasive species) on a graph G = (V, E),
where a fire breaks out at a set of vertices F ⊂ V. At each subsequent discrete time unit, the
fire propagates from each burnt vertex to all of its neighbors unless they are defended by
a firefighter. Once a vertex is burnt or defended, it remains in that state, and the process
terminates when the fire can no longer spread. A solution to the problem defines the
defending actions that have to be taken at each discrete time unit to optimally contain the
spreading process by minimizing the number of burnt vertices or the time it takes to stop
the diffusive process.

Over the years, the firefighter problem has gained growing relevance for its theoretical
properties but also because it provides a simple model that can be used to study impactful
phenomena such as the spreading and containment dynamics of viruses in social networks [2]
and fires in oil terminals [3] and high-rise buildings [4].

Unfortunately, for the case of fighting actual fire outbreaks, the original formulation
of the firefighter problem and its many variants and generalizations (e.g., [5–18]) fail to
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capture an important aspect that arises in more realistic scenarios, namely, that the process
of transporting (or moving) a firefighter from her current location to defend an entity
located at a different location may take a variable amount of time. In general, this time may
be a function of the distance between the two locations and the particular properties of the
terrain, the entity to be defended, and the firefighter herself. As a concrete example, when
fighting a wildfire, any strategy has to consider the time it takes to move fire engines and
perhaps heavy machinery to a given region and then defend that region by creating control
lines containing no combustible material. This time may depend on many factors, such as
the land topography and the type of fire engines. It is worth noting that designing efficient
wildfire suppression strategies has become increasingly important. During the 2019/2020
bushfire season, the number of hectares burned in Australia surpassed 6.75 million [19],
and 4.09 million hectares burned in the United States in 2020 [20]. In 2021, more than
75 thousand wildfire outbreaks were detected in the Amazon Rainforest [21].

In this work, we introduce the moving firefighter problem, which is a generalization
of the firefighter problem that incorporates a function τ that determines the time it takes a
firefighter to move from its current location at vertex u ∈ V to defend another vertex v ∈ V.
Similarly to the original formulation of the firefighter problem, in this generalization, we
assume that the time it takes the fire to spread from a burnt vertex to its neighbors in the
graph is constant.

We present a mixed-integer quadratically constrained program (MIQCP) for the
optimized version of the moving firefighter problem that minimizes the number of burnt
vertices for the case of general finite graphs, an arbitrary set F ⊂ V of vertices where
the fire breaks out, a single firefighter, and metric time functions τ. We characterized the
performance of the proposed solution through experiments on random graphs.

The rest of the paper is organized as follows. Section 2 presents a review of the
extensive body of work on the firefighter problem and of its generalization and variants.
Section 3 presents the formulation of the moving firefighter problem and the concepts and
notation that are used throughout the paper. In this section, we also establish that the
moving firefighter problem is indeed a generalization of the original firefighter problem,
and hence, that it belongs to the class of NP-hard problems. Section 4 presents the
proposed exact solution. Section 5 presents the results of a series of experiments, and
Section 6 presents our concluding remarks and future work.

2. Related Work

The firefighter problem has been extensively studied. It has been determined that it is
NP-hard for bipartite graphs [22], for cubic graphs [9], for trees of maximum degree
three [22] and of pathwidth three [23], for co-bipartite graphs [23], and for unit disk
graphs [24]. It has also been established that the problem is in P for caterpillars and
P-trees [22], interval graphs, split graphs, permutation graphs, Pk-free graphs for fixed
k [24], and if the fire breaks out at a vertex of degree at most two, for graphs of maximum
degree three [25].

For the case of b ≥ 2 firefighters, the problem is NP-complete for trees of maximum
degree b + 2 and NP-hard for the optimization version that maximizes the number of
saved (unburnt) vertices for trees of maximum degree b + 3 [11].

Regarding approximations, for the case of trees and a single firefighter, the greedy
algorithm that every time selects the vertex that maximizes the number of protected vertices
is a tight 1/2-approximation [2,26]. There is also a (1− 1/e)-approximation algorithm for
rooted trees based on an LP-relaxation and randomized rounding [27]. The previous
algorithm was used by Iwaikawa et al. to provide a 0.7144-approximation algorithm
for ternary trees [28]. The problem is not n1−ε-approximable on general graphs for any
ε ∈ (0, 1) unless P = NP [8]. More recently, Adjiashvili et al. [29] presented a polynomial-
time approximation scheme (PTAS) for trees.
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From a parameterized point of view, the problem is W[1]-hard on general graphs for
b ≥ 1 firefighters when parameterized by the number of saved vertices, protected vertices,
and burned vertices [30].

