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Abstract: A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to
morbidity and mortality. SARS-CoV-2 infects the epithelial cells of the respiratory tract and causes
coronavirus disease 2019 (COVID-19). The immune system’s response plays a significant role in viral
progression. This article develops and analyzes a system of partial differential equations (PDEs),
which describe the in-host dynamics of SARS-CoV-2 under the effect of cytotoxic T-lymphocyte (CTL)
and antibody immune responses. The model characterizes the interplay between six compartments,
healthy epithelial cells (ECs), latent infected ECs, active infected ECs, free SARS-CoV-2 particles,
CTLs, and antibodies. We consider the logistic growth of healthy ECs. We first investigate the
properties of the model’s solutions, then, we calculate all steady states and determine the conditions
of their existence and global stability. The global asymptotic stability is examined by constructing
Lyapunov functions. The analytical findings are supported via numerical simulations.

Keywords: SARS-CoV-2; COVID-19; immune response; reaction—diffusion virus infection model;
global asymptotic stability; Lyapunov functions
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1. Introduction

Recently, many viruses have spread that infect the human body, which can lead to
illness and death and thus have a great impact on health and the global economy. These
viruses include human viral infections such as human T-cell lymphotropic virus (HTLV),
human immunodeficiency virus (HIV), Ebola virus, hepatitis B virus, hepatitis C virus,
influenza virus, chikungunya virus, Middle East Respiratory Syndrome coronavirus (MERS-
CoV), Zika virus, and dengue virus. At the end of 2019, the world witnessed the emergence
of a new respiratory virus in Wuhan, China, called severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). Within a
few months, this viral infection had spread to most countries in the world and infected many
people of different ages. Since the beginning of the spread of the virus, scientists from many
disciplines have focused on finding ways to confront this pandemic such as by applying
suitable control methods to reduce viral transmission, synthesizing antiviral drugs, and
synthesizing vaccinations [1,2]. The WHO approved eleven vaccines for COVID-19 for
emergency use [3]. Disease progression and outcome in COVID-19 are highly dependent
on the host immune response, particularly in the elderly in whom immunosenescence
may predispose them to increased risk of infection [4]. Immunosenescence enhances the
susceptibility to viral infections and renders vaccinations less effective [5].

SARS-CoV-2 is a single-stranded positive-sense RNA virus and is a member of the
Coronaviridae family. It is an airborne-transmitted virus and can infect the upper and lower
respiratory tracts [6]. The epithelial cells (ECs) of the host respiratory tract are the target
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for SARS-CoV-2 particles [7]. The in-host dynamics of SARS-CoV-2 were mathematically
modeled in [8] as

SARS-CoV-2 infectious transmission

———
dE(t
= PE(H)S(H) :
SARS-CoV-2 infectious transmission  latent transition
AW (t)
e YE()S() - wE :
latent transition  natural death ()
dpP(t)
=~ = OW(t) — PBpP(t) ,
SARS-CoV-2 production  natural death
ds(t) —~ = —~
= oP(t) - PBsS(t)

where E, W, P, and S represent the concentrations of healthy ECs, latent infected ECs,
active infected ECs, and SARS-CoV-2 particles, respectively. Li et al. [9] considered the
regeneration and death of uninfected ECs

@%ﬂzﬁﬂﬂm—Eun—wﬂﬂﬂm

where E(0) is the initial concentration of healthy ECs.

Several extensions and modifications have been made on the SARS-CoV-2 infection
models presented in [8,9] by taking into consideration the effect of different drug thera-
pies [10-12] and the influence of time delay [13]. The innate immune response represents
the first line of defense that recognizes the antigens and activates the adaptive immune
response. B cells and T cells are important components of the adaptive immune response. It
has been reported in [14] that both B- and T-cell responses against SARS-CoV-2 are detected
in the blood around 1 week after the onset of COVID-19 symptoms. B cells have the ability
to produce antibodies specific to SARS-CoV-2, such as IgA, IgG, and IgM, in order to
neutralize the virus at the infection site [15-18]. CD8™" T cells (also known as cytotoxic T
lymphocytes (CTLs)) are important for directly attacking and killing SARS-CoV-2-infected
epithelial cells, whereas CD4™ T cells are crucial to prime both B cells and CTLs. CD4" T
cells are also responsible for cytokine production to drive immune cell recruitment [14].
The impact of the immune response was introduced in the SARS-CoV-2 infection model
in [19-25]. Elaiw et al. [13] added a logistic term for the proliferation of healthy ECs as

dE(t)

— =9 BeE(t) +vE(t) (1 _EQ®)

Emax

>—¢aoau

It was assumed that healthy ECs are regenerated with a constant ¢ and are proliferated

with a logistic growth rate vE (1 — EL) where v is the rate of growth and E;;4y is the

7
max

maximum capacity of healthy ECs in the human body.

Stability analysis for models describing the in-host dynamics of SARS-CoV-2 infection
was conducted in [23-28]. Hattaf and Yousfi [23] studied the global stability of an in-host
SARS-CoV-2 infection model with cell-to-cell transmission and the cytotoxic T-lymphocyte
(CTL) immune response. The model included both lytic (destruction of infected cells [29])
and nonlytic (inhibition of viral replication by soluble mediators secreted by immune
cells [29]) immune responses. A SARS-CoV-2 infection model with both CTL and antibody
immunities was developed and analyzed in [24]. Mathematical analysis of the model
presented in [9] was studied in [26]. Both local and global stability analyses of the model’s
equilibria were established. Almocera et al. [25] studied the stability of the two-dimensional
SARS-CoV-2 dynamics model with the immune response presented in [8]. Elaiw et al. [13]
studied the global stability of a delayed SARS-CoV-2 dynamics model with the logistic
growth of uninfected ECs and antibody immunity. In very recent works, the Lyapunov
method was used to establish the global stability of co-infection models including SARS-
CoV-2/HIV-1 [27], SARS-CoV-2/Influenza A virus [28], and SARS-CoV-2/malaria [30].
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In all the above mentioned works, it was assumed that the viruses and cells are ho-
mogeneously distributed in the human body. However, such an assumption is unrealistic
because the diffusion of viruses and cells causes spatial variations within the body. Spatial
structure plays a major role in describing the dynamical behaviors of SARS-CoV-2 infection
within a host. The effect of spatial structure on the SARS-CoV-2 dynamics was addressed
in [31,32]. In these papers, it was assumed that SARS-CoV-2 infection is resisted by anti-
bodies, whereas the effect of CTL immunity was neglected. Moreover, the proliferation of
healthy ECs was not included. In the present article, we construct and analyze a diffusive
SARS-CoV-2 infection model with both antibody and CTL immune responses. We prove
the non-negativity and boundedness of the solutions. We consider the logistic growth
of healthy ECs. We derive the threshold parameters that determine the existence and
stability of the model’s steady states. The global stability of all steady states is established
by constructing Lyapunov functions and applying LaSalle’s invariance principle (LIP). We
illustrate our theoretical results with some numerical simulations.

2. Model Formulation

We propose a diffusive SARS-CoV-2 model with antibody and CTL immune responses.
Let E(x,t), W(x,t), P(x,t), S(x,t), H(x,t), and M(x,t) be the concentrations of healthy
ECs, latent infected cells, active infected ECs, SARS-CoV-2 particles, antibodies, and CTLs,
respectively, at spatial location x and time t.

