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Abstract: In this paper, we establish various results of duality for a new class of constrained robust
nonlinear optimization problems. For this new class of problems, involving functionals of (path-
independent) curvilinear integral type and mixed constraints governed by partial derivatives of
second order and uncertain data, we formulate and study Wolfe, Mond-Weir and mixed type robust
dual optimization problems. In this regard, by considering the concept of convex curvilinear integral
vector functional, determined by controlled second-order Lagrangians including uncertain data, and
the notion of robust weak efficient solution associated with the considered problem, we create a new
mathematical context to state and prove the duality theorems. Furthermore, an illustrative application
is presented.
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1. Introduction

Over time, from the desire to model several processes in science, nature or engineering,
many researchers (for instance, the reader is directed to the works of Trélat and Zuazua [22],
Mititelu and Treanţă [11], Treanţă [16], Jayswal and Preeti [3]) paid a particular attention
in the study of certain ordinary differential equation, partial differential equation, partial
differential inequation, or isoperimetric-type constrained optimization problems. As is well
known, the (necessary and sufficient) optimality or efficiency conditions and the associated
dual problems are essential in optimization theory. By using the duality theory, we can
better understand the nature of the original (primal) problem from the perspective of a
dual problem. In this regard, we make a dihonesty by mentioning only the notable works
of Wolfe [27], Weir and Mond [26], Mishra et al. [10], Pham [12], Gao [2], Treanţă and
Mititelu [15], Tung [23], Treanţă [17,20] and the references cited therein. To investigate
some complex real-life phenomena or processes involving uncertain initial data, many
researchers used several elements coming from interval analysis and robust control. In
this respect, the reader can consult the following research papers of Jeyakumar et al. [4],
Wei et al. [25], Liu and Yuan [8], Sun et al. [14], Du et al. [1], Treanţă [19], Lu et al. [9],
Wang et al. [24]. For other different but connected ideas on this topic (robust control),
the reader can consult Liu et al. [5–7]. Despite all the previous research works, our study
has not been approached until now and we will present its totally novel elements in the
following.
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In this paper, motivated and inspired by the above mentioned papers, we intro-
duce and study a new class of constrained robust nonlinear control problems, denoted by
(MRCP). For the new class of robust optimization problems involving curvilinear integral
functionals (which are independent of the path), equality and inequality constraints includ-
ing partial derivatives of second order and uncertain data, we formulate and investigate
various robust dual optimization problems. To this aim, first we introduce the concept of
convex curvilinear integral vector functional that is determined by controlled second-order
Lagrangians with uncertain data. Then, by considering the notion of robust weak efficient
solution associated with the problem (MRCP), we formulate Wolfe, Mond-Weir and
mixed type dual optimization results. Compared to other works published so far, the fun-
damental merits of this paper are the following: (i) by using closed controlled second-order
Lagrange 1-forms with uncertain data, we introduce the notion of convexity for curvilinear
integral-type vector functionals; (ii) construction of a mathematical setting determined by
curvilinear integral-type vector functionals (containing partial derivatives of second order
and uncertainty parameters) and infinite dimensional function spaces. These elements
are completely new in the robust nonlinear optimization field. Furthermore, taking into
account the physical importance (for instance, mechanical work) of the curvilinear integrals,
the techniques developed in this paper can give rise to new ideas in many other research
areas with applications in nature and engineering.

In the next section (see Section 2), we formulate the robust nonlinear optimization
problem we intend to investigate, and some preliminary elements. Section 3 introduces
Wolfe type robust dual optimization problem associated with the considered multi-objective
robust nonliunear optimization problem (MRCP). Robust weak, strong and strict con-
verse duality results are provided here. Next, in Section 4, we formulate and study the
Mond-Weir type robust dual optimization problem. Section 5 includes and characterizes
the mixed type robust dual optimization problem. Furthermore, an illustrative real-life
application is included here in order to validate the theoretical elements derived in the
paper. The conclusions and a further research line of this paper are formulated in Section 6.

2. Problem Description

In this paper, we are considering the following notations and working hypotheses as
in Treanţă and Das [21], and Treanţă [18,19]:

• consider Rp,Rq,Rr and Rn as Euclidean spaces, having the dimensions p, q, r and n,
respectively;

• K is a compact set in Rp, t = (tα) ∈ K, and ∆ ⊂ K is a smooth curve that joins t0 and
t1 in K;

• consider S is the space of state functions s = (sτ) : K → Rq, belonging to (almost

averywhere) C4-class, and the notations sσ :=
∂s
∂tσ

, sαβ :=
∂2s

∂tα∂tβ
;

• denote by C the space of all measurable control functions ϑ = (ϑj) : K → Rr;
• T denotes the transpose of a vector;

• consider the notations: Dσ = ∂
∂tσ , D2

αβ = ∂2

∂tα∂tβ ;

• for two vectors ρ, $ ∈ Rn, we use the following convention for inequalities and
equalities:

(i) ρ < $⇔ ρi < $i, ∀i = 1, n,
(ii) ρ = $⇔ ρi = $i, ∀i = 1, n,
(iii) ρ 5 $⇔ ρi ≤ $i, ∀i = 1, n,
(iv) ρ ≤ $⇔ ρi ≤ $i, ∀i = 1, n and ρi < $i for some i.
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The second-order PDE&PDI constrained multi-objective robust control problem (with
data uncertainty in the objective and constraint functionals) we intend to investigate here
is formulated as follows:

(MRCP) min
(s(·),ϑ(·))

∫
∆

φκ(t, s(t), sσ(t), sαβ(t), ϑ(t), w)dtκ

subject to
ϕ(t, s(t), sσ(t), sαβ(t), ϑ(t), a) 5 0, t ∈ K

χ(t, s(t), sσ(t), sαβ(t), ϑ(t), b) = 0, t ∈ K

s(t0) = s0, s(t1) = s1, sσ(t0) = sσ0, sσ(t1) = sσ1,

where φκ =
(
φ1

κ , . . . φs
κ

)
= (φι

κ) : J2
(

K,Rq
)
× C ×W ι

κ → Rs, κ = 1, p, ι = 1, s, ϕ =

(ϕ1, . . . , ϕm) = (ϕl) : J2
(

K,Rq
)
× C × Al → Rm, l = 1, m, χ = (χ1, . . . , χn) = (χζ) :

