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Abstract: In response to the increasing threat of hypersonic weapons, it is of great importance for
the defensive side to achieve fast prediction of their feasible attack domain and online inference
of their most probable targets. In this study, an online footprint prediction and attack intention
inference algorithm for hypersonic glide vehicles (HGVs) is proposed by leveraging the utilization of
deep neural networks (DNNs). Specifically, this study focuses on the following three contributions.
First, a baseline multi-constrained entry guidance algorithm is developed based on a compound
bank angle corridor, and then a dataset containing enough trajectories for the following DNN
learning is generated offline by traversing different initial states and control commands. Second,
DNNs are developed to learn the functional relationship between the flight state/command and
the corresponding ranges; on this basis, an online footprint prediction algorithm is developed by
traversing the maximum/minimum ranges and different heading angles. Due to the substitution
of DNNs for multiple times of trajectory integration, the computational efficiency for footprint
prediction is significantly improved to the millisecond level. Third, combined with the predicted
footprint and the hidden information in historical flight data, the attack intention and most probable
targets can be further inferred. Simulations are conducted through comparing with the state-of-the-art
algorithms, and results demonstrate that the proposed algorithm can achieve accurate prediction for
flight footprint and attack intention while possessing significant real-time advantage.

Keywords: reentry guidance; footprint prediction; attack intention inference; deep neural network

MSC: 85; 97R40

1. Introduction

Hypersonic glide vehicles have attracted much attention in recent decades due to
their dominant advantages on fast speed, wide attack range, and strong maneuverability.
The whole flight time from the beginning entry to the final attack can be shortened to within
one hour, which results in a daunting challenge for the interception system of the defensive
side. Acquiring the feasible footprint and possible intention of an attacking HGV as early as
possible and getting more time for the interception system is crucial for a successful defense.
However, most of the existing methods/algorithms suffer the drawbacks of insufficient
prediction accuracy and poor real-time performance. In this study, we focus on an online
footprint prediction and attack intent inference algorithm for HGVs by leveraging the
utilization of deep neural networks, and we achieve performance improvement for both
prediction accuracy and computational speed.

The footprint is the set of terminals of all possible trajectories. Traditionally, the foot-
print is generated by traversing the maximum/minimum ranges and different heading
angles using a baseline trajectory planner. The method difference for footprint generation
is mainly reflected in the method difference for the planner design. The methods for foot-
print generation can be roughly divided into three categories. (1) Trajectory optimization
methods, such as the Legendre pseudospectral method [1,2], the Gauss pseudospectral
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method [3], the hp-adaptive Radau pseudospectral method, and convex optimization [4–6]
are utilized to generate the landing footprint. (2) The quasi-equilibrium glide condition
(QEGC) [7] simplifies footprint generation. In [8], footprint generation is simplified to find
the solutions to closest approaches to a moving virtual target. On the basis of [8], a selec-
tion scheme of a virtual target is proposed to increase the applicability of this method [9].
In [10], based on the simplified dynamics model, the convex optimization is utilized to
generate the maximum crossrange trajectory. Footprint generation under the failure of the
control components was solved by QEGC in [11]. (3) Based on the Evolved Acceleration
Guidance Logic for Entry (EAGLE), drag acceleration-energy profiles can be designed for
footprint generation [12]. On the basis of EAGLE, footprint generation algorithms follow
drag acceleration–energy profiles tracking scheme satisfying the no-fly zone constraint
in [13]. However, the existing footprint generation methods inevitably require numerical
integration, and the time-consuming integration calculation and algorithm iteration cannot
meet the real-time requirements for online footprint generation.

At the same time, few published studies pay attention to the discussion about attack
intention for an attacking HGV, which specifically refers to information mining from past
flight data and assists the defensive side to deploy interceptor systems for the most possible
attack targets. Representative work is reviewed here. On the basis of the traditional state
extrapolation prediction ideas in [14,15], a Bayesian trajectory prediction method based on
intention inference is proposed. Aiming at the uncertainty of HGVs maneuvering, it is one
of the effective ways to improve the accuracy of long-term trajectory prediction to reason-
ably infer the flight intention based on the characteristics of target motion. The trajectory
prediction accuracy of this method is high in the short term, but the long-term prediction
accuracy is low. The intention analysis only provides a reference for the long-term trajectory
prediction, and cannot analyze the final attack target. In [16], a dynamic Bayesian network
is used to infer the relationship between HGVs and attack targets to achieve attack intention
prediction. However, this method can only determine the final attack target in the middle
and later stages of the flight and cannot provide guidance for early warning and defense.
DNN-based maneuver pattern recognition, such as penetration, attack, transportation, civil
aviation flight, reconnaissance, etc., is designed in [17]. In summary, there are few studies
to discuss the online attack intention for a flying HGV, and the main reasons are summa-
rized as follows. (1) The real-time requirement for online footprint generation cannot be
met. (2) The control strategy is unknown. Due to the aerodynamic force, HGVs perform
non-inertial maneuver driven by the control command, and it is very difficult to exactly
identify their control strategies. (3) HGVs are highly maneuverable. HGVs can theoretically
attack every target within a large footprint through maneuvering changes. Due to the
restrictions of the no-fly zone and the need for maneuver penetration, it is unavoidable that
the control variable may change sharply. Compared with ballistic missiles, the intention
analysis for HGVs is more difficult due to HGVs’ strong maneuverability.

In recent years, DNNs have been widely used in the aerospace field [18]. Multi-layer
feedforward neural networks are utilized to approximate the mapping relationship be-
tween the real-time flight states of high lifting vehicles and guidance commands in [19].
In [20,21], a neural network predictor assists in calculating guidance parameters. In our
previous study [22], DNN is developed to replace the trajectory integrator to help achieve
real-time numerical predictor–corrector guidance (NPCG). In this study, we focus on the
online prediction of feasible footprint and attack intention for HGVs, and DNN and data
mining technologies help achieve the combined advantages on real-time performance and
prediction accuracy. Specifically, the following three contributions are emphasized. (1) A
baseline multi-constrained entry guidance algorithm is developed based on a compound
bank angle corridor, and then a dataset containing enough trajectories for the following
DNN learning is generated offline by traversing different initial states and control com-
mands. (2) DNNs are developed to learn the functional relationship between the flight
state/command and the corresponding ranges; on this basis, an online footprint predic-
tion algorithm is developed by traversing the maximum/minimum ranges and different
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heading angles. Due to the substitution of DNN for trajectory integration, the computa-
tional efficiency for footprint prediction is significantly improved to the millisecond level.
(3) Combined with the predicted footprint and the hidden information in historical flight
data, the attack intention and most probable targets can be further inferred. A forgetting
mechanism helps the proposed attack intention inference algorithm to still be effective
when the HGVs change their attack target during the flight. Simulations are given to
estimate the effectiveness of the proposed techniques.