PECE) _ DeAE(x 1) + 9~ PeE(xt) + vE(x 1) <1 - Eé:”) —YE(x, DS (x,1), @)
aW(f’ D Dy AW £) + 7S (x, ) E(x, ) — W (x, £) — BuW(x, 1), 3)
ap(ai’ H_ DpAP(x,t) + (1 — v)¥S(x,t)E(x,t) + OW(x,t) — BpP(x,t) — oP(x, t)M(x,t), (4)
B _ Doas(x, 1) + oP(x,1) — BsS(x,1) — AS(x, DH(x,1) 5)
aHgf't) — DyAH(x ) + uS(x, ) H(x, ) — B H(x, 1), ©)
aMéf't) — DyAM(x, 1) + gP(x, HM(x, £) — BuM(x, ), @)

where x = (x1,x,...,X,) € @ and t > 0. The spatial domain @ C R", m > 1 is connected
2

and bounded and the boundary dw is smooth. A = % is the Laplacian operator and Dg
is the diffusion coefficient of Q € {E, W, P, S, H, M}. Parameter y € (0, 1) is the part of the
healthy ECs that enters the latent state and B W is the death rate of the latent infected
ECs. The active infected ECs are killed by CTLs at rate c MP. The SARS-CoV-2 particles
are neutralized by antibodies at the rate AHS. The terms yHS and #MP represent the
proliferation rates of antibodies and CTLs, respectively. The terms S H and B M denote
the death rate of antibodies and CTLs, respectively. The initial conditions are given by

E(x,0) =61(x), W(x,0)=06(x), P(x,0)=063(x), S(x,0)=704(x),
H(x,0) =d5(x), M(x,0) =d(x), x€®d, 8)

where 6;(x), i = 1,...,6, are non-negative and continuous functions. In addition, we
consider the following homogeneous Neumann boundary conditions:

OE W 9P 39S 9H M

Mo e o o on ¥ 120 xeda ©)

]
where 57 is the outward normal derivative on the boundary dw.
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3. Properties of Solutions

This section examines the existence, non-negativity, and boundedness of the solutions
of Systems (2)—(7) with the initial conditions in (8) and the boundary conditions in (9).
Moreover, it determines the existence conditions of the spatially homogeneous steady
states of the model.

Theorem 1. Assume that Dp = Dy = Dp = Dg = Dy = Dy = D. Then, Models (2)—(7)
have unique, non-negative, and bounded solutions defined on @ x [0, +00) for any given initial
data satisfying (8).

Proof. LetX = BUM (@, R®) be the set of all bounded and uniformly continuous functions
from @ to R®, and X = BUM(®, RS ) C X. Hence, the positive cone X induces a partial
order on X. Define ||0]|x = Sup |0(x)|, where | - | is the Euclidean norm on R®. It follows

that the space (X, || - |x) isa Banach lattice [33,34]. O

For any initial data 6 = (1,82, 83,04, 05,06)" € Xy, wedefinel = (I'1, T, 3,14, T5, 1) :
X+ — X by

[0)(x) = ¢ oo (x) + 081 0) (1= 22 ) — o)),
[2(8)(x) = ypo1(x)da(x) — 92(x) — Pwor(x),

I[3(6)(x) = (1 — 7)9b1(x)d4(x) + 862(x) — Bpdz(x) — 0d3(x)d6(x),
T4(6)(x) = 0d3(x) — Bsda(x) — Ady(x)ds5(x),

I5(0)(x) = pdg(x)ds5(x) — Brds(x),

T6(5)(x) = n03(x)d6(x) — Brmde(x).

We observe that I' is locally Lipschitz on X. Models (2)—-(7) with Conditions (8) and
(9) can be written as the following abstract functional DE

d% =DQ+TI(Q), t>0,
Q(O) =0 € X+/

where Q = (E,W,P,S,H, M)’ and DQ = (DgAE, DwAW, DpAP, DsAS, DyAH, DMAM)/.
can be shown that

lim 1dist((S(O) +hT(6),X4) =0, forall § € Xy.
h—0+ h
It follows from [33-35] that for any 6 € X4, Systems (2)—(7) with (8) and (9) have
unique non-negative mild solutions (E(x,t), W(x,t), P(x,t),S(x,t), H(x,t), M(x,t)) de-
fined on @ X [0, Tmax ), Where [0, Tmax) is the maximal existence time interval on which the
solution exists. Further, this solution is also a classical solution for the given problem.
Now, we define

O(x,t) = E(x,t) + W(x,t) + P(x, ) + ﬁgS( )+’BZVH(x,t) +%M(x,t).
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Since Dg = Dy = Dp = Dg = Dy = Dy; = D, then, using Systems (2)—(7) we obtain

oD(x,t)
ot

E(x,t)

— DAD(x,t) = ¢ — BpE(x, t) + vE(x,t) <1 - > — BwWi(x,t) — %Pp(x,t)

Brp BrpuA Bmo
- %S(x,t) - %H(x,t) - %M(x,t)

= — L E2(x,t) + vE(x,t) + ¢ — BEE(x, ) — BwW(x, )

max

p Brp BrprA Bmo
- TPP(x, t) — ;QSS(x, t) — %H(x, t) — %M(x, t).

U B2 oE+ ¢ and calculate IT'(E) as

Let us define TI(E) = ~F

max

2 E
INE)=——"E+v=0=E = e
max
and )
1"(E) = ——2 < 0.
max
Then,
Eax v Enax 2 Enax VEax
I S Emax = Ubmax |
( 2 ) Emax( 2 ) v 2 +¢ 4 +¢
E 4
Let Ny = VEmax + 3¢ > 0 and g1 = min{Bg, Bw, lsz—P,,BS,,BH, B}, then, ®(x,t) satisfies

the following system:

aq)g’;’ D _ DAG(x, 1) < Ny — g10(x, 1),
oP
N O/
oM 8 BpA -
P P
_ pp = > 0.
<1>(x,0) (51 (X) + (52(96) + 53(9() + ZQ (54(36) + ZQ‘M 55(9() + ’7(56(3(?) >0
Let ®(t) be a solution to the following ODE system
dd(t ~
# =N —q1 (),
®(0) = maxd(x,0).
xew

q1 x€d

This gives that ®(t) < max{ M, max®(x,0) } According to the comparison principle [36],
). Then, we obtain

we have ®(x,t) < ®(t

D(x,t) < max{Nl,mag(CD(x,O)},
q1 xed
which implies that E(x,t), W(x,t), P(x,t), S(x,t), H(x,t), and M(x,t) are bounded on
@ X [0, Tmax)- From the standard theory for semi-linear parabolic systems, we deduce that
Tmax = +00 [37]. This shows that solution (E(x, t), W(x,t), P(x,t),S(x,t), H(x,t), M(x,t))
is defined for all x € @, t > 0 and is also non-negative and unique.
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4. Steady States

This section computes all steady states of Systems (2)—(7) and the threshold parameters
that guarantee the existence of these steady states. Let SS = (E, W, P, S, H, M) be any steady
state of Systems (2)—(7) satisfying the following system of nonlinear equations:

0:4>—/3EE+uE(1— >—¢ES, (10)

Emﬂx
0= YPES — (¢ + Bw)W. (
0= (1—9)pES+ OW — BpP — ocMP, (12)
0=0P—BsS—AHS, (
0=uHS - ByH, (14)
0=nyMP — BpuM. (15)

By solving Systems (10)—(15), we find that Systems (2)—(7) have the following steady states:
(i) Healthy steady state SSy = (Ey,0,0,0,0,0), where E is the positive root of ¢ —

,BEE—I—UE<1— = 0 and is given by
Emax
Enax . . 2 4dv¢
Eo=—"~ [U BE + \/(U BE)* + Epn (16)
The basic reproduction number R for Systems (2)-(7) is given by
0YpEg
Ry = .
° ﬁpﬁsp
Oy
here, o = 1-—
where, p 91w + Y
(ii) Infected steady state with inactive immune responses SS1 = (E1, Wy, P;, 51,0,0),
where
| Bobs _ o
QIPF’ Ro’
W E1S4q,
1= 37 ,B T2 YEiS
= &51,
pop v (,BE vBpPs )
= Pop | 0 _(PE, YPrPs )
YT Beps ¢ e’ Emaxp

> 0, then, we obtain

E
Assume that fg — v + ];) !

max

Pr—uv E;:ux ﬁelj/is 0 (17)

We note that

2v Ernax oyYp

<:>\/v—[3E EU >ZU'BP'BS—(U—[3E).