Other generalizations of the firefighter problem include a version where the number
of available firefighters at each time is not constant [7], a version where the objective
is to protect a particular subset of the set of vertices S ⊆ V [9,11], a version where the
protection also propagates from each defended vertex to their non-burning neighbors [8,13],
and a non-deterministic version where at each time the fire propagates to unprotected
vertices with a given probability [14]. There is also a fractional version where vertices
can be partially burned and protected, and partially burned vertices can propagate their
fractions of the fire to their undefended or partially defended neighbors [5]. More recently,
Coupechoux et al. introduced online versions of the firefighter and fractional firefighter
problems where the number of available firefighters is revealed at each discrete time [16].
The k-firefighter problem is another generalization defined in terms of a two-player game
where the fire propagates to at most k vertices in each round with the objective of burning
as many vertices as possible while the firefighter defends vertices to contain the spread of
the fire [6,10].

The geometric firefighter problem [12,15,17] is the closest variation to the moving
firefighter problem because it considers the speed with which barriers are constructed to
contain the fire. In this variation, the fire starts at a point inside a simple polygon P and
circularly propagates at a constant speed. A firefighter sequentially builds a series of one-
dimensional barriers at a constant speed, which can be different from the fire propagation
speed, to contain the propagation of the fire. Barriers have to be built continuously before
the fire reaches any of its points. The objective is to maximize the protected area of
P , namely, the area separated from the fire by the barriers. Similarly to the original
firefighter problem, the geometric firefighter problem assumes that the firefighter can be
instantaneously transported from the last position of a recently constructed barrier to the
origin of the next barrier in the solution.

In the traveling firefighter problem, also referred to as the L2-TSP (traveling salesman
problem), a firefighter has to extinguish a set of wildfires located at positions modeled
by vertices. The distance between vertices is defined by a function d : V × V → R≥0. A
solution to this problem is a permutation of the vertices that minimize the total damage
produced by the fires, which is a quadratic function of time elapsed from when the fires
broke out to when the firefighter arrives [18].

Some other NP-hard problems that resemble the firefighter problem are the graph
burning problem (GBP) [31–33] and the influence maximization problem (IMP) [34–36].
However, while they seek the rapid diffusion of information, the firefighter problem seeks
diffusion containment. Nevertheless, very recently, the authors of [37] used the integer
linear programming formulation (ILP) of the firefighter problem presented in [6] to derive
the first exact solution to the graph burning problem.

Table 1 summarizes the main results discussed in this section.
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Table 1. Summary of related work.

Reference Contributions

[1] Hartnell introduces the Firefighter Problem (FP).

[9,11,22–24] The FP is NP-hard for different graph families.

[22,24,25] Instances where the FP is in P.

[8,26–29] Approximation results for the FP.

[30] The FP is W[1]-hard on general graphs with more than one firefighter.

[6] Presents an integer linear program (ILP) for the FP.

[7] Presents a version of the FP with a variable number of firefighters.

[9,11] Present the S-Fire version of the FP, which aims to protect a subset of the vertices.

[8,13] A version of the FP where the protection propagates from defended nodes.

[14] Version of the FP with nondeterministic fire propagation.

[5] Introduces the Fractional Firefighter Problem.

[16] An Online version of the Fractional Firefighter Problem.

[6,10] Examine a two-player version of the FP called the k-Firefighter.

[12,15,17] The Geometric Firefighter Problem.

[18] Presents the Traveling Firefighter Problem (L2-TSP)

[31–33] Investigate the relation between the FP and the Graph Burning Problem.

3. The Moving Firefighter Problem

An instance of the moving firefighter problem (MFP) is defined as a 6-tuple 〈G, F,
a, τ, f , TS〉, where G = (V, E) is a simple graph; F ⊂ V is a subset of the vertices where the
fire breaks out; a is the depot where the firefighters are initially stationed (also referred
as anchor point); τ : V ∪ {a} ×V → R≥0 is a function that determines the time it takes a
firefighter to move from either the depot a or a vertex u ∈ V to any other vertex v ∈ V, and
to defend v. f is the number of firefighters, and TS > 0 is a constant that defines the time it
takes for the fire to spread from a burnt vertex u ∈ V to its unprotected neighbors in G.

From the assumption that the fire spreads uniformly at a constant rate, we can organize
the time into time slots of length TS. Each time slot defines a burning round, where at the
beginning of each time slot, the fire propagates from burnt vertices to their neighbors in G
unless they were defended by a firefighter. Once a vertex is burnt or defended, it remains
in that state, and the process terminates when the fire can no longer spread. We will say
that a vertex is protected if it is neither burning nor defended at the end of the process. The
diffusive process starts at time slot 0 where only the vertices in F are burning.