J2
(

K,Rq
)
× C × Bζ → Rn, ζ = 1, n, are functionals belonging to (almost averywhere)

C3-class, w = (wι
κ), a = (al) and b = (bζ) represent the uncertainty parameters of the

convex subsets W = (W ι
κ) = W1

κ × · · · ×Ws
κ ⊂ Rs, A = (Al) = A1 × · · · × Am ⊂ Rm

and B = (Bζ) = B1 × · · · × Bn ⊂ Rn, respectively, and J2
(

K,Rq
)

is the jet bundle of
second order for K and Rq. Furthermore, assume that the previous multi-variate controlled
Lagrangians of second order φκ = (φι

κ) provide closed controlled Lagrange 1-forms (with
summation on the repeated indices)

φι
κ(t, s(t), sσ(t), sαβ(t), ϑ(t), w)dtκ , ι = 1, s,

which generates the following vector of controlled curvilinear integrals (which are inde-
pendent of the path)(∫

∆
φ1

κ(t, s(t), sσ(t), sαβ(t), ϑ(t), w1
κ)dtκ , · · · ,

∫
∆

φs
κ(t, s(t), sσ(t), sαβ(t), ϑ(t), ws

κ)dtκ

)
.

The associated robust counterpart of the aforementioned multi-objective robust control
problem (MRCP) is defined as:

(RMRCP) min
(s(·),ϑ(·))

∫
∆

max
w∈W

φκ(t, s(t), sσ(t), sαβ(t), ϑ(t), w)dtκ

subject to

ϕ(t, s(t), sσ(t), sαβ(t), ϑ(t), a) 5 0, t ∈ K, a ∈ A

χ(t, s(t), sσ(t), sαβ(t), ϑ(t), b) = 0, t ∈ K, b ∈ B

s(t0) = s0, s(t1) = s1, sσ(t0) = sσ0, sσ(t1) = sσ1.

Next, we consider

X = {(s, ϑ) ∈ S × C : ϕ(t, s(t), sσ(t), sαβ(t), ϑ(t), a) 5 0,

χ(t, s(t), sσ(t), sαβ(t), ϑ(t), b) = 0, s(t0) = s0, s(t1) = s1,

sσ(t0) = sσ0, sσ(t1) = sσ1, t ∈ K, a ∈ A, b ∈ B}

the feasible solution set in (RMRCP), named the robust feasible solution set for the problem
(MRCP).

From now on, to simplify our presentation, we introduce some notations as follows:
π := (t, s(t), sσ(t), sαβ(t), ϑ(t)), η := (t, y(t), yσ(t), yαβ(t), z(t)).
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In the following, we introduce the notion of an efficient solution for the considered
class of constrained robust control problems.

Definition 1. A robust feasible solution (s̄, ϑ̄) ∈ X is said to be a robust weak efficient solution to
the multi-objective robust control problem (MRCP) if there does not exist another point (s, ϑ) ∈ X
such that ∫

∆
max
w∈W

φκ(π, w)dtκ <
∫

∆
max
w∈W

φκ(π̄, w)dtκ .

To formulate the concept of convexity and the robust necessary efficiency conditions
associated with the aforementioned multi-objective robust control problem, we will use the
Saunders’s multi-index notation (see Saunders [13], Treanţă [16]).

Definition 2. A robust controlled vector functional of curvilinear integral type

F(s, ϑ, w̄) =
∫

∆
φκ(t, s(t), sσ(t), sαβ(t), ϑ(t), w̄)dtκ =

∫
∆

φκ(π, w̄)dtκ

is said to be convex (strict convex) at (s̄, ϑ̄) ∈ S × C if the following inequality

F(s, ϑ, w̄)− F(s̄, ϑ̄, w̄) = (>)
∫

∆
[s(t)− s̄(t)]

∂φκ

∂s
(π̄, w̄)dtκ +

∫
∆
[sσ(t)− s̄σ(t)]

∂φκ

∂sσ
(π̄, w̄)dtκ

+
1

n(α, β)

∫
∆
[sαβ(t)− s̄αβ(t)]

∂φκ

∂sαβ
(π̄, w̄)dtκ +

∫
∆
[ϑ(t)− ϑ̄(t)]

∂φκ

∂ϑ
(π̄, w̄)dtκ

holds for all (s, ϑ) ∈ S × C.

In accordance with Treanţă [16], we formulate the following theorem that provides the
robust necessary efficiency conditions for the constrained multi-objective robust control
problem (MRCP).

Theorem 1. Let (s̄, ϑ̄) ∈ X be a robust weak efficient solution to the problem (MRCP). Further
assume that maxw∈W φκ(π, w) = φκ(π, w̄). If the constraint conditions (for the existence of
the multipliers) hold, then there exist the scalar vector µ̄ ∈ Rs, the piecewise smooth Lagrange
multipliers ν̄ = (ν̄l(t)) ∈ Rm, γ̄ = (γ̄ζ(t)) ∈ Rn, and the uncertain parameters ā ∈ A, b̄ ∈ B
such that (s̄, ϑ̄) satisfies the following conditions:

µ̄T ∂φκ

∂s
(π̄, w̄) + ν̄T ϕs(π̄, ā) + γ̄Tχs(π̄, b̄)− Dσ

[
µ̄T ∂φκ

∂sσ
(π̄, w̄) + ν̄T ϕsσ (π̄, ā) + γ̄Tχsσ (π̄, b̄)

]
+

1
n(α, β)

D2
αβ

[
µ̄T ∂φκ

∂sαβ
(π̄, w̄) + ν̄T ϕsαβ

(π̄, ā) + γ̄Tχsαβ
(π̄, b̄)

]
= 0, κ = 1, p, (1)

µ̄T ∂φκ

∂ϑ
(π̄, w̄) + ν̄T ϕϑ(π̄, ā) + γ̄Tχϑ(π̄, b̄) = 0, κ = 1, p, (2)

ν̄T ϕ(π̄, ā) = 0, ν̄ = 0, (3)

µ̄ ≥ 0, (4)

hold for all t ∈ K, except at discontinuities.