Ro>1<:>E’””" [v—ﬁ5+\/( —BE)? + 404)] -, Prbs

max Q’,L’Emaxp
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From Inequality (17), we have 20Peps _ (v—PBg) > 0. Then,
0YEmaxp
2
Ro > 1 4U(P S 4v ,BP,BS 4U‘Bp‘35 (U B ,BE)

Emax ~ Q¢ E3qr0®  QYEmaxp
v?BpPs __Uzﬁpﬁs_+ vBEBrBs

< vp >

Y Emax0® QP opp
pop v (ﬁE vPBpPs )
ot -\t —57—)>0
BrbBs ¥ P 0Y?Emaxp

< 51 > 0.
UE1

Thus, 551 exists when Ry > 1and g —v +

> 0. At this steady state, the virus exists
max
while the immune response is inhibited.

(i) Infected steady state with only active antibody immunity SS; = (Ep, Wa, P, Sz, H»,0),

where
2
P Ty +§ZZ],

_ BHYY Ewax| ., PBHY o By ? 4vp | BHYYE:
WZ_V(ﬁ"‘ﬁW) 2v [U P H +\/<U P H > +EmaJ C u(O+Bw)’

2
PZ_W%[U_'BE_W+\/(U_ﬁE_,BIﬂP) _,_M’]p:ﬁHlPEzp

Emax
Er = ——
2 2v

- upp 20 1 1 Ennax upp

_,BS le Enax ,BHlP ,BH1/J 2 4U(P
H2_/\[ﬂpﬁs2v(v_ﬁE_V+\/<U_ﬁE_V> *me)“l]
_ Bs(opEr
- /\<ﬁpﬁsp 1)‘
oYE;

We note that SS, exists when BrBs p > 1. Let R be the antibody immunity activation
PPS

number defined as oE
RH — opLa '
Brps"
which determines when the antibody immunity is activated. Thus, Hy = % (R —1). We
note that H, > 0 when R{J > 1. Thus, SS; exists when R{{ > 1.

(iv) Infected steady state with only active CTL immunity SS3 = (E3, W3, Ps, S3,0, M3),
where
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2
e S oo B (e B 0

BmY0Y  Epax [v — B — Bmoy + \/<v — BE — :BMQI/J>2 + 41}747

> Bsn(6+pw) 20 Bsn Bsn Enax
_ _BmrenyEs
Bsn (8 + pw)’
P3 = ‘BiM/ SS = ‘BMQ/
1 Bst
Br {Q#’Ea < By > } Br <QlPE3 >
M; =L +1-q)-1| =L ~1).
Yo [Beps \ 0 g T o \Prbs’
We note that M3 > 0 when g’bg‘o’ p > 1. Then, we define the CTL immunity activation
PPs
number R as
E
RM _ QIIJ 3 )
Brps"

Consequently, SS; exists when RM > 1.
(v) Infected steady state with both active antibody and CTL immunities SS4 =
(Eq, Wy, Py, Sy, Hy, My), where

2
—ﬁg—ﬁfp+v%u—ﬁp—ﬁfj +4W1-—&,

E, = Emax v

2U Emax
_ Py Emax| o, Puy . Bup\? | 4vp | PuryEs
M e ) 2 { P +\/( pe =) +me] "o+ pw)’

Bum Bu
py=EM _p, g —PH_g,
Ty T

H4:ﬁMQV_.BS:ﬁS{ABMQV _1}
BunA A A | BsPun
B ) -] ]

We see that, Hy and My exist when Pumop > 1and Mp > 1. Now, we define

BsBr1 BrBmpu
M _ BHUYEs
2 = BeBun

Hence, H4; and M, can be rewritten as

_Bs|Ri _ Brlpm_
Hy =5 el M4_U{R2 1]

Therefore, SSy exists when R > RM and R! > 1. Here, R)! refers to the competing CTL
immunity number.

Lemma 1. Systems (2)—(7) have four threshold parameters Ry > 0, R > 0, RM > 0, and
RM > 0, such that:
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(i) if Ro < 1, then there exists only one steady state SSy;

E
(i) sz{ngRO,R{ngandﬁE—Hg 1

and SSq;

> 0, then there exist two steady states SS

max

(iii) sz? > 1and Réw < 1, then there exist only three steady states SSg, SS1, and SSy;
(iv) sz{VI > 1and R{I < RQA, then there exist only three steady states SSg, SS1, and SSs;
(v) sz{J > Réw > 1, then there exist five steady states SSy, SS1, SS», SS3, and SS4.

5. Global Properties

In this section, we prove the global asymptotic stability of all five steady states S5;,
i =0,1,2,3,4 by constructing Lyapunov functions [38]. We use the arithmetic-geometric

mean inequality
n n
%ZYiz dTTY: Yi>0,i=12,... (18)
i=1 i=1

Using Inequality (18), we obtain the following relations:

E; WES PW S;P

- __J- _J T >

EWEs, PW, SB - 1)
E_BES SP_ . . _ A 20
T PEs sp o IThed 20

]

Let a function gj(E, W, P,S,H, M) and define
Gi(t) = /@ Gi(x,t)dx, j=0,1,... 4
Let Z; be the largest invariant subset of
aG;

Ei=<(E,W,P,5HM): —=0;, j=0,1,...,4.
] {(/ rt Yy 7 ) dt } ] 0

From the Neumann boundary conditions in (9) and the Divergence Theorem we obtain

0= VQ-fidx:/div(VQ)dx:/Ade,
@ (@)

el
[ lyo.idr= [ awl _ AQ_||VQ|2>
0= [ 5ve ndx—/wdw(QVQ)dx—/w(Q o) .

for Q € {E,W, P, S, H, M}.Thus, we obtain

/ AQdx =0,
[}

60, [ VOl .
i de*/w 5 v for Qe {EW,P,S,H,M}. 1)

For convenience, we drop the input notation, i.e., (E, W, P,S, H, M) = (E(x,t), W(x, 1),
P(x,t),S(x,t),H(x,t), M(x,t)). Define a function H(#) =0 —1—1In6 > 0 forall 6 > 0.

The following result suggests that when Ry < 1, the SARS-CoV-2 infection is predicted
to be removed regardless of the initial conditions.

Theorem 2. The steady state SSy is globally asymptotically stable (GAS) when Ry < 1.
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Proof. Define a function Gy(x, t) as

9 Bp. PBpA
Go = EH( ) W+P+=S5+
0= PR 9+ Bw 0" o

Clearly, Go(E,W,P,S,H,M) > 0 for all E,W,P,S,H,M > 0, and Gy(Ey,0,0,0,0,0) = 0.

H+M
n

We calculate % along the solutions of Systems (2)-(7) as
Gy _ (1_7)815 8 OW oP  BpdS  BpAdH oM

ot 9  O+Pw ot ot o ot  ou ot 5 ot

(1= B [ouse o e+ vp(1- 1) s

[DwAW + y$ES — (8 + By )W] + DpAP + (1 — 7)YES + 0W — BpP — cMP

L0
U+ Bw
Bp BpA

+ 1 IDSAS + 0P = fsS — AHS] + IS DUAH + pHS — piuH]

+ %[DMAM+;7MP—,BMM]. 22)

Collecting the terms of Equation (22), we obtain

d E E
(1= jo-perroe(1- 5 )|

4+ ppEos — PPPss _ ﬁpf;)‘H— ﬁMUM+pDE<

+DpAP+'BPDSAS+ﬁPADH
0 op

8Dy

AW
O+ Bw

Eo
1— — |AE
2 Jae+

AH + UI;MAM.