For the case of a single firefighter, a feasible solution to the MFP is a valid sequence S
of vertices defended by the firefighter. We say that a sequence S = (a, u1, . . . , ul) is valid
if Equation (1) holds for each i = 1, 2, . . . , l. In Equation (1), βSi is the time at which a
vertex ui would be burned if the defending sequence S = (a, u1, . . . , ul) were truncated to
Si = (a, u1, . . . , ui−1).

The purpose of Equation (1) is to restrict the space of feasible solutions to that where
the firefighter has enough time to defend every vertex in the sequence before the fire
reaches them.

τ(a, u1) +
i−1

∑
k=1

τ(uk, uk+1) ≤ βSi (1)

Figure 1 shows examples of an instance of the MFP and of one of its solutions. The
graph G is composed of the set of vertices V = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} and
the set of edges E = {(v0, v2), (v1, v3), (v2, v3), (v2, v5), (v3, v4), (v3, v5), (v3, v6), (v4, v7),
(v5, v6), (v5, v8), (v6, v9)}. The fire breaks out at vertices F = {v0, v1}, a single firefighter
( f = 1) is initially stationed at the depot a, and TS = 1. The depot and the vertices in
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V are in the Euclidean plane. The number on top of the vertices indicates their shortest
hop distance to their closest vertex in F, which in this example equals the smallest time
slot in which they can burn. The figure also shows a feasible solution S = (a, v5, v6, v7) in
which the firefighter moves from the depot a to defend vertex v5, then moves to defend
vertex v6, and lastly moves to defend vertex v7. For this defending sequence S , the value
of βS1 equals 2 because vertex v5 burns at time 2 when the truncated protecting sequence
S1 = (a) is applied, βS2 equals 2 because vertex v6 burns at time 2 when the truncated
protecting sequence S2 = (a, v5) is applied, and similarly, βS3 equals 3. S is a valid
sequence because τ(a, v5) = 1.13 ≤ βS1 = 2, τ(a, v5) + τ(v5, v6) = 1.99 ≤ βS2 = 2, and
τ(a, v5) + τ(v5, v6) + τ(v6, v7) = 2.81 ≤ βS3 = 3. The process ends after three burning
rounds (at time slot three) because at that time, the fire can no longer spread. The value
of this solution equals five because, at the end of the process, vertices v0, v1, v2, v3, and v4
are burnt.

For the instance of Figure 1, the firefighter cannot choose to defend vertex v3 because
τ(a, v3) = 1.74 > βS ′1 = 1 for sequence S ′ = (a, v3). It could defend v2 because τ(a, v2) =
0.80 < βS ′′1 = 1 for a sequence S ′′ = (a, v2), but in this case no other vertex could be
defended, giving a feasible solution S ′′ = (a, v2) of value nine. In these examples, the
process also ends at time slot 3 when the fire can no longer spread.

Figure 1. Example of an instance of the MFP and one of its solutions.

For the case of f > 1 firefighters, a feasible solution is a set of valid sequences
S = {S1, . . . ,S f } of the vertices defended by each firefighter. In this case, βSi has to be
extended to compute the time in which a vertex ui in a Sx ∈ S is burnt if none of the
defending sequences in S = {S1, . . . , S f } includes vertices protected at a time posterior to
τ(a, u1) + ∑i−1

k=1 τ(uk, uk+1) for uk ∈ Sx.
The objective of the minimization version of the MFP is to find a feasible solution that

minimizes the number of burnt vertices at the end of the process.
The decision version of the moving firefighter problem for a single firefighter (1-MFP)

is as follows.

Definition 1. Decision version of the 1-MFP problem: Given an arbitrary instance 〈G =
(V, E), F, a, τ, 1, TS〉 of 1-MFP and an integer k ≥ 1, is there a valid sequence Smoving of vertices
defended by the firefighter such that the number of burnt vertices at the end of the process is at
most k?
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1-MFP is NP-Complete

In this section, we show that 1-MFP is NP-complete via a polynomial-time reduction
(≤P) to the decision version of the firefighter problem for a single firefighter (1-FP), which
can be defined as follows.

Definition 2. Decision version of the 1-FP problem: Given an arbitrary instance 〈G =
(V, E), F〉 of 1-FP, where F ⊂ V is the set of vertices where the fire breaks out and an integer
k ≥ 1, is there a sequence Soriginal of vertices defended by the firefighter such that the number of
burnt vertices at the end of the process is at most k?

We start with two preliminary lemmas.