This study is organized as follows: The problem formulation of reentry is described in
Section 2. In Section 3, a DNN is developed to approximate the ranges, following which an
intelligent DNN-based footprint algorithm is proposed. In Section 4, an intent inference
algorithm is proposed. Simulations are given in Section 5 to evaluate the performance of
the proposed algorithm. Section 6 summarizes this study.

2. Problem Formulation

The purpose of this study is to achieve online footprint generation and attack intention
inference of an enemy HGV. In this section, reentry dynamics, constraints, and control
parameterization are provided and analyzed.

2.1. Reentry Dynamics

In order to achieve the footprint prediction of a flying HGV, it is necessary to describe
its reentry dynamical motion. Without considering the influence of the Earth’s rotation,
the three-degree-of-freedom motion model is given as [23]:

ṙ = v sin θ
λ̇ = v cos θ sin ψ/(r cos φ)
φ̇ = v cos θ cos ψ/r
v̇ = −D/m0 − g sin θ
θ̇ = (1/v)

[
L cos σ/m0 +

(
v2/r− g

)
cos θ

]
ψ̇ = (1/v)

[
L sin σ/(m0 cos θ) + v2/r cos θ sin ψ tan φ

]
Ṡe = v cos θ/r

(1)

where r represents the geocentric distance of the vehicle, λ and φ represent the longitude
and latitude, v is the speed of the vehicle relative to the Earth, θ represents the trajectory
inclination angle, ψ represents the heading angle. Se is the cumulative range angle of the
vehicle; m0 is the mass of the vehicle, which remains constant during reentry, σ denotes
the bank angle, and g is the acceleration of gravity, which is calculated by a simple inverse
square model [22]:

g =
R2

0

(R0 + h)2 g0, (2)

where g0 = 9.8 m/s2 is the gravitational acceleration at sea level, and R0 = 6378 km is the
average radius of the Earth.

The atmospheric density ρ is expressed as [24,25]:

ρ = ρ0e−h/β, (3)

where ρ0 = 1.225 kg/m3 represents the atmospheric density at sea level, and β = 7200 m.
The variables L and D represent the lift and drag of the vehicle, and the expressions

are [23]:
L = 0.5ρv2CLSre f , (4)

D = 0.5ρv2CDSre f , (5)

where Sre f represents the aerodynamic reference area of the vehicle, and CL and CD repre-
sent the lift and drag coefficients of the vehicle, which are related to the speed of the vehicle
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and the angle of attack α. During reentry, α takes the form of a three-section profile related
to flight speed v [22]:

α =


αmax v > v1

(αmax − αmin)(v− v2)/(v1 − v2) v2 < v < v1
αmin v < v2

(6)

where αmax = 20◦ is the maximum allowable angle of attack, αmin = 8.5◦ is the angle
of attack at the maximum lift-to-drag ratio, and v1 = 4700 m/s, v2 = 3100 m/s are
velocity nodes.

As a result, the bank angle σ is the only control variable for reentry; xstate = [h, θ, φ, v, γ, ψ]T

represents the current state of the vehicle.

2.2. Reentry Constraints

In order to ensure the safety and meet the mission requirements of the vehicles,
the HGVs need to meet the path constraints and terminal constraints during reentry.
Path constraints include heating rate constraint, overload constraint, dynamic pressure
constraint, and equilibrium glide condition. These expressions are as follows [23]:

Q̇(t) =
C1√
Rd

(
ρ

ρ0

)0.5( v
VC

)3.15
≤ Q̇max, (7)

n(t) =

√[
L

m0g0

]2
+

[
D

m0g0

]2
= q(t)

√
C2

L + C2
D

Sre f

m0g0
≤ nmax, (8)

q(t) =
1
2

ρv2 ≤ qmax, (9)

L cos σQEGC/m0 +
(

v2/r− g
)
= 0, (10)

where Q̇(t) represents the heating rate at the stagnation point, Q̇max is the upper limit of
the allowable heating rate, C1 and Rd are the overall design parameters of the vehicle, Vc
represents the first cosmic velocity, n(t) represents the actual total overload, nmax is the
upper limit of allowable overload, q(t) represents the actual dynamic pressure, qmax is the
upper limit of allowable dynamic pressure, and σQEGC is the equilibrium glide angle.

To ensure a successful transition to the terminal area energy management (TAEM),
the final reentry segment must meet specific position and velocity requirements. Terminal
constraints include [23]:

h
(

t f

)
= h f , v

(
t f

)
= v f , λ

(
t f

)
= λ f , φ

(
t f

)
= φ f , (11)

where h f , v f , λ f , φ f are the altitude, speed, longitude, and latitude of the end of the
reentry flight.

Terminal latitude and longitude constraints are usually transformed into the range
constraint Se(t f ) = Sgo; Sgo is defined as the spherical distance from the vehicle to the
target [22]:

Sgo = arccos
[
sin λ sin λ f + cos λ cos λ f cos

(
φ− φ f

)]
. (12)

2.3. Control Parameterization

In this subsection, the noted reentry constraints in Section 2.2 are transformed into the
upper and lower boundaries for the bank angle. Then, by weighting the upper and lower
boundaries, the bank angle profile can be determined, which corresponds to trajectories of
different ranges. By traversing different initial reentry conditions and different weighting
coefficients, a dataset composed of trajectories can be generated offline and used to train
DNNs for range prediction.
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2.3.1. Bank Angle Corridor

HGVs need to satisfy path constraints, terminal constraints, and control constraints.
Constraining trajectories within reasonably constructed corridors is a way to deal with
multiple constraints. Common corridors include height–velocity corridors, bank angle
corridors, drag acceleration corridors, etc. In this study, a compound bank angle corridor
is employed [22]. We substitute the atmospheric density Equation (3) and aerodynamic
Equations (4) and (5) into the heating rate, overload, and dynamic pressure constraint
Equations (7)–(9). Denoting HQ̇max

, Hnmax , Hqmax as the height boundary of the maximum
heating rate, overload, and dynamic pressure according to the speed v, as shown in Figure 1,
the height constraint according to v can be obtained as

H >
2
β

ln

[
C1

Q̇max
√

Rd

(
V
VC

)3.15
]
= HQ̇max

(V), (13)

H >
1
β

ln

ρ0V2S
√

C2
D + C2

L

2nmaxm0g0

 = Hnmax(V), (14)

H >
1
β

ln
(

ρ0V2

2qmax

)
= Hqmax(V), (15)

H(V) > Hdown(V) = max
(

HQ̇max
, Hnmax , Hqmax

)
. (16)

Figure 1. Lower boundary of the height–velocity corridor.