E
Form the steady-state conditions of SSy, we obtain ¢ = BpEg — VEy (1 I 0 ) and thus,

max

E

max

>:(EO—E)(ﬁE—U+ vEo | vE )

— BrE + vE (l —
¢~ Pe E Evex | Emox

Therefore, we deduce that

_ 2
aagto—p<ﬁgv+ E0+ UE)(E Eo)

Emax Emax

/31?!35 BrBrA Bmo
+ 0WE)S — S — H— M

+ pDg (1 Lo )AE+ 9Dw_ppy DpAP + 5PDSA5+ PpADh \ (p o Dm0
O+ Pw 0 on 7
The following inequality will be used fori =0,1,2,3,4
VE; UE)(E—Ez-)z ( E>(E E;)?
_ —v+ + < _ —v+ BT ) 23
P (ﬁE Emax Emax E =70 'BE Emax E ( )

Using Inequality (23) in case of i = 0, we obtain
9% _ ( L VEo ) (E—Eo)* | BrPs (Q¢Eo ) Bepul . Bmo
< - — + 15— H- M2\
o = PP E o \Brps" oy U
Eg 9Dw BrDs BrADy oDy
+pD (1—>AE+ AW + DpAP + AS + AH + ——AM.
A 8+ B ’ 0 on 1

Emax
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Using the definition of Ry we obtain

9% _ <ﬁ£ _py VE0 > (E _EEO)Z n ﬁpgﬁs (Ro—1)S — 5P§;)\H B /317\7NM

at B _p Emax
+PDE(1—EO>AE+ 9Dw AW+DPAP+'BPDSAS-F'BPADHAH_FUDJAM‘

ic
Consequently, we calculate % as follows:

dgo / agod

—p<ﬁ5—v+ ”EO)/@(E_EEO) ﬁpﬁs /Sd ﬁPﬁH /Hd

Emax

_ Bmo | Max+pDg | <1E)AEd + /Ade+DP/ APdx
1 Jo E 19 ﬁw

+@/ Asczx+M/ Ade+‘7—M/Ade.
0 @ ou @ 7 Jo

Using Equality (21) we obtain

W e(pemorgi) [T e B [san BB [

,BM‘T/ / IVE|?
— 52— | Mdx— pDgE —d
n Je ¥~ PEERD o E?

At the steady state S5y, we have ¢ = BpEg — vEg (1 — EEO ) which implies that Bg — v +
max
vEy gO go _ —
> 0. It follows that — < 0 when R < 1. In addition, =0whenE =Ey, S =0,
Emax dt dr

H = 0and M = 0. The solutions of Systems (2)-(7) converge to Z¢. For any elements in

Zowehave E = Eyand S = H = M = 0, and then —S = AS = 0. From Equation (5), we

ot
0 oP
obtain 0 = a—S = oP, which gives P = 0 and thus, — 5 = AP = 0. From Equation (4), we

P -
obtain 0 = op = 9W, which gives W = 0. It follows that &y = {SS¢}. By LIP [39], we
conclude that SSpis GASwhen Ry < 1. O

E
The next result establishes that when R{I <1< Ry, R{VI <land fg—v+ Ev—l >0,
max

the SARS-CoV-2 infection with inactive immune responses is always established regardless
of the initial conditions.

> 0.

Theorem 3. The steady state SSq is GAS when RH <1< Ry RM <land B —v+

Emax

Proof. Define a function G (x, t) as

0 W Br ( > ﬁp)\
= oE — W P S —H M.
= 1H( > 9+ Bw 1H<W1>+ 1H< 1) o s ) o +77



Mathematics 2023, 11, 190 12 of 32

Clearly, G1(E,W,P,S,H,M) > Oforall E,ZW,P,S,H,M > 0,and G1(E;, Wy, P;,51,0,0) = 0.

Hence, % is given by

G E E
aTl :p<l— El> [DEAE+4>—,BEE+UE<1— Em) —l[JES]

, (1—Wl>[DWAW+'ylpES—(19+!3W)W]

0+ Bw 4%
+ (1 - I;) [DpAP + (1 — y)PES + OW — BpP — o MP]

I ISQP <1 _ 5’51> [DsAS + oP — BsS — AHS| + [Z\[DHAHJr uHS — prH]
+ 4 [DMAM +nMP = Bar). @4)

Collecting the terms of Equation (24), we obtain

0G1 Eq1 E l9’)’l,b WLES
L —pl1—=2L)|p—BeE+vE(1— EiS —
ot p( )| PEETY g ) Iy P T
P ES W S1P A
— (- PES G PW e oM - PPPsg g 1P Prbsg | PR
P P 0 S 0
,BP‘BHA ‘BMO' < E]) 19DW ( W1>
— H— M Dp(1— —= |AE 1—— |AW
op g PR T ) e U T w
+Dp<1—Pl)APnL’BPDS(l—51>A5+ﬁPADHAH+UDMAM.
p 0 S Wz U
Using the steady-state conditions at S5;
Ey
¢ = ,BEEI —vE; (1 — E ) +1/JE151,
max
By
W, = ESy,
1 l9+ﬁw¢ 151
BrPr = pyErs) = 255,
we obtain
E E
(P_ﬁEE"FUE(]— )Z(El—E)(ﬁE—U+ et + 7 >+lIJE151
Emax Emax EWlﬂX
Further, we obtain
0G; ( vE; vE )(E—E1)2 ( E1>
=L —v+ + +o(1— =22 ) pES; +20¢E;S
ot~ PPV B TR ) £ AU E PR eRs
BrBs By W1ES Oy P ES
+ pYE1S — S — E{S E1S1 —(1— E1S1———
PYEy l9+ﬂw¢11W5151+19+ﬁw¢11 ( 7)1/111PE151
19’)/ P1W Slp ,Bp)\ ‘BH ‘BM
- E1S1—— — ppE1 S + P22 (g, - PHO g p - MM
ot By T, —PYESIGp T\ s e B

E 9Dy W Py
De(1— =L )AE 1— L )AW+Dp(1— 2L )AP
e E( E) +19+[3w( W) W P( p

4 BrDs (1—51)A5+’BP/\DHAH+UDMAM.
0 5 oH U]
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Using Inequality (23) in case of i = 1, we obtain

991 _ vEy \ (E — Ey)? E; BrBs
5 = P<,BE me> £ TO0vES —pyEiSi £ + | pYE 0 S
By WL ES By P,ES
T VEWES, e gy VBT I PRSI
_ % W SiP . BeA Bu Bm
o+ B P 151 — ppE1S lSP + 0 <Sl H+o( P — - M
E; Dy W, P,
4 PeDs <151)AS+5P/\DHAH+ IDM A 1.
0 S op 1
We have pyE; — 'BPQ’BS = 0, then,

vEr ) (E—Eq1)? By
Ei51(4— — — —— — -
Emux) E * 19+,Bwl/) 121 E WES1 PW; SP;

- B BES  SiPN | PeA e Bu _ Bu

+(1 ’Y)IPE151(3 E PE151 SP1)+ 0 51 u H+o Pl 7 M
El 19DW W1 P1

-l-pDE(l E)AE+I9+5W <1 W)AW+DP<1 P)AP

PrDs (1 Sl)AS+ﬁP/\DHAH+UDMAM
S ou 1

d
agtl < —P<ﬁE—U+

_|_

Hence, % is calculated as

dgl / 901 991 4.

vE; / (E—E1)?
< —o(pr— d
- P(,BE vt Emax) @ E X
E,  WES PW 511?) N

15408 '
E;S 42 1
+/3W¢ ! 1/@< E  WES, PW, SP
B _Ei PES  SP BrA _ﬁLH /
(1 ’y)lpElsl/w(\? T SP1>d (s H dx
BM)/ / HVEH2 19DWW1/ ||VW||2
P — M) | Mdx—pDgE
+0’< 1 x —pDgEq 2 19+/3w
_D p/ IIVPH2 _ BeDsSy [ |[VS]?
¢ Jo S?