Lemma 1. Given an instance 〈G, F〉 of 1-FP, an instance 〈G′, F′, a, τ, 1, TS = 1〉 of 1-MFP such
that G′ = G, F′ = F, defending sequences Soriginal = (u1, . . . , ul) for the instance of 1-FP,
Smoving = (a, u′1, . . . , u′l) with u′i = ui for each u′i ∈ Smoving for the instance of 1-MFP, and
function τ1(u, v) = 1 ∀u 6= v with u ∈ V ∪ {a}, v ∈ V and τ1(u, u) = 0 ∀u ∈ V ∪ {a}. The
discrete time ti in which a vertex vi in Soriginal = (u1, . . . , ul) is defended equals the time t′i = i in
which its corresponding vertex v′i is defended in Smoving = (a, u′1, . . . , u′l).

Proof of Lemma 1. From the definition of τ1, we can observe that the time τ(a, u′1) +
∑i−1

k=1 τ(u′k, u′k+1) in which a vertex u′i ∈ Smoving is defended equals i. This is the same as the
discrete-time in which the corresponding vertex ui is defended by Soriginal , namely, i.

Lemma 2. Given an instance 〈G, F〉 of 1-FP, an instance 〈G′, F′, a, τ, 1, TS = 1〉 of 1-MFP such
that G′ = G, F′ = F, defending sequences Soriginal = (u1, . . . , ul) for the instance of 1-FP,
Smoving = (a, u′1, . . . , u′l) with u′i = ui for each u′i ∈ Smoving, for the instance of 1-MFP, and
function τ1(u, v) = 1 ∀u 6= v with u ∈ V ∪ {a}, v ∈ V, and τ1(u, u) = 0 ∀u ∈ V ∪ {a}. A
vertex v ∈ G burns at discrete time t if and only if its corresponding vertex v′ ∈ G′ burns at the
beginning of time slot t.

Proof of Lemma 2. If a vertex v ∈ G burns at discrete time t, it means that there is a
shortest path P of length t, from a vertex r ∈ F to v that does not contain any vertex in the
truncated protecting sequence Soriginal = (u1, . . . , ut). Given that G = G′, this shortest path
P also exists in G′ and does not contain vertices in Smoving = (u′1, . . . , u′t). From Lemma 1,
and because the fire propagates at the beginning of each time slot of length TS = 1, vertex
v′ has to burn at time t,a which equals the beginning of time slot t. A symmetric argument
can be applied to show the other direction of the implication.

Theorem 1. 1-MFP is NP-complete.

Proof of Theorem 1. We first show that the 1-MFP is an NP. Given an arbitrary instance
〈G, F, a, τ, 1, TS〉, k ≥ 1, and a defending sequence S = (a, u1, . . . , ul), a certifier algorithm
can check in polynomial-time if (1) holds for each ui ∈ S , given that the firefighter defends
each ui ∈ S at time τ(a, u1) + ∑i−1

k=1 τ(uk, uk+1). Then, the certifier algorithm can execute,
also in polynomial-time, the firefighting process to verify that the number of burnt vertices
is, in fact, at most k.

Now, we show that 1-FP ≤P 1-MFP. Given an arbitrary instance 〈G, F〉 of 1-FP and
an integer k, we construct an instance of 1-MFP as 〈G′, F′, a, τ1, 1, TS = 1〉 with G′ = G,
F′ = F, and τ1(u, v) = 1 ∀u 6= v with u ∈ V ∪ {a}, v ∈ V and τ1(u, u) = 0 ∀u ∈ V ∪ {a}.
Constructing this instance of 1-MFP takes O(|V|2) steps.

Next, we claim that there is a defending sequence Soriginal = (u1, . . . , ul) for the
instance of the 1-FP such that at most k vertices of G burn, if and only if there is a valid
defending sequence Smoving(a, u′1, . . . , u′l) with u′i = ui for each u′i ∈ Smoving, for the instance
of the 1-MFP such that at most k vertices burn in G′.
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( =⇒ ) We first show that Smoving = (a, u′1, . . . , u′l) is valid. Let us proceed by
contradiction and assume that uj ∈ Smoving is the vertex with the smallest index j ∈ {1, . . . , l}
such that τ(a, u1) + ∑

j−1
k=1 τ(uk, uk+1) = j > βSj . However, from Lemma 1, we saw that the

time a vertex in G′ is defended by Smoving equals the discrete time its corresponding vertex
in G is defended by Soriginal . Since vertex uj is defended at discrete time j in the original
firefighter process, it can not be burning at time j, which means that there is no path from
a vertex r ∈ F to uj of length j or shorter that does not contain a vertex in the truncated
protecting sequence (u1, . . . , uj−1). Since G = G′, there is no such a path in G′, and hence
βSj > j, a contradiction. From Lemma 2, at the end of the burning process, exactly the same
number of vertices are burning in both instances. Therefore, if at most k vertices of G burn,
then at most k vertices burn in G′.