According to the QEGC, with known height and speed, the equilibrium glide angle
σQEGC can be determined as

σQEGC = cos−1 m0
(

g−V2/r
)

L
. (17)

The Hdown(V) is a function of speed, and the σQEGCup corresponding to Hdown(V) can
be obtained by Equation (17). The definition of QEGC determines

σQEGCdown(V) = 0. (18)

Therefore, the bank angle needs to be less than σQEGCup(V) and greater than σQEGCdown(V):

σQEGCdown(V) ≤ σ(V) ≤ σQEGCup(V). (19)
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So far, we have obtained the upper and lower bounds of the bank angle corridor for
the incoming HGVs to satisfy the path constraints. In the initial glide segment, due to the
high flight altitude, the flight aerodynamic force is insufficient. In order to prevent the
vehicle from falling too fast to generate a large amount of aerodynamic heat, the bank angle
keeps a small constant value in the initial glide segment. In this paper, σImax represents
the maximum allowable bank angle amplitude during the initial glide segment. It is
determined so that the heating rate in the initial glide segment is exactly equal to Q̇max, that
is, max(Q̇(σI max)) = Q̇max. The velocity at the end of the initial glide segment is expressed
as the velocity corresponding to the maximum heating rate, denoted as vI f .

In order to ensure the smooth handover of the reentry flight and the TAEM, the termi-
nal of the reentry flight must satisfy both the range constraints and the terminal constraints.
Combined with the QEGC, the terminal equilibrium glide angle σTAEM can be obtained by
bringing the terminal states h f , v f into Equation (10).

Based on the above analysis, a bank angle corridor must comprehensively consider
path constraints and terminal constraints. In the initial glide segment, the constant bank
angle needs to be less than σI max, and in the equilibrium glide segment, the bank angle
profile is restricted between σE max and σE min. In addition, in order to ensure the terminal
altitude h f and speed v f constraints, the bank angle at the end of reentry is set as σTAEM.
Considering the analysis results of the three sections, the bank angle corridor of the entire
reentry flight can finally be obtained, where the upper bound is composed of σI max, σE max,
and σTAEM, and the lower bound is composed of σE min and σTAEM. The final compound
bank angle corridor is shown in Figure 2, with the upper bound denoted as σmax(v) and
the lower bound denoted as σmin(v). In the process of trajectory planning, as long as the
bank angle is limited within the corridor, the path constraints and the terminal height and
speed constraints are satisfied to a certain extent.

Figure 2. Compound bank angle corridor.

2.3.2. Control Parameterization

According to Equation (1), it is easy to obtain the derivative relationship between
range and speed as ∣∣∣∣dSe

dv

∣∣∣∣ = ∣∣∣∣ v cos θ/r
−D/m0 − g sin θ

∣∣∣∣. (20)

It can be known from QEGC that r ≈ R0, θ ≈ 0. Bringing Equation (5) into Equa-
tion (20), the derivative relationship between range and speed becomes∣∣∣∣dSe

dv

∣∣∣∣ =
∣∣∣∣∣ m0

−1/2ρvCDSre f R0

∣∣∣∣∣. (21)
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Here, |dSe/dv| decreases exponentially with an increase in height h. Combined with
QEGC, h is inversely proportional to σTAEM. Finally, it can be concluded that the smaller
the bank angle, the smaller the |dSe/dv|, and the stronger the gliding capability of the
vehicle. Therefore, the bank angle profile σdesign(v) is weighted by the upper and lower
bounds of the compound corridor, and its expression is

σdesign(v) = ω · σmin(v) + (1−ω) · σmax(v), (22)

where ω is the weighting coefficient, which can adjust the height of the entire bank angle
profile to obtain different downrange, and the downrange increases monotonically with ω.

Traditionally, given the initial states xstate0 and weighting coefficient ω, a complete
trajectory is obtained by integrating dynamic differential equations:

xstate = xstate0 +
∫ t f

t0

ẋstatedt. (23)

where ẋstate is calculated by Equation (1). Generally, the fourth-order Runge–Kutta is
selected as the trajectory integrator.

Different weighting coefficients ω can integrate different feasible trajectories. As shown
in Figure 3, when ω traverses [0, 1], all possible trajectories at the current state of the HGV
can be generated, and the corresponding terminal points compose the footprint. The gener-
ation of a trajectory is inseparable from the long-term integration, and the long flight time
of the HGVs and the large number of trajectories required to form the footprint lead to
the exponential increase for computational burden, which makes it difficult to meet the
real-time requirements of online footprint generation. Therefore, in the next section, we
try to use DNNs to replace the traditional integrator to solve the problem in which the
traditional footprint generation methods cannot meet the real-time performance.

Figure 3. The footprint formed by trajectories with different weighting coefficients.

As such, the reentry problem is formulated, and a baseline predictor–corrector reentry
guidance is developed based on a compound bank angle corridor, which can be used to
generate feasible reentry trajectories. In the remainder of this study, we will focus on the
following two study purposes: online footprint prediction and online attack intention
inference. The details are given in the following two sections.

3. DNN-Based Footprint Prediction

This section focuses on the first purpose of this study, that is, online footprint pre-
diction. Specifically, first, a DNN is trained to approximate the nonlinear functional
relationship between flight states and ranges. Second, the trained DNN is leveraged to
achieve the real-time performance and accuracy for range prediction. Third, on the basis of
the trained DNN, an online footprint prediction algorithm is developed.
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3.1. DNN Development for Range Prediction

This subsection focuses on the generation of the dataset and the construction of the
DNN. First, based on Section 2.3.2, reentry trajectories of different ranges can be obtained
offline. The downrange and crossrange of the reentry flight is uniquely determined by
the three flight states h, v, θ, and the weighting coefficient ω of the compound bank corri-
dor. Different initial states and weighting coefficients are randomly selected to generate
10,000 trajectories, and 100 sample points are randomly selected from each trajectory. Specif-
ically, the selection rules are shown in Table 1. Finally, a total of 1 million data samples
are obtained, as shown in Figure 4, where the input are the flight states h, v, θ, and the
weighting coefficients ω, and the output is the downrange and crossrange. The dataset is
further divided into three sub-datasets, namely the training set, validation set, and test set,
according to the ratio of 0.8:0.1:0.1. On this basis, Scikit-learn further normalizes the input
and output of the dataset.

Table 1. Initial state space.

State Values Distribution

h(t0) 100± 20 km Uniform
v(t0) 7200± 200 m/s Uniform
θ(t0) −1± 1 deg Uniform

ω [0, 1] Uniform

25 50 75
h (km)

0
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tit
y

2.5 0.0 2.5
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Figure 4. Distribution histograph of input and output of the dataset.