Remark 1. The conditions (1)–(4) are known as robust necessary efficiency conditions for the
constrained multi-objective robust control problem (MRCP).

3. Robust Duality of Wolfe Type

In this section, in accordance with Wolfe [27], we formulate Wolfe type robust dual
problem for the constrained multi-objective robust control problem, with data uncertainty
in the objective and constraint functionals (MRCP), as follows:
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(W −MRCP) max
(y(·),z(·))

∫
∆

{
φκ(η, w) + νT ϕ(η, a)e + γTχ(η, b)e

}
dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0, (5)

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p, (6)

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1, (7)

µ > 0, eTµ = 1, e = (1, . . . , 1) ∈ Rs. (8)

The associated robust counterpart for the problem (W −MRCP) is given as:

(RW −MRCP) max
(y(·),z(·),w,a,b)

∫
∆

{
φκ(η, w) + νT ϕ(η, a)e + γTχ(η, b)e

}
dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0,

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p,

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1,

µ > 0, µTe = 1, e = (1, . . . , 1) ∈ Rs,

for all w ∈W, a ∈ A and b ∈ B.
Further, we denote by Xw = {(y, z; µ, ν, γ, w, a, b): satisfying conditions (5)–(8)} the

set of all feasible solutions to (RW −MRCP) and we say that it is the robust feasible
solution set to the problem (W −MRCP).

Definition 3. A point (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) ∈ Xw is said to be robust weak efficient solution
to the Wolfe type robust dual problem (W −MRCP) if there does not exist another point
(y, z; µ, ν, γ, w, a, b) ∈ Xw such that∫

∆

{
φκ(η, w̄) + νT ϕ(η, ā)e + γTχ(η, b̄)e

}
dtκ

>
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

Next, we establish the weak duality result for (MRCP) under some convexity as-
sumptions. More precisely, we state that the value attained by the objective functional of
the dual problem over its feasible set does not exceed the value attained by the objective
functional of the primal problem.

Theorem 2. (Robust Weak Duality) Let (s̄, ϑ̄) and (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) be robust feasible solutions
of (MRCP) and (W −MRCP), respectively. Assume that maxw∈W φκ(π̄, w) = φκ(π̄, w̄),

and
∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are convex at (ȳ, z̄). Then the follow-

ing inequality cannot hold
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∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

Proof. Contrary to the result, we assume that∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

Since maxw∈W φκ(π̄, w) = φκ(π̄, w̄), we have∫
∆

φκ(π̄, w̄)dtκ <
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

The above inequality together with the robust feasibility of (s̄, ϑ̄) to the problem (MRCP) implies∫
∆

{
φκ(π̄, w̄) + ν̄T ϕ(π̄, ā)e + γ̄Tχ(π̄, b̄)e

}
dtκ

<
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

As µ̄ > 0 and µ̄Te = 1, therefore, the above inequality can be written as∫
∆

{
µ̄Tφκ(π̄, w̄) + ν̄T ϕ(π̄, ā) + γ̄Tχ(π̄, b̄)

}
dtκ

<
∫

∆

{
µ̄Tφκ(η̄, w̄) + ν̄T ϕ(η̄, ā) + γ̄Tχ(η̄, b̄)

}
dtκ . (9)

Now, since
∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are convex at (ȳ, z̄),

we have ∫
∆

{
µ̄Tφκ(π̄, w̄)− µ̄Tφκ(η̄, w̄)

}
dtκ =

∫
∆
(s̄− ȳ)µ̄T ∂φκ

∂s̄
(η̄, w̄)dtκ

+
∫

∆
(s̄σ − ȳσ)µ̄

T ∂φκ

∂s̄σ
(η̄, w̄)dtκ +

1
n(α, β)

∫
∆
(s̄αβ − ȳαβ)µ̄

T ∂φκ

∂s̄αβ
(η̄, w̄)dtκ

+
∫

∆
(ϑ̄− z̄)µ̄T ∂φκ

∂ϑ̄
(η̄, w̄)dtκ , (10)

∫
∆

{
ν̄T ϕ(π̄, ā)− ν̄T ϕ(η̄, ā)

}
dtκ =

∫
∆
(s̄− ȳ)ν̄T ∂ϕ

∂s̄
(η̄, ā)dtκ

+
∫

∆
(s̄σ − ȳσ)ν̄

T ∂ϕ

∂s̄σ
(η̄, ā)dtκ +

1
n(α, β)

∫
∆
(s̄αβ − ȳαβ)ν̄

T ∂ϕ

∂s̄αβ
(η̄, ā)dtκ

+
∫

∆
(ϑ̄− z̄)ν̄T ∂ϕ

∂ϑ̄
(η̄, ā)dtκ , (11)

and ∫
∆

{
γ̄Tχ(π̄, b̄)− γ̄Tχ(η̄, b̄)

}
dtκ =

∫
∆
(s̄− ȳ)γ̄T ∂χ

∂s̄
(η̄, b̄)dtκ

+
∫

∆
(s̄σ − ȳσ)γ̄

T ∂χ

∂s̄σ
(η̄, b̄)dtκ +

1
n(α, β)

∫
∆
(s̄αβ − ȳαβ)γ̄

T ∂χ

∂s̄αβ
(η̄, b̄)dtκ

+
∫

∆
(ϑ̄− z̄)γ̄T ∂χ

∂ϑ̄
(η̄, b̄)dtκ . (12)
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On adding the inequalities (10)–(12), and by considering the robust feasibility of the
point (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) to the problem (W −MRCP), we obtain∫

∆

{
µ̄Tφκ(π̄, w̄) + ν̄T ϕ(π̄, ā) + γ̄Tχ(π̄, b̄)

}
dtκ

=
∫

∆

{
µ̄Tφκ(η̄, w̄) + ν̄T ϕ(η̄, ā) + γ̄Tχ(η̄, b̄)

}
dtκ ,

which contradicts the inequality (9). This completes the proof.