(⇐= ) Since Smoving = (a, u′1, . . . , u′l) is valid for the 1-MFP instance, from Lemma 1
and 2, we know that all the vertices in Soriginal can be defended in the 1-FP instance. From
Lemma 2, we also know that if at most k vertices of G′ burn, then at most k vertices of
G burn.

Table 2 summarizes the notation used throughout the paper.

Table 2. Summary of notation.

G = (V, E) Input graph.
F Set of vertices where the fire breaks out.
a Firefighters’ depot or anchor point.
τ Travel time function.
f Number of firefighters.
TS Length of the time slots (burning round).
〈G, F, a, τ, f , TS〉 Instance of the 1-MFP.
〈G, F〉 Instance of the 1-FP.
S = (a, u1, . . . , ul) Defending sequence.

βSi
Time when vertex ui burns, given the truncated defending sequence
Si = (a, u1, . . . , ui−1).

S = {S1, . . . ,S f } Set of defending sequences for f > 1.
B Upper bound on the number of burning rounds (or time slots).
D Upper bound on the number of vertices defended within a single burning round.
bi,j Binary variable that indicates whether vi is burning at the j-th burning round.
di,j Binary variable that indicates whether vi is defended at the j-th burning round.

d′j,i,k
Binary variable that indicates whether vi is defended at the k-th defense round of the
j-th burning round.

pj,i,k
Binary variable that indicates whether vi was the last defended vertex at the k-th
defense round of the j-th burning round.

tj
Continuous variable that indicates the time needed to carry out a defending sequence
within the j-th burning round.

b n× B matrix that contains the bi,j binary variables.
d n× B matrix that contains the di,j binary variables.
d’j n× D matrix that contains the d′j,i,k binary variables.
pj n× D matrix that contains the pj,i,k binary variables.

4. Mixed-Integer Quadratically Constrained Program for the 1-MFP

Expressions (2) to (23) define a mixed-integer quadratically constrained program
(MIQCP) for the optimization version of the 1-MFP. This MIQCP is based on the integer
linear program (ILP) for the original firefighter problem (FP). For simplicity, let us assume
that vertices are labeled as {v1, v2, . . . , vn}. In addition, let us consider the anchor point,
a, as an isolated vertex in the graph. This way, the fire cannot catch this special vertex,
and inconsistencies are not added to the formulation. As in the original FP, the proposed
MIQCP for the 1-MFP requires an upper bound B on the number of burning rounds (or
time slots) at which the diffusive process finishes. However, unlike the original FP, it also
requires an upper bound D on the number of vertices that are defended within a single
burning round. We will say that defending a vertex during a burning round defines a
defense round within that burning round. The length of the defense rounds is a function of
τ, and it is possible to have from 0 to D defense rounds in a given burning round.
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The ILP for the original FP is relatively simple; it has O(nB) binary variables and
O(nB∆) constraints, where ∆ is the graph’s largest vertex degree. In contrast, our proposed
MIQCP for the 1-MFP hasO(nBD) binary variables,O(max{|E|D, nBD}) linear constraints,
andO(nBD) quadratic constraints. Since B and D are upper bounded by n, the numbers of
variables and constraints are upper bounded by O(n3). In addition, this MIQCP assumes
that function τ is normalized with respect to the length of the burning rounds (time slots),
and hence that TS = 1.

min
n

∑
i=1

bi,B (2)

s.t. bi,j ≥ bi,j−1 ∀vi ∈ V, ∀j ∈ [1, B] (3)

di,j ≥ di,j−1 ∀vi ∈ V, ∀j ∈ [1, B] (4)

bi,j + di,j ≤ 1 ∀vi ∈ V, ∀j ∈ [1, B] (5)

bi,j + di,j ≥ bk,j−1 ∀vi ∈ V, ∀j ∈ [1, B], ∀vk ∈ N(vi) (6)

d′j,i,1 ≥ di,j−1 ∀vi ∈ V, ∀j ∈ [1, B] (7)

d′j,i,D = di,j ∀vi ∈ V, ∀j ∈ [1, B] (8)

d′j,i,k ≥ d′j,i,k−1 ∀vi ∈ V, ∀j ∈ [1, B], ∀k ∈ [2, D] (9)

