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Abstract: One of the challenges in modern neuroscience is creating a brain-on-a-chip. Such a semiar-
tificial device based on neural networks grown in vitro should interact with the environment when
embodied in a robot. A crucial point in this endeavor is developing a neural network architecture
capable of associative learning. This work proposes a mathematical model of a midscale modular
spiking neural network (SNN) to study learning mechanisms within the brain-on-a-chip context. We
show that besides spike-timing-dependent plasticity (STDP), synaptic and neuronal competitions
are critical factors for successful learning. Moreover, the shortest pathway rule can implement the
synaptic competition responsible for processing conditional stimuli coming from the environment.
This solution is ready for testing in neuronal cultures. The neuronal competition can be implemented
by lateral inhibition actuating over the SNN modulus responsible for unconditional responses. Empir-
ical testing of this approach is challenging and requires the development of a technique for growing
cultures with a given ratio of excitatory and inhibitory neurons. We test the modular SNN embedded
in a mobile robot and show that it can establish the association between touch (unconditional) and
ultrasonic (conditional) sensors. Then, the robot can avoid obstacles without hitting them, relying on
ultrasonic sensors only.

Keywords: spiking neural networks; associative learning; brain-on-a-chip; neurorobot; neuroanimat
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1. Introduction

The concept of a living computer or a brain-on-a-chip has been developed since the
end of the 20th century. It implies growing dissociated neuronal cultures on multi-electrode
arrays and their embodiment in the form of neurorobots or neuroanimats [1–9]. In this
context, robotic platforms provide neural networks with the ability to learn by interacting
with the environment, as happens in brain neural networks. However, despite significant
advances [10–12], associative learning in neural networks grown in vitro is still limited
due to a lack of a universal approach similar to the learning algorithms in artificial neural
networks.

One possible reason for the failure of early attempts to achieve associative learning
is the homogeneous structure of neural networks grown in vitro [6,13–15]. Emerging
experimental approaches could mitigate this problem by building modular networks from
separate subnets (neuronal ensembles or layers) connected by unidirectional links. This
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technology comprises polydimethylsiloxane (PDMS) chips with microfluidic channels for
axons connecting subnets [16,17]. The unidirectional growth of axons in such systems is
ensured by a delay in the cells seeding in different chambers [18–20] or by a special shape of
microfluidic channels [21–25]. Typically, modular networks include only two subnets, but
the possibility of forming several interacting modules has already been reported [26–28]. In
addition, it is worth mentioning that recently, to ensure heterogeneity, it has been proposed
to use modules of neurons of different types within the same network, for example cortical
and hippocampal [29] modules, which differ in neurodynamic properties [30].

Thus, the learning algorithms are the only missing element for such a living computer
based on modular neural networks grown in vitro. Earlier, we proposed an approach
to explain learning problems in unstructured neural networks via the competition be-
tween different pathways conducting excitation to a neuron or a group of neurons [31,32].
Moreover, our model study proposed an associative learning approach based on “spatial
computations”. The method uses the “shortest path rule” [33]:

Local learning mechanisms (e.g., STDP) potentiates the shortest neural pathways and
depresses alternative longer pathways at the global network scale.

STDP is an experimentally discovered form of Hebbian learning [34–37]. It potentiates
a synaptic connection when a presynaptic spike precedes the postsynaptic one. In the
opposite case, the connection is depressed. The shortest path rule can be explained as
follows: a spike arriving via the shortest path excites the postsynaptic neuron and elicits
the potentiating sequence; then, a spike via the longer route comes late and leads to the
depression of the corresponding synapse [33].

Although approaches to recording activity and manipulating individual neurons
are being developed (see, for example, [38,39]), they do not yet allow for experimental
in vitro verification of the “shortest path rule”. Therefore, we aim to adapt our approach
to modular architectures consisting of unidirectional connected subnets. To simulate
neuronal cultures, we use spiking neural networks (SNNs) since they can exhibit the
entire neurocomputational spectrum of behaviors [40–42]. So far, we have tested this
approach at the scale of individual neuronal circuits. Thus, the issue remained open: Can
a medium-scale network containing hundreds or thousands of neurons be trained using
spatial computations? If we give an affirmative answer to this question, it will validate the
searching for possible algorithms and experimental methods for building a living computer.

Earlier, we formulated the basic principles of associative learning in SNNs [33,43,44].
They are (i) Hebbian learning (using STDP), (ii) synaptic competition or competition of
SNN inputs, and (iii) neural competition or competition of SNN outputs. This work aims
to consistently implement these principles in a medium-scale modular SNN consisting of
several subnets connected by unidirectional links. Specifically, we first test the shortest
path rule in the modular SNN. Then, associative learning based on this rule is studied in
modular architectures of growing complexity. Finally, we propose a modular SNN capable
of the associative learning of stimuli and corroborating its capabilities when embodied in
a robot.