Now, we formulate and prove the strong duality result which states that duality gap
is zero.

Theorem 3. (Robust Strong Duality) Let (s̄, ϑ̄) be a robust weak efficient solution to the problem
(MRCP). Assume that maxw∈W φκ(π̄, w) = φκ(π̄, w̄) and the constraint conditions (for the
existence of multiplier) hold for (MRCP). Then, there exist the scalar vector µ̄ ∈ Rs

+, the
piecewise smooth Lagrange multipliers ν̄ = (ν̄l(t)) ∈ Rm

+ and γ̄ = (γ̄ζ(t)) ∈ Rn, and the
uncertain parameters ā ∈ A, b̄ ∈ B such that (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust feasible solution to
the problem (W −MRCP). Further, if the Robust Weak Duality (see Theorem 2) holds, then
(s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust weak efficient solution to the problem (W −MRCP).

Proof. Since (s̄, ϑ̄) is a robust weak efficient solution to the problem (MRCP), by Theorem 1,
there exist the scalar vector µ̄ ∈ Rs

+, the piecewise smooth Lagrange multiplies ν̄ ∈
Rm
+, γ̄ ∈ Rn, and the uncertain parameters ā ∈ A, b̄ ∈ B such that the conditions (1)–(4) are

satisfied at (s̄, ϑ̄). This proves the robust feasibility of (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) to the problem
(W −MRCP) and the corresponding objective values are equal. If (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄)
is not a robust weak efficient solution to the problem (W −MRCP), then there exists
another point (y, z; µ̄, ν̄, γ̄, w̄, ā, b̄) such that∫

∆

{
φκ(π̄, w̄) + ν̄T ϕ(π̄, ā)e + γ̄Tχ(π̄, b̄)e

}
dtκ

<
∫

∆

{
φκ(η, w̄) + ν̄T ϕ(η, ā)e + γ̄Tχ(η, b̄)e

}
dtκ .

From the condition (3), we get∫
∆

φκ(π̄, w̄)dtκ <
∫

∆

{
φκ(η, w̄) + ν̄T ϕ(η, ā)e + γ̄Tχ(η, b̄)e

}
dtκ .

Since maxw∈W φκ(π̄, w) = φκ(π̄, w̄), we have∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆

{
φκ(η, w̄) + ν̄T ϕ(η, ā)e + γ̄Tχ(η, b̄)e

}
dtκ ,

which contradicts the Robust Weak Duality (see Theorem 2). In consequence, the point
(s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust weak efficient solution to the problem (W −MRCP).

Theorem 4. (Robust Strict Converse Duality) Let (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) be a robust feasible solution
to the problem (W −MRCP). Assume that maxw∈W φκ(π, w) = φκ(π, w̄), and∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are strict convex at (ȳ, z̄). If (s̄, ϑ̄) ∈ X

such that
∫

∆
φκ(π̄, w̄)dtκ =

∫
∆

φκ(η̄, w̄)dtκ , then (s̄, ϑ̄) is a robust weak efficient solution to the

problem (MRCP).

Proof. Since (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust feasible solution to the problem (W −MRCP),
on multiplying the inequality (5) and (6) by (ŝ − ȳ) and (ϑ̂ − z̄), respectively, and then
integrate them, we get
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∫
∆
(ŝ− ȳ){µ̄T ∂φκ

∂ŝ
(η̄, w̄) + ν̄T ϕŝ(η̄, ā) + γ̄Tχŝ(η̄, b̄)

−Dσ

[
µ̄T ∂φκ

∂ŝσ
(η̄, w̄) + ν̄T ϕŝσ (η̄, ā) + γ̄Tχŝσ (η̄, b̄)

]
+

1
n(α, β)

D2
αβ

[
µ̄T ∂φκ

∂ŝαβ
(η̄, w̄) + ν̄T ϕŝαβ

(η̄, ā) + γ̄Tχŝαβ
(η̄, b̄)

]
}dtκ

+
∫

∆
(ϑ̂− z̄){µ̄T ∂φκ

∂ϑ̂
(η̄, w̄) + ν̄T ϕϑ̂(η̄, ā) + γ̄Tχϑ̂(η̄, b̄)}dtκ

=
∫

∆

[
(ŝ− ȳ){µ̄T ∂φκ

∂ŝ
(η̄, w̄) + ν̄T ϕŝ(η̄, ā) + γ̄Tχŝ(η̄, b̄)}

+(ŝσ − ȳσ){µ̄T ∂φκ

∂ŝσ
(η̄, w̄) + ν̄T ϕŝσ (η̄, ā) + γ̄Tχŝσ (η̄, b̄)}

+
1

n(α, β)
(ŝαβ − ȳαβ){µ̄T ∂φκ

∂ŝαβ
(η̄, w̄) + ν̄T ϕŝαβ

(η̄, ā) + γ̄Tχŝαβ
(η̄, b̄)}

]
dtκ

+
∫

∆
(ϑ̂− z̄){µ̄T ∂φκ

∂ϑ̂
(η̄, w̄) + ν̄T ϕϑ̂(η̄, ā) + γ̄Tχϑ̂(η̄, b̄)}dtκ = 0, (13)

where we used the formula of integration by parts, the divergence formula and the bound-
ary conditions formulated in the considered problem.

Next, we proceed by contradiction and assume that (s̄, ϑ̄) is not a robust weak efficient
solution to the problem (MRCP). Therefore, there exists (ŝ, ϑ̂) ∈ X such that∫

∆
max
w∈W

φκ(π̂, w)dtκ <
∫

∆
max
w∈W

φκ(π̄, w)dtκ .

Since maxw∈W φκ(π, w) = φκ(π, w̄), it follows∫
∆

φκ(π̂, w̄)dtκ <
∫

∆
φκ(π̄, w̄)dtκ .

By assumption,
∫

∆
φκ(π̄, w̄)dtκ =

∫
∆

φκ(η̄, w̄)dtκ . Therefore, the above inequality yields

∫
∆

φκ(π̂, w̄)dtκ <
∫

∆
φκ(η̄, w̄)dtκ .