pj,i,k ≥ d′j,i,k − d′j,i,k−1 ∀vi ∈ V, ∀j ∈ [1, B], ∀k ∈ [2, D] (10)

pj,i,1 ≥ d′j,i,1 − di,j−1 ∀vi ∈ V, ∀j ∈ [1, B] (11)
n

∑
i=1

pj,i,k = 1 ∀k ∈ [1, D], ∀j ∈ [1, B] (12)

pj,i,k ≥ pj,i,k−1 ·
(

1−
n

∑
l=1

(
d′j,l,k − d′j,l,k−1

))
∀vi ∈ V, ∀j ∈ [1, B], ∀k ∈ [2, D] (13)

pj,i,1 ≥ pj−1,i,D ·
(

1−
n

∑
l=1

(
d′j,l,1 − dl,j−1

))
∀vi ∈ V, ∀j ∈ [1, B] (14)

tj = tj−1 +
n

∑
l=1

(
n

∑
i=1

pj,i,1 · τl,i

)
· pj−1,l,D ∀j ∈ [1, B] (15)

+
D

∑
k=2

(
n

∑
l=1

(
n

∑
i=1

pj,i,k · τl,i

)
· pj,l,k−1

)
tj ≤ j ∀j ∈ [1, B] (16)

where t0 = 0 (17)

da,0 = 1 (18)

di,0 = 0 ∀vi ∈ V \ {a} (19)

bi,0 =

{
1 i f i ∈ F
0 i f i 6∈ F

∀vi ∈ V (20)

d′0,i,k = p0,i,k = di,0 ∀vi ∈ V, ∀k ∈ [1, D] (21)

bi,j , di,j , pj,i,k , d′j,i,k ∈ {0, 1} ∀vi ∈ V, ∀j ∈ [1, B], ∀k ∈ [1, D] (22)

tj ∈ R+ ∀j ∈ [1, B] (23)

The ILP for the FP problem only has two sets of binary variables, bi,j and di,j. Similarly,
the main variables of the proposed MIQCP for the 1-MFP are bi,j and di,j too. These variables
report the state of each vertex i at the jth burning round, where i ∈ [1, n] and j ∈ [1, B].
Thus, if a vertex vi is burnt at round j, then bi,j = 1; otherwise, bi,j = 0. If vertex vi is burnt
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at round j, it is because of one of the following reasons: it was originally burnt at some
previous round (Constraint (3)), or it is in the neighborhood of some previously burnt vertex
(Constraint (6)). In case vertex vi is defended at round j, then di,j = 1; otherwise, di,j = 0.
A vertex that is defended at any round will remain in that state (Constraint (4)), and if
a vertex is in the neighborhood of some previously burnt vertex, then it has to be either
burned or defended (Constraint (6)). By Constraint (5), a vertex cannot be simultaneously
burnt and defended. For further clarification, we can organize these variables in two n× B
matrices (see Equations (24) and (25)), where matrix d can be further extended to matrices
d’j and pj (see Equations (26) and (27)), where j ∈ [1, B].

b =


b1,0 b1,1 · · · b1,B
b2,0 b2,1 · · · b2,B

...
...

. . .
...

bn,0 bn,1 · · · bn,B

 (24)

d =


d1,0 d1,1 · · · d1,B
d2,0 d2,1 · · · d2,B

...
...

. . .
...

dn,0 dn,1 · · · dn,B

 (25)

Given that the 1-MFP allows sequentially defending many vertices within a burning
round, we added a set of variables d′j,i,k in order to report the sequence of defended vertices,
where j ∈ [1, B], i ∈ [1, n], and k ∈ [1, D]. In more detail, if vertex vi is defended at the kth
defense round, within the jth burning round, then d′j,i,k = 1; otherwise, d′j,i,k = 0. Notice
that D is an upper bound on the number of defended vertices within one burning round.
We can organize these variables into B matrices of size n×D. Thus, there is a matrix d’j for
each jth burning round (see Equation (26)).

d’j =


d′1,1 d′1,2 · · · d′1,D
d′2,1 d′2,2 · · · d′2,D

...
...

. . .
...

d′n,1 d′n,2 · · · d′n,D

 (26)

By Constraint (7), all vertices defended at the (j− 1)th burning round stay defended at
the beginning of the first defense round of the following burning round, which is reported
in the first column of d’j. By Constraint (8), the state of the defended vertices at the end of
the jth burning round (column D of d’j) is copied into column j of matrix d. In other words,
each column j of matrix d is a summary of what happens inside each matrix d’j. Similarly
to Constraint (4), Constraint (9) indicates that once a vertex is defended at the kth defense
round of the jth burning round, it will stay defended.