Second, a fully connected feedforward neural network is utilized to approximate
the ranges. The input of the network is x = [h, v, θ] and ω, and the prediction results
of the network is the downrange Netdpre and the crossrange Netcpre. The design of the
network refers to the optimized network design in [20,22,26]. The network is set up with
6 hidden layers and 128 neural units per layer. The activation functions of the hidden
layers adopt Tanh [−1, 1]; the activation function of the output layer adopts ReLU [0,+∞].
The Adam algorithm is used to adjust the network weights to minimize the mean square
error. The initial learning rate is 0.001, and the exponential decay coefficient is 10−6.

3.2. Accuracy and Rapidity Analysis

In this subsection, learning results and figures are used to illustrate the real-time
performance and accuracy of the DNN approximation for ranges. We use the Pearson
product–moment correlation coefficient to quantitatively evaluate the learning effect of
the DNN. Table 2 gives the statistical results of the approximation error. At the same time,
Figure 5 shows the error distribution histogram. Considering the very large range of the
reentry, this error is reasonable and acceptable.
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Table 2. Error statistics of the DNN-based range prediction.

Netdpre Netcpre

Mean error 0.508 km 0.196 km
Mean square error 0.458 km 0.152 km

Maximum error 17.01 km 9.642 km
Correlation coefficient 0.9999906 0.9999728

Figure 5. Error histogram of the DNN-based range prediction.

Table 3 gives the computational time it takes to predict ranges for different times by
DNN and integrator. We can see that a single prediction by integrator takes 50 times as
long as a single prediction by DNN. As the number of predictions grows, the rapidity of
DNN becomes more and more significant, and the average time spent on a prediction by
DNN becomes less and less. DNN not only has good real-time performance for a single
prediction, but also is more suitable for multiple predictions. As footprint generation
and intent inference require multiple range predictions, DNN is a good way to meet
real-time requirements.

Table 3. The time consumption of range prediction by trajectory integrator and DNN.

Method DNN Integrator

The Number of Times of Range Prediction 1 10 10,000 1 10

Total Time Consumption 0.041 s 0.054 s 0.29 s 1.86 s 13.07 s
Average Time Consumption 0.041 s 5.43 ms 0.029 ms 1.86 s 1.31 s

In summary, we can conclude that the trained DNN can meet the real-time requirement
and has a good fitting accuracy on the ranges. Based on the above conclusions, DNN can
be utilized for online footprint prediction and intent inference.

3.3. Real-Time Footprint Prediction

In this subsection, an online footprint prediction algorithm is developed on the basis
of the trained DNN. Traditionally, the footprint is generated by traversing the ranges
using a baseline trajectory planner. However, the traditional planner cannot meet the
real-time requirements due to the long integration time. As discussed in Section 3.2,
DNN can replace the integrator to predict the ranges according to the flight states and
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the weighting coefficient meeting the real-time requirement and ensuring a good fitting
accuracy. Therefore, in this study, DNN is utilized to generate the footprint by traversing
the ranges.

Knowing state xin = [hin, vin, θin], when ωi ⊆ [0, 1], the corresponding downrange
Netdpre

∣∣∣
ω=ωi

and crossrange Netcpre
∣∣
ω=ωi

are obtained. Here, Netcpre
∣∣
ω=ωi

only represents

the maximum lateral maneuverability and does not mean that the value of the crossrange
must be Netcpre

∣∣
ω=ωi

. By the bank angle reversals, the actual crossrange can be any number
between [−Netcpre

∣∣
ω=ωi

, Netcpre
∣∣
ω=ωi

].
As shown in Figure 6, the boundaries of the footprint consist of the following four sides:

• Lower boundary: The downrange is Netdpre

∣∣∣
ω=0

, and the crossrange traverses

[−Netcpre
∣∣
ω=0, Netcpre

∣∣
ω=0]. The downrange of this edge is the minimum downrange;

• Upper boundary: The downrange is Netdpre

∣∣∣
ω=1

, and the crossrange traverses

[−Netcpre
∣∣
ω=1, Netcpre

∣∣
ω=1]. The downrange of this edge is the maximum downrange;

• Right boundary: When ωi ⊆ (0, 1), the downrange is Netdpre

∣∣∣
ω=ωi

, and the crossrange

is Netcpre
∣∣
ω=ωi

(Based on the heading direction of the enemy vehicle at the current
moment, the lateral range of the left deviation is negative, and the right deviation
is positive);

• Left boundary: When ωi ⊆ (0, 1), the downrange is Netdpre

∣∣∣
ω=ωi

, and the crossrange

is −Netcpre
∣∣
ω=ωi

.

Figure 6. A footprint diagram.

Now we know the current longitude λin , latitude φin, heading angle ψin of the flying
HGV, and the predicted range sequence of the boundary of the footprint. It is also necessary
to convert the downrange sequence Netdpre

∣∣∣
ω=ωi

and the crossrange sequence Netcpre
∣∣
ω=ωi

into the longitude sequence λ f and latitude sequence φ f of the boundary of the footprint.

Ad =
Netdpre

∣∣∣
ω=ωi

R0
(24)

Ac =
Netcpre

∣∣
ω=ωi

R0
(25)

ψ f = arcsin
Ac

Ad
+ ψin (26)

φ f = π/2− arccos(sin(φin) cos(Ad) + cos(φin) sin(Ad) cos(ψ f )) (27)

λ f = λin + arcsin(sin(ψ f ) sin(Ad)/ cos(φ f )) (28)

So far, as long as the current states xin = [hin, λin, φin, vin, θin, ψin] are known, the lat-
itude and longitude of the footprint can be calculated. After the footprint is known, it
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can be determined which targets are within the attack zone at the current moment. One
simple way of finding whether a target is inside or outside the footprint is a ray casting
algorithm [27]. As shown in Figure 7, one can draw a ray from this target and count the
number of points at which the ray intersects the footprint. If the number is odd, the target
is inside the footprint; otherwise, it is outside the footprint.

Figure 7. Ray casting algorithm.

This section focuses on the problem of HGVs footprint prediction. Fast and accurate
prediction of the footprint can maximize the effectiveness of pre-deployed interceptor
forces. First, we generate a large number of HGV trajectories offline and use DNN to
learn the range accurately. Results show that DNN approximation for ranges has real-time
performance and accuracy. Then, based on it, the footprint can be generated rapidly by
predicting a series of ranges, and targets can be judged as to whether they are within
the footprint. However, there are many targets in the footprint. In the following section,
an online attack intention inference algorithm that calculates the target probability to be
attacked in the footprint is proposed.