Since µ̄ ∈ Rs
+, we get ∫

∆
µ̄Tφκ(π̂, w̄)dtκ <

∫
∆

µ̄Tφκ(η̄, w̄)dtκ . (14)

On the other hand, from the assumption that
∫

∆
µ̄Tφκ(·, w̄)dtκ is strict convex at (ȳ, z̄),

we have ∫
∆

{
µ̄Tφκ(π̂, w̄)− µ̄Tφκ(η̄, w̄)

}
dtκ >

∫
∆
(ŝ− ȳ)µ̄T ∂φκ

∂ŝ
(η̄, w̄)dtκ

+
∫

∆
(ŝσ − ȳσ)µ̄

T ∂φκ

∂ŝσ
(η̄, w̄)dtκ +

1
n(α, β)

∫
∆
(ŝαβ − ȳαβ)µ̄

T ∂φκ

∂ŝαβ
(η̄, w̄)dtκ

+
∫

∆
(ϑ̂− z̄)µ̄T ∂φκ

∂ϑ̂
(η̄, w̄)dtκ ,

which together with the inequality (14), gives∫
∆
(ŝ− ȳ)µ̄T ∂φκ

∂ŝ
(η̄, w̄)dtκ
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+
∫

∆
(ŝσ − ȳσ)µ̄

T ∂φκ

∂ŝσ
(η̄, w̄)dtκ +

1
n(α, β)

∫
∆
(ŝαβ − ȳαβ)µ̄

T ∂φκ

∂ŝαβ
(η̄, w̄)dtκ

+
∫

∆
(ϑ̂− z̄)µ̄T ∂φκ

∂ϑ̂
(η̄, w̄)dtκ < 0. (15)

Again, by assumption that
∫

∆
ν̄T ϕ(·, ā)dtκ is strict convex at (ȳ, z̄), we get

∫
∆

{
ν̄T ϕ(π̂, ā)− ν̄T ϕ(η̄, ā)

}
dtκ >

∫
∆
(ŝ− ȳ)ν̄T ϕŝ(η̄, ā)dtκ

+
∫

∆
(ŝσ − ȳσ)ν̄

T ϕŝσ (η̄, ā)dtκ +
1

n(α, β)

∫
∆
(ŝαβ − ȳαβ)ν̄

T ϕŝαβ
(η̄, ā)dtκ

+
∫

∆
(ϑ̂− z̄)ν̄T ϕϑ̂(η̄, ā)dtκ . (16)

Since (ŝ, ϑ̂) and (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) are the robust feasible solutions to the problem (MRCP)
and (W −MRCP), respectively, we obtain∫

∆
ν̄T ϕ(π̂, ā)dtκ −

∫
∆

ν̄T ϕ(η̄, ā)dtκ 5 0,

which, along with the inequality (16), involves∫
∆
(ŝ− ȳ)ν̄T ϕŝ(η̄, ā)dtκ

+
∫

∆
(ŝσ − ȳσ)ν̄

T ϕŝσ (η̄, ā)dtκ +
1

n(α, β)

∫
∆
(ŝαβ − ȳαβ)ν̄

T ϕŝαβ
(η̄, ā)dtκ

+
∫

∆
(ϑ̂− z̄)ν̄T ϕϑ̂(η̄, ā)dtκ < 0. (17)

Similarly, the functional
∫

∆
γ̄Tχ(·, b̄)dtκ is also strict convex at (ȳ, z̄). The robust feasi-

ble solutions (ŝ, ϑ̂) and (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) to the problem (MRCP) and (W −MRCP),
respectively, yields ∫

∆
(ŝ− ȳ)γ̄Tχŝ(η̄, b̄)dtκ

+
∫

∆
(ŝσ − ȳσ)γ̄

Tχŝσ (η̄, b̄)dtκ +
1

n(α, β)

∫
∆
(ŝαβ − ȳαβ)γ̄

Tχŝαβ
(η̄, b̄)dtκ

+
∫

∆
(ϑ̂− z̄)γ̄Tχϑ̂(η̄, b̄)dtκ < 0. (18)

On adding the inequalities (15), (17) and (18), we obtain the following inequality∫
∆

[
(ŝ− ȳ){µ̄T ∂φκ

∂ŝ
(η̄, w̄) + ν̄T ϕŝ(η̄, ā) + γ̄Tχŝ(η̄, b̄)}

+(ŝσ − ȳσ){µ̄T ∂φκ

∂ŝσ
(η̄, w̄) + ν̄T ϕŝσ (η̄, ā) + γ̄Tχŝσ (η̄, b̄)}

+
1

n(α, β)
(ŝαβ − ȳαβ){µ̄T ∂φκ

∂ŝαβ
(η̄, w̄) + ν̄T ϕŝαβ

(η̄, ā) + γ̄Tχŝαβ
(η̄, b̄)}

]
dtκ



Mathematics 2023, 11, 192 10 of 17

+
∫

∆
(ϑ̂− z̄){µ̄T ∂φκ

∂ϑ̂
(η̄, w̄) + ν̄T ϕϑ̂(η̄, ā) + γ̄Tχϑ̂(η̄, b̄)}dtκ < 0, (19)

which contradicts the inequality (13). This completes the proof.

4. Robust Duality of Mond-Weir Type

In this section, in accordance with Weir and Mond [26], we formulate the Mond-
Weir type robust dual problem for the considered multi-objective nonlinear robust control
problem (MRCP), with data uncertainty in the objective and constraint functionals,
as follows:

(MW −MRCP) max
(y(·),z(·))

∫
∆

φκ(η, w)dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0, (20)

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p, (21)

ν̄T ϕ(η, a) = 0, (22)

χ(η, b) = 0, (23)

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1, (24)

µ ∈ Rs
+, µTe = 1, ν ∈ Rm

+, γ ∈ Rn. (25)

The associated robust counterpart to the problem (MW −MRCP) is given as follows:

(RMW −MRCP) max
(y(·),z(·),w)

∫
∆

φκ(η, w)dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0,

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p,

ν̄T ϕ(η, a) = 0,

χ(η, b) = 0,

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1,

µ ∈ Rs
+, µTe = 1, ν ∈ Rm

+, γ ∈ Rn,

for all w ∈W, a ∈ A, b ∈ B.
We denote by Xmw = {(y, z; µ, ν, γ, w, a, b) : satisfying conditions (20)–(25)} the set of

all feasible solutions to (RMW −MRCP) and we say that it is the robust feasible solution
set to the problem (MW −MRCP).