Constraints (10)–(12) describe the relationship between the binary variables pj,i,k
and variables d′j,i,k. The goal of pj is to report the last defended vertex at each defense
round within each burning round. Notice that pj,i,k = 1 might mean two different things:
vertex vi has been defended precisely at the kth defense round within burning round j
(Constraints (10) and (11)), or vertex vi is the last vertex defended at some previous round.
Constraint (12) guarantees that exactly one vertex is the last defended at each defense
round. Please note that Constraint (18) establishes that the anchor point a is defended at
the beginning of the process. For convenience, we can organize these variables in a matrix
pj for each burning round (see Equation (27)).

Constraints (13) and (14) guarantee that the information about the last defended vertex
is copied into the following columns of p. When a new vertex becomes defended, these
constraints are deactivated by making the right-hand side equal to zero. In this case, the
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subsequent columns are no longer a copy of the previous ones; instead, the currently
defended vertex is updated. Constraints (15) and (16) guarantee that the time tj needed to
carry out a sequence of defended vertices within the jth burning round does not exceed
the current number j of time slots of the diffusive process. By these two constraints,
Constraints (3) and (5)–(14), which define the relationship between the defended vertices
and the dynamics of the diffusive process, the firefighter cannot defend a vertex that the
fire has already spread to (which is consistent with Equation (1)).

pj =


p1,1 p1,2 · · · p1,D
p2,1 p2,2 · · · p2,D

...
...

. . .
...

pn,1 pn,2 · · · pn,D

 (27)

The solution to an 1-MFP instance is obtained from the d’ matrices by sequentially
scanning them for the first time that a value of one appears in a row of one of such matrices.
Remember that the first time that a value of one appears in row i of the matrix d’j indicates
that the vertex vi is defended at burning round j, and hence, that it is part of the resulting
defending sequence S . The ordering of the vertices in S is obtained from the burning and
defense rounds where they were defended.

For further clarification, Figure 2 shows the value of each variable in the solution of
the example instance from Figure 1. In this example, we follow the convention of placing
the anchor point in the last row of the matrices. Column j = 0 represents the process’ initial
conditions where vertices v0 and v1 are the initial fire sources and the firefighter is located at
the anchor point. The remaining columns of matrices b and d report the state of the vertices
at the subsequent burning rounds. The resulting defending sequence S equals (a, v5, v6, v7)
because the first value of one appears in the sixth row (the one corresponding to vertex
v5) of the first column of d’2, the second value of one appears in the seventh row of d’3,
and the last value of one appears in the eighth row of the first column of d’3. Time t1 = 0
because no vertex is defended during the first burning round while t2 = 1.13 + 0.86 = 1.99
because the firefighter moves from the anchor a to defend vertex v5 and then from v5 to
defend v6, which takes 1.99 units of time. Similarly, t3 = 2.81 because that is the time
needed to complete the whole defending sequence S = (a, v5, v6, v7), which is optimal for
this instance.

Figure 2. State of the matrices defined by the MIQCP for the optimal solution of the instance defined
in Figure 1. Here, TS = 1, B = 3, and D = 2.
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Regarding a MIQCP for the MFP with more than one firefighter, we conjecture that
the number of variables and constraints might increase by an order of f . The precise
formulation is left as future work.

5. Experimental Performance Evaluation

In this section, we present the results of a series of experiments that characterize the
performance of the proposed MIQCP for the 1-MFP. The purpose was twofold: first, to
evaluate the impacts of the size of the graph, the scale of function τ, and the number of
vertices where the fire breaks out on the value of the objective function and the MIQCP’s
running time; second, to provide a set of optimally solved instances that can be used for
future performance comparison analyses of heuristic or approximated solutions.

For these experiments, we generated instances 〈G, F, a, τ, f , TS〉 of the 1-MFP, where
the number of firefighters f equals one, the length of the time slots TS also equals one, the
number of initial fires |F| is in {1, 3}, the graph G = (V, E) with |V| = n ∈ {10, 20, 30, 40} is
randomly generated, and its vertices and the anchor point are placed uniformly at random
inside a 1× 1× 1 cube. To obtain a random graph G of size n, we generated a series of
graphs G′ = (V′, E′) of size n ≤ |V′| < n + dn/4e following the Erdős–Rényi model with
p = 2.5/n, until finding a G′ with a connected component of size n which is used as G.
Lastly, τ is obtained from the Euclidean distances between the locations of the vertices and
the anchor point.