LEEN 0, then, we obtain

max

. v
Since Bg — v + E
UE1 U,BP,BS
— U+ = —v+ ———>0
‘BE Enax ﬁE QlPEmaxP
Buy | 2vPBpPs
= Pg—v+ + >0
P M 0YEmaxp

2vBpPs By
= Enap <v_ﬁE_y> >0
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We obtain

2
R{{<1<:>EZTC[U—,BE—ﬁI;w—V—\/(U—ﬁE—ﬁilP) + 4”4’] S,BPIBS

Emax oYp

Buy dvp _ 20vBpPs Buy
<:>\/ U_’B 7 > +Emax = OPEmarp <U_ﬁE_V>

4U¢ 402,313,35 4U,BP,BS < B _,BH1/)>
— Emax < Q lszmuxp QlPEmﬂxp Y ‘B M
2 2
vBRBs  U*BpPs o UPEPpBs | vPpPsPr
s 2¢2Emaxp2 oypp opp oup
pop v <5E vBpBs ) Bu
A BrBs + P * QlPZEmaXP = M
— 5 < 'B—H.
in addition, since B — v + U1 > 0, then we obtain
ﬁE—UJrEUEl =/3E—U+Q;ﬁEPﬁSP >0
Bmoyp | 2vBpPs
P Y B
2vBpBs _( _ _/3MQIP> 0
:>Q¢Emaxp v Bsn -
We obtain
Emax /3MQ1P < ,BMQIP)Z 404) :BP/%S
RM <1 —~ — B —
R U[U PE~ "B \/UﬁE Bst ) T B | = ovp
ﬁMQ#’) 4vp _ 20BpBs _( . ﬁMQ#J)
A \/ + Emux < QI,L’EmaxP v 'BE /3577
402513/55 4vBpBs Bmoy
Emux = Q*Y2EZ . p? leEmaxP (U_ﬁE - Bsn >
2 2
v BpBs  v*BpBs | vBePpBs o VBrPm
s Y Emaxp®  QYp M o
ﬁs ¢pov 2513 vBEBP v°ppPs vBpBMm
Bs ( v e¢2Emaxpz> T

& pop v (Pe _UPpPs Pum
= 0 LBP.BS +‘l’ (4’ +Q‘/J2Emaxp)] = Ui
<:>P1<‘87M.

IfRE <1, RM < 1and g — v+ VE;

> 0, then, using Inequalities (19) and (20) we
N Emax

d d
get % < 0. Moreover, —

=0whenE=E;, W=W;,P=P,S5S =5, H=0and

= 0. Thus, &; = {SS;} and by LIP, SS; is GAS when R <1 < Ry, RM < 1 and
vE;
,BE — U+ >0. O

Emax
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E
The next result illustrates that when R{{ > 1, Réw <landBg—-v+ =2 > 0, the

SARS-CoV-2 infection with only active antibody immunity is always established J;egardless
of the initial conditions.

> 0.

E
Theorem 4. The steady state SSy is GAS when RY > 1, RM < 1and B —v + o2

max

Proof. Define a function G(x, t) as

e EY . ® W | B g
gz_pEzH(E2>+l9+l3wW2H< )+PH<P2) QSH( 2)+ op HzH(H2>

+IMm.
Ui
Clearly, Go(E, W, P,S,H, M) > O forall E,W,P,S,H, M > 0, and G5 (E2, Wa, P2, S, Hy,0) =
0. We calculate @ as
ot
G, _ E; E
% —p<1 - f) {D AE+¢— ﬁEE+vE<1 - Emax> - t/JES}
¢ Wa
+ EEam (1 - W) [DwAW + ypES — (8 + Bw)W]
+ < - %) [DpAP + (1 — 7)YES + 8W — BpP — cMP)

il (1 ) [DsAS + oP — BsS — AHS] + ﬁg”; < %) [DyAH + uHS — By H]

+ f[DMAM+77MP BmM]. (25)

=

Collecting the terms of (25), we obtain

0 E E
2p(1-F) o g+ or(1- 5 )| voves

Bvyp WoES P,ES P2W
0+ pw W + W2 ( )l/J P 4 + BpPy + 0P M
_ PrPsg By SzP ﬁpﬁss L BrA S,H - ﬁp,BH/\ ﬁp/\HZS
¢ ¢ Q op 0
PrPuA IBM‘T ( Ez) Dy ( Wz)
o g PPE\NTE 9+ Bw W
+ Dp <1P>AP+[3PDS<152)A5+5MDH(1 Hz)AH#TDMAM'

At the steady state SS, we have

(PZﬁEEz—UEz(l— > +l/JE252,

Emﬂx
Oy
MW, = ————1E» Sy,
2 9+ B PE»5)
BpP> = pYEySy; = 'BPQ‘BSS + ‘BIQJ H5S,,

5, - B
H

7
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and we obtain

¢_ﬁEE+UE(1—EE )—(EZ—E)(ﬁE—U—F vEs + vE )—FlpEzSz.

Emax Emax

By using the above conditions, we obtain

9 E E \ (E—-E)? E
%:_P(,BE_U+ Vb2 + v )( £ 2) +p(1—%)l[]EzSzﬁ-Zpl[}EzSzﬁ-Pl[JEzS

Emux Emax
_ BeBs. BrA, o B W,ES By o P,ES
o S o H,S T+ B PESy WE,S, + T+ B WE2Sy — (1 7)¢52527PE252
_ 0 PW ﬂ _Pm _E
. BWlPEzSz PV, plpE2SZ + (7(P2 " )M + pDg (1 E )AE
8Dy (. Wy L) BrDs 52
+19+[5w(1 W)AW+DP(1 P)AP+ 0 (1 S)AS
+L’ADH(1 HZ)AH+—‘7DMAM
om H U
Using Inequality (23) in the case of i = 2, we obtain
agz UE2 (E — Ez)z E2
Y2 _ E>Sy — 0WE>S, =2
5 = P(ﬁE E, T T 30YES: — pyYErSa—
BrBs  BrA ) By WLES By
Eb——"=>—-"H,|S— S E>S
+<p¢2 o o 2 19+/3¢22WES+19+ﬁW1’b22
PzES 19’)/

W 5P ﬁM)
—(1— E>S — E>S ES— p—-—= M
(1—7)¢Ez 2BE,S, l9+ﬁwl/1 2525 — pYE; +0< v

E; Dy W, P

P
+'BPDS<1 52>As+5PADH(1 H2)AH+‘TDMAM.
0 S ou H Ul

The conditions of SS; imply that

BrBs  BpA
E,-—2_ " H
pYEr o o
We obtain

99, (5}5 _ oy VB2 ) (E — Ep)? L Y

E e S e S S
F t Er E o+ B 252( E ~ WES, PW, SP,

_ _E_ RES 5P _Bum _E
+(1 ’)/)l/JE252<3 E PE,S,  SP, +o( P ” M+pDg| 1 E AE
9Dy Wh P, /3st< 52)
1-—=)AW+Dp|1—-—=)AP 1-— AS
Farp (17w oW o (1= Jar s B

S
+M(1 HZ)AH+UD7MAM
op H U]

E, WES PW szp)
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Using the definition of R} we obtain

ot =P Epax E 9+ pw " E WEsS, PW, SP

_ _ By PES 5PN pmo B
+( 7)1/;}5252(3 Ehhe SP2)+ ; (Rz )M+pDE1 2 )aE

L 9Pw <1—M)AW+D (1—%)AP+/3PQDS<1 SSZ)AS

oG vE E—E,)? 9 E W,ES  P,W  S,P
2 (5}57 2)( 2) Y lPE252< 2 2 2 L)

0+ Bw 144
+L’ADH(1 HZ)AH+—‘7DMAM
op H U]

Then, % is calculated as

dgz / agzd
vEy (E - Ep)?
< —p(Be—v+ / d
o P<,BE v Emax> @ E X
U0y E, W,ES PW S,P
+19+5 szsz/( E  WES, PW, sp)dx

E  PES, SP,
B L N Y LT
E2

+(1—’Y)1PE252/<3—EZ—PQES—S2P>d —l—'BA’;J(RéVI—l /de

0+ Bw
15PD552/ ||V5||2 _ BpADyH, ||VH||2 Jx
op o H?

> 0, then, using Inequalities (19) and (20) we obtain

1f RH >1,7z§431and/3E—u+gE2

max

% < 0. Moreover, % =O0when, E=E,W=W, P = PZ/S = S2and M = 0. The
solutions of Systems (2)—(7) tend toward &,. For each element in &, we have S = S, then,

a—s = AS = 0 and from Equation (5), we have

ot

0= aj *sz—ﬁssz—)\HSQ — H = H,.

It follows that &, = {SS,}. By LIP, SS; is GAS when R > 1, RM < 1and B —v +
VE2 S0 O

max

E
The next theorem shows that when R{VI > 1, R{{ < RQA and Bg — v + ;)73 > 0, the

SARS-CoV-2 infection with only active CTL immunity is always established rne%grdless of
the initial conditions.