Now, under convexity hypotheses, we establish the robust weak and strong duality
results for (MRCP) and (MW −MRCP).

Theorem 5. (Robust Weak Duality) Let (s̄, ϑ̄) and (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) be robust feasible solutions
to the problem (MRCP) and (MW −MRCP), respectively. Assume that maxw∈W φκ(π̄, w) =
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φκ(π̄, w̄), and
∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are convex at (ȳ, z̄). Then

the following inequality cannot hold∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆
φκ(η̄, w̄)dtκ .

Proof. Contrary to the result, we assume that∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆
φκ(η̄, w̄)dtκ .

Since maxw∈W φκ(π̄, w) = φκ(π̄, w̄), we have∫
∆

φκ(π̄, w̄)dtκ <
∫

∆
φκ(η̄, w̄)dtκ . (26)

By hypothesis,
∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are convex at (ȳ, z̄).

Therefore, we have∫
∆

{
µ̄Tφκ(π̄, w̄)− µ̄Tφκ(η̄, w̄)

}
dtκ =

∫
∆
(s̄− ȳ)µ̄T ∂φκ

∂s̄
(η̄, w̄)dtκ

+
∫

∆
(s̄σ − ȳσ)µ̄

T ∂φκ

∂s̄σ
(η̄, w̄)dtκ +

1
n(α, β)

∫
∆
(s̄αβ − ȳαβ)µ̄

T ∂φκ

∂s̄αβ
(η̄, w̄)dtκ

+
∫

∆
(ϑ̄− z̄)µ̄T ∂φκ

∂ϑ
(η̄, w̄)dtκ , (27)

∫
∆

{
ν̄T ϕ(π̄, ā)− ν̄T ϕ(η̄, ā)

}
dtκ =

∫
∆
(s̄− ȳ)ν̄T ϕs̄(η̄, ā)dtκ

+
∫

∆
(s̄σ − ȳσ)ν̄

T ϕs̄σ (η̄, ā)dtκ +
1

n(α, β)

∫
∆
(s̄αβ − ȳαβ)ν̄

T ϕs̄αβ
(η̄, ā)dtκ

+
∫

∆
(ϑ̄− z̄)ν̄T ϕϑ̄(η̄, ā)dtκ , (28)

and ∫
∆

{
γ̄Tχ(π̄, b̄)− γ̄Tχ(η̄, b̄)

}
dtκ =

∫
∆
(s̄− ȳ)γ̄Tχs̄(η̄, b̄)dtκ

+
∫

∆
(s̄σ − ȳσ)γ̄

Tχs̄σ (η̄, b̄)dtκ +
1

n(α, β)

∫
∆
(s̄αβ − ȳαβ)γ̄

Tχs̄αβ
(η̄, b̄)dtκ

+
∫

∆
(ϑ̄− z̄)γ̄Tχϑ̄(η̄, b̄)dtκ . (29)

On adding the inequalities (27), (28) and (29), along with the robust feasibility of (s̄, ϑ̄) and
(ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) to the problem (MRCP) and (MW-MRCP), respectively, we have∫

∆
φκ(π̄, w̄)dtκ =

∫
∆

φκ(η̄, w̄)dtκ ,

which contradicts the inequality (26). This completes the proof.

Theorem 6. (Robust Strong Duality) Let (s̄, ϑ̄) be a robust weak efficient solution to the problem
(MRCP). Assume that maxw∈W φκ(π̄, w) = φκ(π̄, w̄) and the constraint conditions (for the
existence of multiplier) hold for (MRCP). Then, there exist the scalar vector µ̄ ∈ Rs

+, the
piecewise smooth Lagrange multipliers ν̄ = (ν̄l(t)) ∈ Rm

+ and γ̄ = (γ̄ζ(t)) ∈ Rn, and the
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uncertain parameters ā ∈ A, b̄ ∈ B such that (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust feasible solution
to the problem (MW-MRCP). Further, if the Robust Weak Duality (see Theorem 5) holds, then
(s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust weak efficient solution to the problem (MW-MRCP).

Proof. Since (s̄, ϑ̄) is a robust weak efficient solution to the problem (MRCP), by The-
orem 1, there exist the scalar vector µ̄ ∈ Rs

+, the piecewise smooth Lagrange multiplies
ν̄ ∈ Rm

+, γ̄ ∈ Rn, and the uncertain ā ∈ A, b̄ ∈ B such that the conditions (1)–(4) are
satisfied at (s̄, ϑ̄). This implies the robust feasibility of (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) to the problem
(MW-MRCP) and the corresponding objective values are equal. If (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is
not a robust weak efficient solution to the problem (MW-MRCP), then there exists another
point (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) such that∫

∆
max
w∈W

φκ(π̄, w)dtκ <
∫

∆
φκ(η̄, w̄)dtκ ,

which contradicts the Robust Weak Duality (see Theorem 5). Hence, (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is
a robust weak efficient solution to the problem (MW-MRCP).