4. Attack Intention Inference

This section focuses on the second purpose of this study, that is, online attack intention
inference. This section contains three parts. The first part introduces the criteria of intention
inference. Target reachability and the historical data, including the orientation and the
control strategy of the HGVs, are taken into consideration. A forgetting mechanism is
proposed in the second part in case the enemy changes the target during flight. The third
part describes the attack intention inference system and potential performance.

4.1. Intention Inference Criteria

Although landmarks outside the footprint can be excluded according to Section 3.3,
there are many landmarks remaining in the footprint and we cannot judge which one is the
attack target. During the flight of HGVs, as long as the landmarks still stay in the footprint,
they can be attacked by proactive maneuvers of the vehicle. Using only the flight state at
the current moment, the attack intention cannot be inferred. How to combine the current
footprint prediction with the historical flight data is the key point of this section.

Through in-depth mining of the internal information hidden in the trajectories, three
evaluation criteria are set. First, the control strategy of HGVs will not change sharply when
the HGV aims at one specific target. Second, in order to achieve precise strikes, the HGVs’
heading angle should be maintained around the target direction. Third, landmarks with
higher importance are more likely to be attacked.

4.1.1. Change Detection of the Control Strategy

Due to the high speed of HGVs, a slight change in the control command will lead to a
obvious change in the trajectory, and it is very likely to lead to an increase in miss distance
and lose stability. Therefore, in the actual flight process, frequent and sharp changes of the
control command are avoided. The bank angle shows piecewise linear characteristics when
the guidance strategy is reference trajectory-based guidance (RTG) [28,29]. The bank angle
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is constantly corrected in small amplitudes according to the remaining downrange when
the guidance strategy is NPCG [22,30].

As shown by the red line in Figure 8, if the landmark is the attack target, the weighting
coefficient ω inferred from the detected historical flight state to attack this landmark is
almost unchanged. As shown by the blue line in Figure 8, if the landmark is not the target,
the distance between the vehicle and the landmark is not always decreasing. The weighting
coefficient ω inferred from the detected historical flight state to attack this landmark
changes sharply.

Figure 8. Change tendency of inferred ω.

When the defender does not know the enemy’s attack intention and can only detect
the flight states, how to infer the weighting coefficient ω when an HGV is going to attack
one specific landmark will be explained below. Suppose there are m landmarks, and we
need to infer whether they are likely to be attacked and which landmark is most likely
to be attacked. The state xk = [hk, λk, φk, vk, θk, ψk] of the HGV at the current time tk and
the latitude φj and longitude λj of the jth landmark are known. The steps of estimating
the weighting coefficient ωj(tk) if a HGV is going to attack the jth landmark at the current
moment tk by the gradient descent method are as follows. The flowchart is shown in
Figure 9.

Figure 9. Flowchart for estimating ω using gradient descent.
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• Step1: Set ωold = 0.5, ωnew = 0.6. According to xk = [hk, vk, θk], ωold and ωnew,

Netdpre

∣∣∣
ω=ωold

and Netdpre

∣∣∣
ω=ωnew

can be predicted by DNN. Then, calculate the

distance Sj(tk) between the current latitude φk and longitude λk of the HGV and the
latitude φj and longitude λj of the jth landmark.

• Step2: Calculate k = ( Netdpre

∣∣∣
ω=ωnew

− Netdpre

∣∣∣∣
ω=ωold

)/(ωnew − ωold). Then, set

ωold = ωnew, Netdpre

∣∣∣
ω=ωold

= Netdpre

∣∣∣
ω=ωnew

.

• Step3: Calculate ωnew = ωold + (Sj(tk) − Netdpre

∣∣∣
ω=ωold

)/k. The new downrange

Netdpre

∣∣∣
ω=ωnew

is obtained by DNN.

• Step4: If
∣∣∣∣Sj(tk)− Netdpre

∣∣∣
ω=ωnew

∣∣∣∣ ≤ ε (ε is the allowable deviation of the downrange),

output ωj(tk) = ωnew. If
∣∣∣∣Sj(tk)− Netdpre

∣∣∣
ω=ωnew

∣∣∣∣ > ε, return to Step2.

So far, we have obtained ωj(tk) if the enemy HGV intends to attack the jth landmark
at tk. Similarly, we can calculate the weighting coefficient ωj(tk)(j = 1, 2, . . . , m) if the
vehicle intends to attack each remaining landmark at tk. Not only that, given the current
states and historical states xi = [hi, λi, φi, vi, θi, ψi](i = 1, 2, . . . , k) of the vehicle, we can
get the sequence of weighting coefficients to attack each landmark corresponding to time
ωj(ti(i = 1, 2, . . . , k))(j = 1, 2, . . . , m).

For each landmark j, there is a sequence of weighting coefficients ωj(ti(i = 1, 2, . . . , k))
with respect to time ti(i = 0, 1, . . . , k). Use variance var(ωj(ti(i = 1, 2, . . . , k))) to char-
acterize the change detection of the control strategy of the jth landmark. Normalize
var(ωj(ti(i = 1, 2, . . . , k)))(j = 1, 2, . . . , m) of each landmark to [0, 1] and sort it. The smaller
the variance var(ωj(ti(i = 1, 2, . . . , k))) is, the more likely the jth landmark is to be attacked.
By continuously detecting new states of the vehicle in a new moment, the variance sequence
can be updated and sorted to predict which landmark is the most likely to be attacked.

4.1.2. The Cumulative Deviation of ψ and the LOS

In order to strike one specific target, the heading angle ψ of the HGV is maintained
around the target direction, and the deviation between the ψ and the line of sight (LOS) is
not very large. As shown by the red line in Figure 10, if the landmark is the attack target,
due to the bank angle reversals, ψ will swing left and right around the LOS. As shown by
the blue line in Figure 10, if the landmark is not the target, the deviation between ψ and the
LOS of the landmark is relatively large. As the flight time becomes longer, the deviation
becomes larger and larger, and ψ is likely to be on one side of the LOS and will no longer
swing left and right around the LOS.

When the defender does not know the enemy’s attack intention and can only detect
the flight states, how to characterize and rank the deviation between the ψ and LOS will be
explained below. The expression ψ(tk) is the heading angle of the vehicle at the current
moment tk; LOSj(tk) is the LOS between the vehicle and the jth landmark at tk; ψ(tk)−
LOSj(tk) represents the deviation of the heading angle of the vehicle and the LOS of the
jth landmark. Given ψ(ti)(i = 1, 2, . . . , k) and LOSj(ti)(i = 1, 2, . . . , k) at ti(i = 0, 1, . . . , k),
the mean of the cumulative deviation

∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣ between

the heading angle of the vehicle and the LOS of the jth landmark at all times can be cal-
culated. For each landmark, the mean sequence

∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣

(j = 1, 2, . . . , m) can be calculated, normalized to [0, 1], and sorted. The smaller the mean∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣, the more likely the jth landmark is to be attacked.