> 0.

Theorem 5. The steady state SS3 is GAS when RM > 1, RIT < RM and pp — v +

Emax

Proof. Define G3(x,t) as

_ E 4 w (Bp +oMs3) <S)
gs_pE3H<E3)+19+5WW3H(W3>+PH< 3>+ 0 S3H S3
(Bp +0M3)A <M>
+ —H MH
on MRSV
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We have G3(E, W, P,S,H,M) > Oforall E,£W, P,S, H, M > 0,and G3(E3, W3, P3,S3,0, M3) =
0G3
0. Then, we calculate — as

ot

) E; E
%:;;(1—?) {DEAE+¢ ﬁEE+vE(1— £ )—IPES}

max
o4

W

+ <1 - %) [DpAP + (1 — 1)PES + 8W — ppP — oMP]

n (Bp +0oMs3) (
0

n (Bp 4+ oM3)A
ou

1- %) [DsAS + oP — BsS — AHS]
[DyAH + uHS — pyH] + % (1 - %) [DMAM +yMP — ByM].  (26)

Collecting the terms of Equation (26), we obtain

% - Es B E _ vyyp WiES
£ _p(1 ){4) ﬁEE—i—vE(l EWH kS — 50
+OW; — (1-— )IP7P3ES - 197P3W + BpP3 +0PsM — 7(‘31) + ZM3)'BS S
(ﬁP-HTMs)SZP n (Bp + oM3)Bs S5+ (Bp +5M3)A53H_ (ﬁP-HZL/Is),BH/\H
_Pmoy, . Puo _Es 9Dw (W5 B
)M EEMa o pD (1 AE+ﬁ+ﬁW 1- 30 JAW+Dp(1- 3 AP
. (Br+0M3)Ds <1 S3)AS o, (Bp+M3)ADy 0Dy (1 3 %)AM.
Q S oH M
The components of 553 satisfy
Es
¢ = BeEs —vEs(1— 3 + E3S3,
max
W, it ———E3S
3 = l9+,3 393,
+ oM,
(,BP +0M;3)P; = PYE3S3 = ('BPQ3)'BSS3,
Py = 'BM, oP; = BsSs,
and we obtain
E E
47—,315E+UE(1— )—(E3—E)(ﬁ5—v+03+ v >+¢E353.
Eiax Enax Enax
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By using the above conditions we obtain

9 E E \ (E — E3)? E
%:_p<ﬁE_U+ VL3 + v >( 3) +p<1_3>¢E3S3+2plPE3S3
ot max Enax E E

(Bp + oM3)Bs Oy W;ES By
S— E3S + EsS
19+/3W‘/’ 33 WESS, 19+/3w1p 33

P3ES Oy W S3P
— (1= 7)$E3S - EsS — OPE3S5 23
(1—)yE3 3PE,ss 19+[3w¢ 535 PYE; 35p;

+M(53_T)H+pDE(1—?>AE_’_ 9Dy (1_W3>AW

PYE3S —

Q O+ Bw W
#Dp (12 )ap g BrroMsils (S5 </sp+aqM3>ADHAH
oDy (1 Ms
+17<1 M)AM.

Using Inequality (23) in the case of i = 3, we obtain

9G; vE3 \ (E — E3)?
70 <L —
o = p<ﬁE U+Emax> E

(,BP+U'M3)5S) By
S — EsS
WE3S3 l‘/’-l-ﬁv\/l't7 323

0+ Bw

P3ES 19’)/ P3W S3P

—(1-— E3S — EsS — pPE3S3——
(= N¥ESapp o — 5 gy PE3% oy, — P¥EsS3gp,

s e G B ()

+ . Ss— =7 JH+pDe(1= 7 JAE+ o (1- 37 J AW

(,BP +0'M3)D5 ( 53 (ﬁp +0’M3))\DH
Q

E
+ 3pyE3S3 — pl/JE;;Sy,?3

WLES 9
YEsSy

+ (P¢E3 -

1—>AS+ AH
S ou

—i—Dp(l—P?’)AP—i-
P
O'DM M3
—(1-=)AMm.
T ( M) M

(Bp +oM3)Bs

We have pyE3 — = 0. Then, we obtain

9G3
< — —
o — P (‘BE v+

vE3 \ (E — E3)? Oy < E; W3ES P3W s3p)
EsSs(4— =2 — 2= 3~ =50
) E +l9+ﬁw¢33

Emax
E; PES  S3P +oM;3)A
+(1—7)¢E353<3—§—%3S3—5%3)+u(53—@)1{

Es 8Dy W, P
+pDE(1 E)AE+0+ﬁW<l W AW+ Dp(1- 2 )AP

n (Bp +oM;z)Ds (1 _ ﬁ)AS—&— (ﬁP+0M3)/\DHAH+ oDy (1 B %)AM.
Q 5 op M

Using the definition of RY and R}! we obtain

0G3 vE; \ (E — E3)? By
270 < 2 VY= =)y Pl pFaSa 4 — 22 - o o7 o7
at = F (ﬁE "F Eoa E 0+/3W¢E3S3 T E T WEsS,  PWs 5P

+ (1 —7)9EsSs (3 T E " PEsS; Sh o Ry

+pDE(1f @)AE+ ODw (17%)AW+DP<17&)AP

Es _ PES @% (Br + M) (73{1_1>H

E 0+ Bw 144 P

4 et OUIDs (1= B Yas o (BrroMuli gy O (- YoM @)
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Therefore, 53 is given by

G, 7/ agad

dt
vE E — E3)?
g—p(ﬁg—HEm;x)/(j Eo)

9y E;  W;ES PsW  S3P
E3S SN AC LA LA LAY
o4 Byt 3/( E ~ WEsS; PW; Sp )™

E; PsES  S3P

(ﬁP+(TM3)ﬁHA< )/de—pD Es / |VE E2

+

ou

2 2 2

_ 9DwWs / HVWH dx — DpPs / ||VP|| _ (Bp+0M3)DsS; / ||V5|| dx

&+ pw 0

2

_ oDy M3 ”vj\/i” dx.

1 o M
M Ri vEs . .
If RY" > 1, Y] <1land fg—v+ 3 > 0 then, using Inequalities (19) and (20) we
2 max

obtain % < 0. In addition, ddgt =0when, E=E;, W=W3,P=D;,5S =53, H=0and
H

. R
M = Mj. It follows that &3 = {SS3}. By LIP, SS3 is GAS when RM > 1, - < 1and
RZ

IBE—U—F >0. O

Emax

The next theorem demonstrates that, when R > RM > 1 and g — v + E >0,
max

the SARS-CoV-2 infection with both active antibody and CTL immune responses is always
established regardless of the initial conditions.

Theorem 6. The steady state SSy is GAS when R > RM > 1and Bg — v + > 0.

Emax

Proof. Define a function G4(x, t) as

o) () (7))

+(5P+JM4)H H<H4> +;M4’H(M).

Wehaveg4(E, W,P,S, H,M) > OforallE,W,P,S,H, M > O,andg4(E4, Wy, Py, Sy, H4,M4) =

0. Then, we calculate % as
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d E ;
R R

9 W.
5 A (1 - V\j) [BWAW + Y¢ES — (8 + Bw)W]

+ (1 - I;;*) [DpAP + (1 — )YES + W — BpP — e MP]
+ WQ‘TM“) (1 . 554) [DsAS + 0P — BsS — AHS]

N W (1 _ H‘l) [DuAH + pHS — pyH]

H
M
+2 (1 - M4> [DAAM + MP — M. (28)

Sy WLES

Collecting the terms of Equation (28), we obtain
—BeE+vE(1- E + PYE4S —
¢—PeE+v E PYESS — 5 By W

99y _Eg

ot *p(l E
P4ES A + oM S4P
+19W4—(1—'y)1p4T—l94T +/3pP4+UP4M—MS—(,BP+UM4)%

n (Bp +ZM4)I35 et (Bp +ZM4)?\S4H ~ (Bp +21;lﬂ4)ﬁHAH_ (Bp +ZM4)AH4S

+ (ﬁp+‘;f4)ﬁHAH4— ’BA;UM—F ’BA’;UM4+pDE(1 - %)AE

Dw (W P\ papy (BrtoMaDs (| S
+l9+/3w<1 W)AW+DP(1 P AP + P 1 S AS

;. (Bp+oMy)ADy (1 - @>AH+ 7Du (1 - %)AM.
op H Ul M

The steady state SS, satisfies the following:

E
0 = peEs—oEs(1-

> + ¢E4S4/

max

Oy
tW, = E4Sy,
4 l9+l3wl/]44

(Bp +0My)Py = pPE4Sy =

(,BP+UM4) ﬁP+U’M4)A

ﬁ554+(

54:‘371-1/ P4:ﬁ7M/
I3 n

and we obtain

vE vE
A

Emux Emax

gb—ﬁEE—l-vE(l— )-(E4—E)(ﬁg—v+ >+¢E4S4.