5. Robust Duality of Mixed Type

In this section, we formulate the mixed type robust dual problem for the multi-
objective robust nonlinear control problem (MRCP) as follows:

(M−MRCP) max
(y(·),z(·))

∫
∆

{
φκ(η, w) + νT ϕ(η, a)e + γTχ(η, b)e

}
dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0, (30)

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p, (31)

ν̄T ϕ(η, a) ≥ 0, (32)

χ(η, b) = 0, (33)

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1, (34)

µ ∈ Rs
+, µTe = 1, ν ∈ Rm

+, γ ∈ Rn. (35)

The associated robust counterpart to the problem (M−MRCP) is given as follows:

(RM−MRCP) max
(y(·),z(·),w,a,b)

∫
∆

{
φκ(η, w) + νT ϕ(η, a)e + γTχ(η, b)e

}
dtκ

subject to µT ∂φκ

∂s
(η, w) + νT ϕs(η, a) + γTχs(η, b)

− Dσ

[
µT ∂φκ

∂sσ
(η, w) + νT ϕsσ (η, a) + γTχsσ (η, b)

]
+

1
n(α, β)

D2
αβ

[
µT ∂φκ

∂sαβ
(η, w) + νT ϕsαβ

(η, a) + γTχsαβ
(η, b)

]
= 0,

µT ∂φκ

∂ϑ
(η, w) + νT ϕϑ(η, a) + γTχϑ(η, b) = 0, κ = 1, p,

ν̄T ϕ(η, a) ≥ 0,

χ(η, b) = 0,

y(t0) = s0, y(t1) = s1, yσ(t0) = sσ0, yσ(t1) = sσ1,

µ ∈ Rs
+, µTe = 1, ν ∈ Rm

+, γ ∈ Rn,
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for all w ∈W, a ∈ A, b ∈ B.
We denote by Dm = {(y, z; µ, ν, γ, w, a, b) : satisfying conditions (30)–(35)} the set of

all feasible solutions to (RM−MRCP) and we say that it is the robust feasible solution set
to the problem (M−MRCP).

Theorem 7. (Robust Weak Duality) Let (s̄, ϑ̄) and (ȳ, z̄; µ̄, ν̄, γ̄, w̄, ā, b̄) be robust feasible solu-
tions to the problem (MRCP) and (M−MRCP), respectively. Furthermore, we ssume that

maxw∈W φκ(π̄, w) = φκ(π̄, w̄), and
∫

∆
µ̄Tφκ(·, w̄)dtκ ,

∫
∆

ν̄T ϕ(·, ā)dtκ and
∫

∆
γ̄Tχ(·, b̄)dtκ are

convex at (ȳ, z̄). Then the following inequality cannot be valid∫
∆

max
w∈W

φκ(π̄, w)dtκ <
∫

∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ .

Proof. The proof follows in the same manner as in Theorem 2. Consequently, we omit
it.

Theorem 8. (Robust Strong Duality) Let (s̄, ϑ̄) be a robust weak efficient solution to the problem
(MRCP). Assume that maxw∈W φκ(π̄, w) = φκ(π̄, w̄) and the constraint conditions (for the
existence of multiplier) hold for (MRCP). Then, there exist the scalar vector µ̄ ∈ Rs

+, the
piecewise smooth Lagrange multipliers ν̄ = (ν̄l(t)) ∈ Rm

+ and γ̄ = (γ̄ζ(t)) ∈ Rn, and the
uncertain parameters ā ∈ A, b̄ ∈ B such that (s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust feasible solution to
the problem (M−MRCP). Further, if the Robust Weak Duality (see Theorem 7) holds, then
(s̄, ϑ̄; µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust weak efficient solution to the problem (M−MRCP).

Proof. The proof follows in the same manner as in Theorem 3. As consequence, we skip
it.

In the following, we present an illustrative application to validate, for example, Theo-
rem 2. The next concrete problem can be solved exclusively by using the theoretical results
derived in this paper.

Example 1. Let us extremize the mechanical work provided by the variable forces

V̄1

(
s2w1

1 +
5
4

ϑ, s2w1
2 +

5
4

ϑ

)
, V̄2

(
ϑ2

w2
1

,
ϑ2

w2
2

)
,

with (uncertain parameters) w1
κ ∈ [0, 1], w2

κ ∈
[

1
2 , 1
]
, κ = 1, 2, to move its application point

along the piecewise smooth curve ∆, that is included in K =
[
0,

1
4

]2
=
[
0,

1
4

]
×
[
0,

1
4

]
and joins

t0 = (0, 0) and t1 =

(
1
4

,
1
4

)
, so that

as(s− 3) ≤ 0,
∂s
∂t1 = b1 − ϑ,

∂s
∂t2 = b2 − ϑ,

s(0, 0) = 0, s
(1

4
,

1
4

)
=

1
2

,

(with t = (t1, t2) ∈ K =
[
0, 1

4

]2
, for all w = (w1

1, w1
2, w2

1, w2
2) ∈W = W1

1 ×W1
2 ×W2

1 ×W2
2 =

[0, 1]2 × [ 1
2 , 1]2, a ∈ A = [0, 1], b = (b1, b2) ∈ B = B1 × B2 = [1, 2]2) is satisfied.
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In order to solve the above practical problem, let us consider p = 2, q = r = 1, s = 2, W1
1 =

W1
2 = [0, 1], W2

1 = W2
2 = [ 1

2 , 1], A = [0, 1], B1 = B2 = [1, 2] and K =

[
0,

1
4

]
×
[

0,
1
4

]
is

fixed by the diagonally opposite points t0 = (t1
0, t2

0) = (0, 0) and t1 = (t1
1, t2

1) = ( 1
4 , 1

4 ) in R2.
Now, we formulate the following constrained multi-objective robust nonlinear control problem:

(P) min
(s(·),ϑ(·))

(∫
∆
(s2w1

1 +
5
4

ϑ) dt1 + (s2w1
2 +

5
4

ϑ) dt2,
∫

∆

ϑ2

w2
1

dt1 +
ϑ2

w2
2

dt2

)
subject to as(s− 3) ≤ 0,

∂s
∂t1 = b1 − ϑ,

∂s
∂t2 = b2 − ϑ,

s(0, 0) = 0, s
(1

4
,

1
4

)
=

1
2

,

where t = (t1, t2) ∈ K.
Let (s̄, ϑ̄) = (t1 + t2, 1) be a robust feasible solution to the problem (P).
The robust counterpart of (P) is defined as:

(RP) min
(s(·),ϑ(·))