Continuously detecting the states of the vehicle in a new moment can update and sort the
mean sequence of the deviation of the ψ and the LOS.
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Figure 10. Deviation of the heading angle and the LOS.

4.1.3. The Importance of Landmarks

Among the multitudinous input landmarks, it is impossible that all the landmarks have
the same degree of importance. In actual wars, attackers are more inclined to attack large
cities, economically developed areas, and areas with high population density. Therefore,
the importance of the landmarks needs to be scored on a [0, 1] scale. The smaller the
importance degree weight Ij, the more important the jth landmark is. Because some of the
less important landmarks are close to the important landmarks, var(ω(ti(i = 1, 2, . . . , k)))
and |mean(ψi − LOSi)(i = 1, 2, . . . , k)| of the less important landmarks are numerically
close to those of the important landmarks, which may lead the system to judge that less
important landmarks are also likely to be attacked. The importance weights I solve the
problem of less important landmarks interfering with the attack intention inference system.

4.2. Forgetting Mechanism

With the development of reentry guidance, the maneuvering form of HGVs has
become more and more complex. In actual flight, in order to bypass the no-fly zone and
avoid being detected by radar, HGVs may conduct proactive maneuvers or change the
attack target during flight. In order to instantly identify an HGV’s changing target and
re-predict its new target, this subsection proposes a forgetting mechanism.

Exponentially weighted moving average (EWMA) is a variable-weight mean calcula-
tion method, which has been widely used in machine learning and technical analysis of
financial data [31]. EWMA is designed as such that older data are given lower weights.
The weights fall exponentially as the data get older. EWMA is used because recent in-
put data have a greater impact on the average value, and it can better reflect the recent
data information.

Let xi(i = 1, 2, . . . , t) be the dynamic input data, then the average µt at time t can be
expressed as

µt = βµt−1 + (1− β)xt = (1− β)(xt + βxt−1 + β2xt−2 + . . . + βt−1x1), (29)

where β is the decay rate, and the value is between [0, 1]. The smaller the β, the more the
mean is affected by the recent input data. However, µt is very different from the mean
value due to too little input data at the beginning. Therefore, the deviation correction is
performed on Equation (29):

µt = (1− β)/(1− βt)(xt + βxt−1 + β2xt−2 + . . . + βt−1x1). (30)



Mathematics 2023, 11, 185 15 of 24

So far, we have obtained the average value µt of the dynamic input data represented by
EWMA. In [31], exponentially weighted moving variance (EWMV) is proposed to describe
the variance of variable weights. The formula of EWMV is expressed as

σ2
t = βσ2

t−1 + β(1− β)(xt − µt−1)
2. (31)

Similarly, EWMV is designed to be more affected by the recent input data, so the
variance of the older data is given lower weights that fall exponentially as the data get older.
On the basis of Equations (30) and (31), EWMV is improved. We replace the mean µt in the
variance Equation (31) with the latest data xt from the dynamic input data. The improved
EWMV is expressed as

σt
2 = (1− β)/(1− βt)[(xt − xt)

2 + β(xt−1 − xt)
2 + . . . + βt−1(x1 − xt)

2]. (32)

In summary, we design the mean and variance with forgetting properties. We sub-
stitute EWMV for the variance in Section 4.1.1 and EWMA for the mean in Section 4.1.2.
In this way, the change detection of the control strategy and the cumulative deviation
between the ψ and the LOS is more affected by the recent flight states. This is conducive to
predicting the enemy’s attack intention at every moment without knowing whether and
when to change the attack target during flight.

4.3. Attack Intention Inference System and Algorithm

This section will briefly describe the algorithm of the attack intention inference system
and its potential performance. Referring to the pseudocode below, we will describe the
Algorithm 1 of the attack intention inference system in detail.

Algorithm 1 Attack Intention Inference Algorithm
Data: new flight states of the enemy HGV xk = [hk, λk, φk, vk, θk, ψk] at time tk,

landmarks, importance of landmarks I
Result: ranked Pk

1 while detect the new states xk at tk do
2 predict f ootprint(tk) by DNN ;
3 for each landmark j in landmarks do
4 if landmark j within f ootprint(tk) then
5 Calculate ωj(tk) by DNN→ ωj[k];
6 Calculate ψ(tk)− LOSj(tk)→ ∆ψj[k];
7 Var(ωj)← EWMV(ωj);
8 Mean(∆ψj)← EWMA(∆ψj);
9 P(tk)[j] = α1Var(ωj) + α2

∣∣Mean(∆ψj)
∣∣+ α3 Ij;

10 rank P(tk);
11 return ranked P(tk);

First, we predict the current footprint by DNN approximation for ranges and de-
termine whether the input landmarks are within the footprint according to Section 3.3.
If the landmark is within the footprint, the probability of it being attacked will be esti-
mated. Combined with the forgetting mechanism in Section 4.2, the normalized var(ω(ti)
(i = 1, 2, . . . , k)) and|mean(ψ(ti)− LOS(ti)(i = 1, 2, . . . , k))| of each landmark can be cal-
culated according to Sections 4.1.1 and 4.1.2. Weighting them with landmark importance
weights I yields the probability of each landmark of being attacked,

P = α1var(ω(t)) + α2
∣∣mean(ψ(t)− LOSj(t))

∣∣+ α3 I, (33)
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where α1, α2, α3 are the weights of intention inference criteria, satisfying α1 + α2 + α3 = 1;
α1, α2, α3 can be set and adjusted according to actual operational needs and the importance
of each criteria. Then, we calculate and sort P of each landmark. The smaller the P,
the greater the probability of the landmark to be attacked. The defending side continuously
detects the current states of the flying HGV, updates and sorts in real-time P to infer the
intention of the HGV. As time progresses, the accuracy of the intention inference system
greatly improves.

This proposed algorithm has the following potential advantages.

1. Ability to quickly and accurately predict the footprint: Since the DNN replaces the
traditional integrator to approximate the ranges, the footprint prediction meets the
real-time requirements while ensuring high accuracy;

2. Ability to infer the intention of enemy HGVs: The underlying logic of the attack
intention inference system in this study is that the defender infers from the perspective
of the attacker. First, the control strategy of HGVs will not change sharply when the
HGV aims at one specific target. Second, in order to achieve precise strikes, the HGVs’
heading angle should be maintained around the target direction. Third, attackers are
more willing to attack important landmarks. It is precisely because these criteria are
condensed from the rules discovered from the trajectory planning of the attacker side
that the defending side can use these criteria to infer the enemy’s intention;

3. Ability to identify enemy HGVs changing attack intention online and re-predict
new targets: Mean and variance with forgetting properties makes the system more
affected by the recent flight states. Therefore, the forgetting mechanism can gradually
forget the early intention and predict new target based on the data of the recent period;

4. Good real-time performance: Both the footprint prediction and the change detection of
the control strategy avoid long-term trajectory integration, and DNN greatly improves
the computational efficiency.