Emax



Mathematics 2023, 11, 190 22 of 32

By using the above conditions, we obtain

9 E E \ (E—E4)? E
&:_p(gg—wr vhe Y )( 4) +p<1—f4>1p15454+2p¢£4s4

ot max Enax E
oWES — (/3P+ZM4)5SS_ (Bp +ZM4)AH4S
19’)/ W4ES 19’)/ P4ES 19’)/ P4W
— E4S EsSq4— (1 — E4S — E4S
0+5W¢ SE S, l9+l3wl'b 454 — (1= 7)yEy 4PE,S, 19—|—ﬁw¢ S

S4P E, ®Dy Wi P
pt/JE4S4SP4+pDE(1 E)AE+6+5W 1= JAW +Dp(1- 7 AP

_,_WO_%)AS—FW(l—ﬂ)AH

op H
(TDM M4

Using Inequality (23) in the case of i = 4, we obtain

0G4 VEy \ (E — E4)? E,
27t o _ S 7 _ i §
T p(ﬁE v+ Eoe E + 3pPE Sy — pE4Sy 3
n (pz/;E4 _ (Bp +ZM4)ﬁs _ (Bp +ZM4)AH4>S
9 W4ES 9 P,ES O W
— E4S EsSq— (1 — E4S — E4S
l“_ﬁwll’ $S4E S, l9+,3wlp 454 — (1= 7)yEy 4 PE,S, l9+ﬁwlp S

S4P E4 ﬂDW W4 P4
— OYELS4—— Dp(1— — |AE 1—— |AW+Dp(1—-— |AP
PYESagp TP E( E) Tt Bw W +5p P

. (Bp +0My)Ds (1 B &)ASJF (Bp +0My)ADy (1 B ﬂ)AH
0 S ou H
D (y _ M
+T(1 M>AM.

The steady-state conditions of SS; imply that

_ (Bpt+oMy)Bs  (Br+ 0M4))\H4 _o.
0 Q

PYE,

We obtain

0Gy (
s _
of — P ,BE v+ [ E + 19+le

_ _Es  D4ES 54D _E
+(1 7)¢E454(3 E DS, SP4)+pDE(1 = |AE

9Dy W4) ( P4) (Bp +oMy)Ds ( 54)
1-—|AW+Dp(l——= |AP+ "———2(1— —= |AS
+l9+,3w< W +Or P + 0

4 (Bt oMy)ADy (1 - §>AH+ 7Du (1 - %)AM.
op H Ui M

vEy > (E-E | 07 e (4_ Ey  W,ES PW g)
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Calculatmg a 49y as

dGs [ 9G4
dt _/ ot
UE4 (E—E4)?
< —p(Be—v+ / d
o P(ﬁE v Emax) @ E x
Es, WiES PN S,P
+19+/3 l"JE‘*S‘*/ ( E WES, PW, SP4>dx

Ey PiES  S4P / | VE|?
1—9)yE - A Tt )dx —pDgEy | -
+(1 -7y 454/ (3 E  PES, SP4>dx pDEE4 X

ODwMy W g, [ITEIR g (BrreMDS, [ TS,
P2

o+ Bw ¢
(ﬁP+UM4))\DHH4/ HVHHZ dr— UDMM4/ ||VMH2 dx
op
We see that & < Owhen R > RM > 1, B —v+ > 0 and using Inequalities

dt
(19) and (20). Moreover, % =0when, E = E4, W= W, P=P,S =54 H= Hy
and M = M4 It follows that 24 = {SSs}. By LIP, SSy is GAS when R > RM > 1 and
,BE — U+ >0. O

Emux

Emax

Based on the above findings, we summarize the existence and global stability condi-
tions for all steady state points in Table 1.

Table 1. Steady states and their global stability conditions for Models (2)—(7).

Steady State Global Stability Conditions
SSo = (Ep,0,0,0,0,0) Ro<1
SS1 = (Ey, Wy, P1,$1,0,0) R <1<Ro RY <land Bp—v+ - >0
SSy = (Ez, Wa, P, Sp, Hp, 0) RiIL>1,RM <1landBr—v+ éfi >0
SS3 = (E3, W3, P3, 53,0, M3) RM > 1, RE < RY and Bg — v+ £ >0
SS4 = (E4, Wy, Py, Sy, Hy, My) RiT > RY > Tand Bp —v+ £ >0

6. Numerical Simulations

In this section, we execute numerical simulations to support the results of Theorems
2-6. The MATLB PDE solver (pdepe) is used to solve Systems (2)—(7). We consider the
spatial domain as @ = [0, 2], with a step size of 0.02. The time step size is chosen as 0.1.
Moreover, we consider the following initial conditions:

E(x,0) = 5[140.2c0s%(7x)|,  W(x,0) = 0.005[1+ 0.8 cos? ()],

P(x,0) = 0.5 [1 +0.2 cosz(nx)}, 5(x,0) = 0.05 [1 +03 cosz(nx)},

H(x,0) =3 [1 403 cosz(nx)], M(x,0) = 0.01 [1 +0.1 cos2(mc)], xe0,2.  (29)
In addition, we consider the homogeneous Neumann boundary conditions:

dE OW dJdP 9SS OJH JIM
ﬁ—ﬁ—ﬁ—ﬁ—ﬁ—ﬁ—o, t>0, x=0,2. (30)



Mathematics 2023, 11, 190

24 of 32

The parameters (¢, i, 17) of Models (2)—(7) are taken as free parameters. The other parame-
ters are fixed, as shown in Table 2. To illustrate the global stability of the five steady states
of Models (2)—(7), we have the following cases:

Table 2. Model parameters.

Parameter Value Parameter Value Parameter Value Parameter Value
¢ 0.1 o 0.8 Bw 0.001 Dy 0.01
v 0.01 0 0.24 Bp 0.1 Dp 0.01
Emax 12 A 0.5 Bs 4.36 Dg 0.01
P varied u varied Bu 0.05 Dy 0.01
0% 0.5 n varied Bm 0.1 Dy 0.01

4 4.08 BE 0.01 Dg 0.01

Case 1 (Stability of SSo): (¢, 1, 1) = (0.05,0.5,0.09). For these values, we obtain
Ro = 0.3015 < 1. According to Theorem 2, 5Sp is GAS and the SARS-CoV-2 infection
is predicted to be completely cleared from the body. From Figure 1, we can see that the
numerical results agree with the results of Theorem 2. We observe that the concentration
of healthy ECs is increased and converged to its normal value Ey = 10.9495, whereas the
concentrations of other compartments are reducing and tending to zero.

Case 2 (Stability of SS1): (¢, u, 1) = (0.5,0.5,0.09). Using these values, we compute

E
RH = 05332 < 1, RM = 0.8314 < 1 < R = 3.0146 and B — v + g—l — 0.003 > 0.

It means that the conditions of Theorem 3 are valid and thus SS; is GAS. From Fig-
ure 2, we see that there is an agreement between the numerical simulations and the
results of Theorem 3. Further, the states of the system converge to the steady state
SS1 = (3.6335,0.0109,0.8899,0.049,0,0). In this case, the SARS-CoV-2 exists in the body
but without any response from the immune system.