( ∫
∆

max
w1

1∈W1
1

(
s2w1

1 +
5
4

ϑ
)

dt1 + max
w1

2∈W1
2

(
s2w1

2 +
5
4

ϑ
)

dt2,

∫
∆

max
w2

1∈W2
1

ϑ2

w2
1

dt1 + max
w2

2∈W2
2

ϑ2

w2
2

dt2
)

subject to as(s− 3) ≤ 0, ∀a ∈ A,
∂s
∂t1 = b1 − ϑ, ∀b1 ∈ B1,

∂s
∂t2 = b2 − ϑ, ∀b2 ∈ B2,

s(0, 0) = 0, s
(1

4
,

1
4

)
=

1
2

,

where t = (t1, t2) ∈ K.
The Wolfe type robust dual problem associated with (P) is defined as follows:

(WP) max
(y(·),z(·))

( ∫
∆

{
(y2w1 +

5
4

z) + νay(y− 3) + γ1(
∂y
∂t1 − b1 + z)

+ γ2(
∂y
∂t2 − b2 + z)

}
(dt1 + dt2),

∫
∆

{ z2

w2
+ νay(y− 3)

+ γ1(
∂y
∂t1 − b1 + z) + γ2(

∂y
∂t2 − b2 + z)

}
(dt1 + dt2)

)
subject to 2µ1w1y + νa(2y− 3)− ∂γ1

∂t1 −
∂γ2

∂t2 = 0, (36)

5
4

µ1 +
2z
w2

µ2 + γ1 + γ2 = 0, (37)

y(0, 0) = 0, y
(1

4
,

1
4

)
=

1
2

, (38)

µT > 0, eTµ = 1, e = (1, 1) ∈ R2, (39)

where we denoted w1 := w1
1(= w1

2) and w2 := w2
1(= w2

2).
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The robust counterpart to the problem (WP) is given as:

(RWP) max
(y(·),z(·),w,a,b)

( ∫
∆

{
(y2w1 +

5
4

z) + νay(y− 3) + γ1(
∂y
∂t1 − b1 + z)

+ γ2(
∂y
∂t2 − b2 + z)

}
(dt1 + dt2),

∫
∆

{ z2

w2
+ νay(y− 3)

+ γ1(
∂y
∂t1 − b1 + z) + γ2(

∂y
∂t2 − b2 + z)

}
(dt1 + dt2)

)
subject to 2µ1w1y + νa(2y− 3)− ∂γ1

∂t1 −
∂γ2

∂t2 = 0,

5
4

µ1 +
2z
w2

µ2 + γ1 + γ2 = 0,

y(0, 0) = 0, y
(1

4
,

1
4

)
=

1
2

,

µT > 0, eTµ = 1, e = (1, 1) ∈ R2,

for all w = (w1, w2) ∈ W = W1 ×W2 = [0, 1]× [ 1
2 , 1], a ∈ A = [0, 1], b = (b1, b2) ∈ B =

B1 × B2 = [1, 2]2.
We note that Dw = {(y, z, µ, ν, γ, w, a, b) satisfying conditions (36)–(39)} is the robust

feasible solution set to the (WP). Let us consider ȳ = t1 + t2, z̄ = −t1t2 − 5
16 , µ̄ = (µ̄1, µ̄2) =

( 1
2 , 1

2 ), ν̄ = 0, γ̄ = (γ̄1, γ̄2) = (t1t2, t1t2), w̄ = (w̄1, w̄2) = (1, 1
2 ), ā = 1, b̄ = (b̄1, b̄2) =

(2, 2). Then (ȳ, z̄, µ̄, ν̄, γ̄, w̄, ā, b̄) is a robust feasible solution to (WP). Further, it can be easily
verified that all the involved functionals are convex at (ȳ, z̄). Furthermore, the following inequality∫

∆
φκ(π̄, w̄) dtκ −

∫
∆

{
φκ(η̄, w̄) + ν̄T ϕ(η̄, ā)e + γ̄Tχ(η̄, b̄)e

}
dtκ

=
∫

∆

(
(s̄2w̄1 +

5
4

ϑ̄) (dt1 + dt2),
ϑ̄2

w̄2
(dt1 + dt2)

)
−
∫

∆

(
((ȳ2w̄1 +

5
4

z̄) + ν̄āȳ(ȳ− 3)

+ γ̄1(
∂ȳ
∂t1 − b̄1 + z̄) + γ̄2(

∂ȳ
∂t2 − b̄2 + z̄)) (dt1 + dt2), (

z̄2

w̄2
+ ν̄āȳ(ȳ− 3)

+ γ̄1(
∂ȳ
∂t1 − b̄1 + z̄) + γ̄2(

∂ȳ
∂t2 − b̄2 + z̄)) (dt1 + dt2)

)
=
∫

∆

(
(t1 + t2 +

5
4
) (dt1 + dt2), 2 (dt1 + dt2)

)
−
∫

∆

(
(t1 + t2 − 5

4
t1t2 − 25

64
− 2(t1)2(t2)2 − 21

8
t1t2) (dt1 + dt2),

(2(t1)2(t2)2 +
5
4

t1t2 +
25
128
− 2(t1)2(t2)2 − 21

8
t1t2) (dt1 + dt2)

)
=
∫

∆

(
(t1 + t2 +

5
4
) (dt1 + dt2), 2 (dt1 + dt2)

)
−
∫

∆

(
(t1 + t2 − 31

8
t1t2 − 25

64
− 2(t1)2(t2)2) (dt1 + dt2), (

25
128
− 11

8
t1t2) (dt1 + dt2)

)
=
(5

8
, 1
)
−
(−1033

11520
,

1
12

)
=
( 8233

11520
,

11
12

)
> 0,

shows that the duality gap is positive. In consequence, Theorem 2 (Robust Weak Duality) is verified.

6. Conclusions

In the current study, we have established various duality results for the new class of
constrained robust nonlinear optimization problems (MRCP). More concretely, we have
established and characterized Wolfe, Mond-Weir and mixed type robust dual optimization
problems. In addition, an illustrative real-life application was included in the paper in
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order to validate the theoretical elements. On the other hand, as a possible research line
that this study can open (among many other aspects), is the formulating of the derived
results by considering the concept of variational/functional derivative.
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