The next section uses simulation examples to verify the aforementioned performance
of the algorithm.

5. Simulations and Results

This section focuses on the performance verification of the proposed algorithm. Specif-
ically, three experiments are conducted. The first experiment is to verify the accuracy of
the footprint prediction algorithm. The second experiment verifies the effectiveness of
the intention inference system. The third experiment verifies that the system is suitable
for inferring the intention of the enemy to change the target during the flight. The forth
subsection discusses the advantages and disadvantages of the algorithm. The common areo
vehicle (CAV) designed by Boeing Company in 1998 has two configurations. In this study,
the vehicle for simulation is the CAV-L with lower lift-to-drag ratio, and its aerodynamic
data and overall design parameters are shown in [32].

5.1. Evaluation of Footprint Prediction

First, the accuracy and real-time performance of the DNN-based footprint predictions
are evaluated by comparing it with the traditional integrator. Given the flight states of
an enemy CAV, the results of footprint prediction using DNN and traditional integrator
are shown in Figure 11. It can be seen that the footprint predicted by the two methods
almost overlap. Table 4 shows the comparison of the coordinates of the following five
typical points calculated by DNN and integrator. Point A has the largest downrange and
crossrange of 0; B has the largest downrange and the corresponding maximum lateral
maneuverability; C has the largest crossrange; D has the minimum downrange and the
corresponding maximum lateral maneuverability; and E has the minimum downrange and
crossrange of 0. It can be seen that the deviation between the coordinates predicted by the
two methods is very small. The time consumption of one footprint prediction by DNN is
0.85 s, and at the same time, the time consumption of one footprint prediction by integrator
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is 52.71 s. Consequently, DNN-based footprint prediction is accurate and greatly improves
real-time performance.

Figure 11. Comparison of footprint predicted by integrator and DNN.

Table 4. Comparison of the footprint prediction by integrator and DNN.

Integrator DNN Deviation

Coordinates of A (deg) (89.397, 0.160) (89.381, 0.160) (1.6× 10−2,−9.2× 10−5)
Coordinates of B (deg) (89.391,−0.459) (89.376,−0.358) (1.5× 10−2,−0.101)
Coordinates of C (deg) (69.712,−16.017) (69.849,−15.973) (−0.137,−4.4× 10−2)
Coordinates of D (deg) (47.587,−6.653) (47.632,−6.772) (−4.5× 10−2, 0.119)
Coordinates of E (deg) (49.592, 0.330) (49.693, 0.330) (−0.101, 2.6× 10−4)

5.2. Typical Intention Inference Simulation

In this section, we turn our attention to demonstrating the effectiveness of the typical
intention inference. Part of the information of the flying CAV is shown in Table 5. Of course,
this information is unknown to the defender, and the defender can only detect the states of
the CAV during the flight. Twenty-five landmarks B∼Z with longitude between [90◦ W,
140◦ W], latitude between [20◦ S, 60◦ S], and the importance weights I between [0, 1] are
generated by random numbers. We set a landmark A with longitude of 100◦ W, latitude
of 40◦ S, and importance I of 0. We set the weight of each intention inference criterion to
α1 = 0.8, α2 = 0.1, α3 = 0.1, respectively. The probability of attacking these 26 landmarks is
predicted and ranked in real time. The first jump of CAV was detected at 282 s. Due to the
complex dynamic characteristics of the initial descent phase of HGV, intention inference was
not performed in the initial glide segment. The first prediction is at 285 s. The prediction
interval is 5 s.

Table 5. The information of the incoming CAV (unknown to the defender).

Initial
Longitude Initial Latitude Longitude of

the Target
Latitude of the

Target Guidance Law

180◦ 0◦ 100◦ W 40◦ S NPCG
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The result is shown in the Figure 12, which contains the following information.

• Historical trajectory of the CAV;
• Footprint at the current state;
• Landmarks that may be attacked within the footprint;
• Temporarily safe landmarks outside the footprint;
• Landmarks within the footprint are ranked by probability of being attacked.

Figure 12. Footprint and intention inference at 305 s.

After five predictions (at 305 s), it is predicted that the target of the incoming CAV
is A, as shown in Figure 12. The reason for needing five predictions is that the change
detection of the control strategy and the cumulative deviation between the ψ and the LOS
are characterized by the variance and mean in the intention inference system, requiring >2
sample data to calculate variance and mean. Predicting the correct attack intention within
25 s shows that the system has good foresight.

The prediction at 800 s is shown in Figure 13. It can be seen that the footprint becomes
smaller and the number of landmarks that may be attacked decreases. The landmark that
is most likely to be attacked is still A, which shows the intention inference system has good
stability. As shown in Figure 14, the footprint is shrunk to the range containing only A at
1195 s. Consequently, the DNN-based intention inference system has good performance of
effectiveness, perspective, and stability.

Figure 13. Footprint and intention inference at 800 s.
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Figure 14. Footprint and intention inference at 1195 s.

5.3. Evaluation of Forgetting Mechanism

This section verifies the effectiveness of the forgetting mechanism by predicting the
intention of a CAV that changes its attack target during the flight. Part of the information
of the flying CAV is shown in Table 6. The vehicle originally intended to attack Landmark
A at 100◦ W, 40◦ S, but changed its attack intention at 500 s to attack Landmark B at 120◦ W,
30◦ S. Of course, the above information and whether and when to change the attack target
is unknown to the defender. Twenty-four landmarks C∼Z with longitude between [90◦ W,
140◦ W], latitude between [20◦ S, 60◦ S], and the importance weights I between [0, 1] are
generated by random numbers. We set a landmark A with longitude of 100◦ W, latitude
of 40◦ S, and importance I of 0, and set a landmark B with longitude of 120◦ W, latitude
of 30◦ S, and importance I of 0. We set the weight of each intention inference criterion to
α1 = 0.85, α2 = 0.05, α3 = 0.1, respectively. The decay rate of forgetting mechanism is set
to 0.7. The probability of attacking these 26 landmarks is predicted and ranked in real time.
The first prediction is at 290 s. The prediction interval is 10 s.

Table 6. The flying CAV information (unknown to the defender).

Initial Coordinates of
the CAV

Coordinates of the
Original Target

Time When the Target
Is Changed

Coordinates of the
Changed Target Guidance Law

(180◦, 0◦) (100◦ W, 40◦ S) 500 s (20◦ W, 30◦ S) RTG

For ease of observation, the light blue dotted line in the graph represents the original
trajectory if the CAV has not changed its attack target during the flight.