Case 3 (Stability of SS»): (, u,n) = (0.5,2.3,0.09). Consequently, RI = 1.7137 > 1,

E
RM = 06091 < 1and B — v+ 572 = 0.0052 > 0. This shows that the conditions of

Theorem 4 are fulfilled and thus S Szn;ngAS. The numerical solutions displayed in Figure 3
are consistent with the results of Theorem 4. Further, the states of the system converge
to the steady state SS, = (6.2268,0.0083,0.6776,0.0218,6.2213,0). In this case, only the
antibody immunity is activated.

Case 4 (Stability of SS3): (¢, 1,17) = (0.5,1,0.13). We compute R =1.1203 > 1,

RH vE
R—1—0.8469<1and/3E—u+E 3

= = 0.0034 > 0. According to Theorem 5, S53 is GAS
2 max

and this is shown in Figure 4. We can see that the states of the system converge to the steady
state $S3 = (4.0730,0.0106,0.7713,0.0425,0,0.0150). For this case, the CTLs are activated,

whereas the antibody immune response is unstimulated.

RH
Case 5 (Stability of SSy): (y,u,n) = (0.5,1.6,0.13). Hence, we compute R—;A =
2
1.355 > 1,RM =1.0243 > 1 and Bg — v + gﬂ = 0.0042 > 0. According to Theorem 6,

554 is GAS and this is clarified numerically in HF)igure 5. The states of the system converge
to the steady state SS4 = (5.0433,0.0097,0.7691,0.0313,3.0927,0.0031). In this situation,
both antibodies and CTLs are activated against the viral infection.
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Figure 1. Simulation of Systems (2)—(7) when (¢, u,7) = (0.05,0.5,0.09). The steady state
550(10.9495,0,0,0,0,0) is GAS.
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Figure 2. Simulation of Systems (2)—(7) when (¢, i1, 17) = (0.5,0.5,0.09). The steady state 551 =
(3.6335,0.0109, 0.8899, 0.049, 0, 0) is GAS.
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Figure 3. Simulation of Systems (2)-(7) when (¢, p,77) = (0.5,2.3,0.09). The steady state 5SS, =
(6.2268,0.0083,0.6776,0.0218,6.2213,0) is GAS.
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Figure 4. Simulation of Systems (2)-(7) when (¢, ,17) = (0.5,1,0.13). The steady state SS3 =
(4.0730,0.0106,0.7713,0.0425,0,0.0150) is GAS.
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Distance x

(a) Healthy ECs

Distance x

2000 2000

oo Time ¢ Distance x oo Time ¢

(b) Latent infected ECs
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° o Time ¢ Distance ° o Time ¢

(c) Active infected ECs (d) SARS-CoV-2 particles

Distance x

(e) Antibodies

2000 2000

oo Time ¢ Distance ° o Time ¢

(f) CTLs
Figure 5. Simulation of Systems (2)—(7) when (¢, i1, 17) = (0.5,1.6,0.13). The steady state 5S4 =
(5.0433,0.0097,0.7691, 0.0313, 3.0927,0.0031) is GAS.

7. Discussion

SARS-CoV-2 infection represents a real concern worldwide. Therefore, the modeling
and analysis of SARS-CoV-2 are needed to understand the dynamics of this virus within a
host. In this paper, we develop a diffusive SARS-CoV-2 infection model with antibody and
CTL immune responses. We study the dynamical behavior of the model. We establish that
the model has five steady states and we prove the following:
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The healthy steady state 5Sg always exists and it is GAS when Ry < 1. In this case,
the patient will be recovered from COVID-19. From a control viewpoint, making
Ro < 1 will be a good strategy. This can be obtained by reducing the parameters ¥
and ¢. Let us consider the effect of two types of antiviral drugs, one for blocking the
infection with drug efficacy €1 € [0,1] and the other for blocking the production of
SARS-CoV-2 with drug efficacy e, € [0,1] [8]. Modeling the two antiviral drugs will
change parameters i and ¢ to (1 —e7)p and (1 — ;)0 [21]. Let us considere; = €, = €
and the other parameters are fixed, then, R can be given as functions of € as follows:

Roe) = 1 el (00 +1—7)(v—ﬁg+\/(v—ﬁg)2+4v¢>

2U,8P,BS 0+ ,BW Emax
= (1-¢€)*R(0).

To make Ry < 1, the effectiveness € has to satisfy

€M < e <1, €M = max{0,1— S ,
Ro(0)

where e™in
body.

We note that Ry does not depend on the immune response parameters o, A, y, and 7.
Therefore, both CTL and antibody immune responses can control the viral infection
but they do not play the role of clearing the viruses.

The infected steady state with inactive immune responses 551 exists when Ry > 1

is the minimum drug efficacy required to eradicate SARS-CoV-2 from the

E
and g — v+ Ev L>o. Further, 5SS is GAS when R{{ <1< Ry, R{VI <1land Bg —
max
E
v+ U1 S 0. This result suggests that starting from any disease stage, the COVID-19

E
patienn’zuvxvill still have a SARS-CoV-2 infection but without immune responses.
The infected steady state with only active antibody immunity SS; exists when R > 1.
UEZ

Moreover, SS; is GAS, when R{i > 1, RIZ\/I <land Bg—v+ T > 0. This result

suggests that starting from any disease stage, the COVID-19 pai?éﬁt will still have a
SARS-CoV-2 infection but with only an active antibody immune response.
The infected steady state with only active CTL immunity SS3 exists when RM > 1,

E
whereas it is GAS when R{VI > 1, R{{ < Réw and Bg — v+ EU—3 > 0. This result

suggests that starting from any disease stage, the COVID-19 pan;iagnt will still have a

SARS-CoV-2 infection but with only an active CTL immune response.

The infected steady state with both active antibody and CTL immunities 5SS, exists

when R{{ > RIZVI and Réw > 1. Further, SS; is GAS when R{i > RQA > 1 and
vE4

B —v+ T > 0. This result suggests that starting from any disease stage, the

COVID-19 gg)’éient will still have a SARS-CoV-2 infection despite both antibody and
CTL immune responses being active.

We performed the numerical simulations for the model and showed that both the
numerical and theoretical results are consistent.

We presented some numerical results and showed that they agreed with the theoretical

results. The main limitation of the present work is that we did not validate the model
using real data from COVID-19 patients (such as the concentrations of SARS-CoV-2, CTLs,
antibodies, etc.). In fact, the real data on SARS-CoV-2 infections are still very limited.
Collecting such data from SARS-CoV-2-infected patients is not an easy task and needs
further experimental studies.
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8. Conclusions

Mathematical models can be helpful for understanding the complex behavior of viral
infections and the reaction of the immune system. We noted that the great majority of
works on within-host SARS-CoV-2 infection models are based on the assumption that
the viruses and cells are homogeneously distributed in the human body. This is a poor
approach because the diffusion of viruses and cells causes spatial variations within the
body. In this paper, we constructed a diffusive SARS-CoV-2 infection model with antibody
and CTL immune responses. The model was given by a system of PDEs that describes the
interaction of six compartments: healthy ECs, latent infected ECs, active infected ECs, free
SARS-CoV-2 particles, CTLs, and antibodies. We considered a logistic term for healthy
ECs. The non-negativity and boundedness of the solutions of the model were proven.
Further, we derived four threshold parameters that determine the existence and stability
of the five steady states of the model. The global stability of all steady states of the model
was investigated by constructing Lyapunov functions and applying LIP. We performed
numerical simulations for the model and showed that both the numerical and theoretical
results are consistent.

Our model suggest that both CTL and antibody immune responses can play a role in
controlling SARS-CoV-2 infection but not in clearing the virus from the body.

We discussed the effect of the antiviral treatment of the SARS-CoV-2 dynamics. Our
model can help pharmaceutical companies and biologists to develop effective antiviral
drugs for COVID-19 patients that make the basic reproduction number R for patients less
than or equal to one. This will lead to the clearance of SARS-CoV-2 from the patient’s body.
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