We implemented the proposed MIQCP using Python and a commercial version of
Gurobi 9.5.1 [38]. Although there are other optimization solvers, not all of them can solve
MIQCP problems. Gurobi and CPLEX [39] are among the best solvers with such capabilities.
From them, we selected Gurobi because it is one of the fastest optimization solvers to date.
All the experiments were executed using a computer running Ubuntu 20.04 on an Intel
Core i7-6700 processor of 3.40 GHz with 32 GB of RAM.

For the results presented here, we used optimal values of the two hyperparameters
introduced in the MIQCP—namely, the upper bound B for the number of time slots needed
to complete the diffusive process and the upper bound D for the maximum number of
vertices that can be defended in a single time slot. These optimal values were determined
experimentally for each instance. As discussed in Section 4, the values of these upper
bounds significantly impact the performance of the MIQCP because they determine the
number of constraints. It is also important to highlight that underestimating these values
precludes the MIQCP from finding optimal and even correct solutions.

Figure 3 presents the running times needed to solve instances with increasing numbers
of vertices and initial fires, and when scaling function τ by a factor λ ∈ {2, 7}. The solid
lines represent the average value computed over ten different random instances, and the
shaded region represents the confidence interval for a confidence level of 95%. The results
are as expected. From the figure, we can observe that the running time increases rapidly as
the size of the graphs (n) increases because the numbers of linear (O(max{|E|D, nBD}))
and quadratic (O(nBD)) constraints increase as a function of n. We can also observe that
the running time tends to be smaller with a larger number of initial burnt vertices (|F|)
because the upper bound B on the number of time slots needed to complete the diffusive
process also tends to be smaller as |F| increases. The latter is because B is proportional to
the length of the shortest paths from vertices in F to the remaining vertices in G. Lastly,
the running time decreases as the value of λ increases because the upper bound D on the
number of vertices that can be defended in a single time slot decreases.
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Figure 3. Running time with one initial fire (left) and three initial fires (right). The x axis shows
the number of vertices in the input graph, and the y axis shows the running time in seconds. The
solid lines represent the average values over ten random instances, and the shaded regions are the
confidence intervals for a confidence level of 95%.

Figure 4 shows the average number of burnt vertices at the end of the diffusive
processes when increasing the number of vertices, the number of initial fires, and the value
of λ. As expected, the number of burnt vertices increases as the size of the graphs increases
because, in general, the fire can propagate to a larger number of vertices. Increasing the
number of initial fires increases the number of burnt vertices because the firefighter has
to contain more than one diffusive process. This also reduces the objective function’s
variability because having more than one initial fire makes the diffusive process less
sensitive to the topological properties of the neighborhood where the fire breaks out. Lastly,
the number of burnt vertices increases as the value of λ increases because this has the effect
of making the firefighter slower.

Figure 4. Numbers of burnt vertices with one initial fire (left) and three initial fires (right). The x axis
shows the number of vertices in the input graph, and the y axis shows the number of burnt vertices
at the end of the process. The solid lines represent the average values over ten random instances, and
the shaded regions are the confidence intervals for a confidence level of 95%.

We performed experiments for graphs of size n = 50, but unfortunately, most of
the executions did not end within a predefined time budget of 24 h, and in many cases,
experienced memory crashes. This indicates a need for more scalable solutions for the MFP.
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6. Conclusions

We presented the moving firefighter problem (MFP), a generalization of the original
firefighter problem (FP) presented by Hartnell, which incorporates a function τ that
determines the time it takes a firefighter to move from vertex u to vertex v in the input graph
to defend v. We argue that this generalization allows modeling more realistic situations
where the time needed to defend an entity modeled by a vertex is not the same for all the
entities and where there is either a physical or logical distance between each pair of entities.
This new formulation has practical applications for studying the spread and containment
dynamics in networks.

Using polynomial time reduction from the decision version of the original firefighter
problem for a single firefighter 1-FP, we showed that the decision version of the moving
firefighter problem for a single firefighter 1-MFP is indeed a generalization of the 1-FP, and
hence, that it belongs to the NP-complete class of problems.

We presented a mixed-integer quadratically constrained program (MIQCP) for the
optimization version of the 1-MFP with metric functions τ that have O(nBD) binary
variables,O(B) real-valued variables,O(max{|E|D, nBD}) linear constraints, andO(nBD)
quadratic constraints. B and D are upper bounds to the numbers of burning and defense
rounds, respectively. To empirically characterize the performance of the MIQCP, we solved
160 randomly generated instances. The results revealed that the running time of the MIQCP
strongly depends on finding adequate values for B and D.

Future work includes designing scalable solutions for the 1-MFP, solutions for instances
with more than one firefighter, and solutions specifically tailored for particular topologies
such as trees. We also intend to design approximation algorithms and characterize the
approximability of the MFP.
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