After four predictions (at 320 s), it is predicted that the target of the CAV is A, as shown
in Figure 15. During 320∼500 s, results show that the CAV intended to attack A.

As shown in Figure 16, the prediction results begin to change at 510 s, which means
the system quickly recognizes that the enemy is maneuvering to change its attack target.
The probability PB of B became smaller, and the rank moved forward; PA of A increased,
and the rank went backward. This shows that the system gradually reduces the impact of
the initial trajectory on the predicted results through the forgetting mechanism and grad-
ually forgets that the CAV is going to attack landmark A at the beginning. At 520 s, it is
predicted that the CAV changes to attack landmark B, which means that the forgetting
mechanism of this system is responsive, forward-looking, and accurate. The prediction
results fluctuate with small amplitude between 560 s and ∼580 s and stabilize after 590 s,
showing that B is most likely to be attacked, as shown in Figure 17. Consequently, the forget-
ting mechanism can quickly identify that the enemy has changed its intention and quickly
re-predict the new attack target correctly. The prediction results are accurate and stable,
and fewer predictions are required to re-predict the new target after maneuvering.
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Figure 15. Footprint and intention inference at 320 s.

Figure 16. Ranking of probability of being attacked over time.

Figure 17. Footprint and intention inference at 590 s.
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5.4. Advantages and Disadvantages

Combined with the above three typical simulations, the advantages of footprint
prediction and intention inference system are summarized below.

1. The system has good real-time performance.
A maximum of 4.74 s is required for one footprint prediction and intention inference
(predictions are made for 26 landmarks) due to the substitution of DNN for trajectory
integration. Therefore, as long as each prediction period is more than 5 s, it can recon-
cile the requirements for real-time performance. Table 7 exhibits the comparison of the
time consumption by trajectory integrator and DNN. We can see from the Table 7 that
a high-precision trajectory integration is time-consuming due to the long flight time.
For this reason, it is difficult to meet the demand of real-time performance for footprint
prediction and intention inference. In contrast, the DNN shows obvious improvement
of the real-time performance while ensuring an acceptable prediction accuracy.

2. This system can infer the intention of HGVs that change attack target during flight.
This system adopts EWMA and improves EWMV. Mean and variance with forgetting
properties makes the system more affected by the recent flight states. Therefore,
the forgetting mechanism can infer in a timely manner that the flying HGV has
maneuvered and predict its new attack target.

3. The system is forward-looking.
The first few predictions after the initial descent segment can basically determine
which landmark is most likely to be attacked. The flight time of a reentry is about
30 min, and the flight time of the initial descent segment is about five minutes. Forty
seconds after the initial descent segment, the most likely landmark to be attacked can
be predicted, leaving as much time as possible for the defender to intercept the enemy.
In addition, when the HGV changes its attack target during its reentry, the system can
also analyze that the HGV has changed its attack intention and predict the new target
within 20 s.

4. The DNN-based footprint prediction can not only provide decision-making reference
for the defender, but also be utilized for the attacker to generate the current footprint
of the own HGV.
The current literature on footprint generation of HGVs is only from the perspective
of the attacker. The footprint of HGVs provides critical information for trajectory
planning, such as providing guidance for entering into the TAEM. It takes an average
time of 13.42 s to generate a footprint in [13]. Compared with the footprint generation
based on the Gaussian pseudospectral method, the calculation speed of [13] has been
greatly improved, but it still has room for improvement. If the DNN is utilized to
replace the traditional integrator to generate the footprint from the perspective of the
attacker, the calculation time of each generation can be less than 1 s, which greatly
improves the real-time performance of battlefield mission planning. In addition, since
the model, aerodynamic parameters, guidance law, and constraints are completely
known, the accuracy of generating the footprint of the friendly HGV will be greatly
improved compared with the accuracy of predicting the footprint of the enemy in
this study.

Table 7. The comparison of the time consumption by trajectory integrator and DNN.

One Range Prediction One Footprint Prediction One Intention Inference

Integrator DNN Integrator DNN Integrator DNN

Time consumption 1.53 s 0.6 ms 52.71 s 0.85 s 189.95 s 3.66 s
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The system still has the following shortcomings that need to be improved:

1. This system can only infer the probability of attacking the set landmarks. If the
set landmarks do not include the enemy’s real attack target, the system may only
speculate that a set landmark close to the real target is most likely to be attacked.

2. Because the research object of the intention inference in this study is non-cooperative
vehicles, the overall design parameters and aerodynamic parameters of them are not
completely known, and many of them are estimated based on reverse engineering
estimation methods [33]. Therefore, the ranges approximated by DNN in this study
are not accurate when the enemy model deviates greatly from the hypothetical model
in this study, and the predicted footprint will also not be so accurate. In particular,
landmarks near the boundary of the footprint are also likely to be attacked.
In the future work, we will introduce parameter identification into the footprint pre-
diction and intention inference system to improve the inaccuracy of range prediction
and footprint prediction. One solution is to identify lift, drag, aircraft mass, reference
area, and bank angle through aerodynamic parameter identification, as suggested
in [15]. Another solution is to refer to the idea in [34], that is, to identify the distur-
bance of the standard aerodynamic data through Kalman filtering. In future work,
the aerodynamic parameters will be identified according to the trajectory information
of the flying HGVs in real time, and the aerodynamic model fitted by the existing pub-
lic information or public literature will be continuously corrected. Using the revised
aerodynamic model, DNNs can predict more accurate ranges, footprint, and intention
in real time.

6. Conclusions

In this paper, a DNN-based footprint prediction and intention inference of HGVs is
proposed. First, a baseline multi-constrained entry guidance algorithm is developed based
on a compound bank angle corridor, and then a dataset containing enough trajectories
for the following DNN learning is generated offline by traversing different initial states
and control commands. Second, DNNs replace traditional integrator to approximate the
relationship between the flight state/command and the ranges. On this basis, an online
footprint prediction algorithm is developed by traversing the ranges meeting the real-time
requirements and ensuring high accuracy. Third, the intention inference system performs
online intelligent prediction of the target probability to be attacked. Target reachability,
importance, and historical data including the orientation and the control strategy of the
HGVs are taken into consideration. A forgetting mechanism is proposed to help the
intention inference algorithm to be effective when the HGVs change their attack target
during the flight. On these bases, DNN-based footprint prediction and intention inference
of HGVs is proposed.

Simulations are given to substantiate the effectiveness and the real-time capability
of the proposed techniques. The results show that the calculation time of each footprint
generation and intention inference is about 4.51 s, reconciling the requirements for real-time
performance while ensuring high accuracy. The system can infer the final attack target
correctly in the early stage of reentry flight and can instantly identify the enemy’s change
of attack intention and re-predict the new attack target.
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