2. Models and Methods

To simulate the dynamics of a SNN, we adopt the approach described elsewhere [31].
Briefly, the dynamics of a single neuron is given using [40]:

dv
dt

= 0.04v2 + 5v + 140− u + I(t) (1)

du
dt

= a(bv− u) (2)

where v is the membrane potential, u is the recovery variable, and I(t) is the external
driving current. If v ≥ 30, then v← c , u← u + d , which corresponds to generation of a
spike. We set the parameters a = 0.02, b = 0.2, c = −65, and d = 8. Then, the neuron is silent
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in the absence of the external drive and can generate spikes under a constant stimulus,
which is a typical behavior of cortical neurons [40,41]. The driving current is given using:

I(t) = ξ(t) + Isyn(t) + Istml(t) (3)

where ξ(t) is an uncorrelated zero-mean white Gaussian noise with variance D, Isyn(t) is
the synaptic current, and Istml(t) is the external stimulus. As a stimulus, we use a sequence
of square-shaped electric pulses of the duration of 3 ms delivered at a 10 Hz rate, with an
amplitude sufficient to excite the neuron.

The synaptic current is the weighted sum of all synaptic inputs to the neuron:

Isyn(t) = ∑
j

gjwj(t)yj(t) (4)

where the sum is taken over all presynaptic neurons, wj is the strength of the synaptic
coupling directed from neuron j, gj is the scaling factor equal to 20 or−20 for excitatory and
inhibitory neurons, respectively [31], and yj(t) describes the amount of neurotransmitters
released by presynaptic neuron j when a spike arrives at the presynaptic terminal.

To simulate the neurotransmitters, we use Tsodyks–Markram model, which accounts
for short-term depression and facilitation [45]. The model has the following parameters:
the decay constant of postsynaptic currents τI = 10 ms, the recovery time from synaptic
depression τrec = 50 ms, and the time constant for facilitation τf acil = 1 s.

The dynamics of the synaptic weight wij of the coupling from excitatory presynaptic
neuron j to a postsynaptic neuron i is governed by the STDP with two local variables [46,47].
Assuming that τij is the time delay (the so-called axonal delay) of spike transmission
between neurons j and i, a presynaptic spike fired at time tj and arriving to neuron i at
tj + τij induces a weight decrease proportional to the value of the postsynaptic trace si.
Similarly, a postsynaptic spike at ti induces a weight potentiation proportional to the value
of the presynaptic trace sj. The weighting functions obey the multiplicative updating
rule [46,47]. Thus, the weight dynamics is given using:

dsi
dt

= − si
τS

+ ∑
ti

δ(t− ti), (5)

dsj

dt
= −

sj

τS
+ ∑

tj

δ
(
t− tj − τij

)
, (6)

dwij

dt
= λ

[(
1− wij

)
sjδ(t− ti)− αwijsiδ

(
t− tj − τij

)]
, (7)

where τS = 10 ms is the time constant of spiking traces, λ = 0.001 is the learning rate, and
α = 5 is the asymmetry parameter.

The modular SNN contains several subnets (Figure 1), each including 500 neurons.
This number is a compromise between the standard size of in vitro neuronal cultures
and the velocity of numerical simulations of the SNN that should be high enough for
experiments with a robot since, otherwise, the robot’s reaction to obstacles degrades
significantly. The ratio between excitatory and inhibitory neurons was 4:1. Neurons were
randomly distributed on a 1.2 × 0.5 mm rectangular substrate in each subnet (Figure 1A).
The number of synapses per each neuron was Nin = 30 ± 3. Within a subnet, neurons were
randomly coupled with the probability of interneuron connections decreasing with the
distance according to the Gaussian distribution (Figure 1A, intranetwork connections):

f =
1√

2πσ
e−

d2

2σ2 (8)
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where σ is the standard deviation chosen to obtain an average length of intranetwork
connections at 50 µm. This architecture captures the essential features of in vitro neuronal
cultures and allows the reproduction of their dynamic modes, e.g., network bursting.
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Figure 1. Model SNN architectures mimicking in vitro neuronal cultures coupled through microflu-
idic channels in global circuits. (A) Local networks, each consisting of 500 neurons distributed
over a rectangular substrate, are coupled using long-scale axons of projecting neurons in a global
network structure. Within each network, neurons are linked by predominantly local couplings (red
and blue circles correspond to excitatory and inhibitory neurons, respectively). (B) Global network
architectures with a different number of inputs and outputs subject to Pavlovian learning studied
in this work. Each circle corresponds to a local subnetwork (see (A)). Arrowed links indicate the
direction of internetwork couplings. Blue couplings are inhibitory.

Subnets were connected using unidirectional couplings simulating axons of projecting
neurons grown through microfluidic channels in PDMS chips (Figure 1A, internetwork
connections). The axon length was up to 400 µm. Figure 1B illustrates the global network
architectures studied in this work (for further details, see Section 3).

It should be emphasized that the geometric characteristics of the networks largely
determine their dynamics. Coordinates of the neurons define the axonal delay τij [see
Equations (6) and (7)], which is proportional to the distance between neurons. To evaluate
the delays, we assumed a spike propagation velocity of 0.05 m/s [48].

We implemented the SNN model as custom software NeuroNet (available at [49])
developed in the QT C++ environment. On an Intel® CoreTM i3 processor, the simulation
can be performed in real-time for an SNN with tens of neurons.

To monitor the SNN activity, we use the following procedure to detect network bursts
of spikes in each subnet. In a 50 ms time window, the total number of spikes generated by
the subnet is counted, and the time instant when the number of spikes exceeds 50 is set
as the burst beginning. Establishing such a threshold value is similar to the procedures
described for neural networks in vitro [50–52]. If a source (presynaptic) subnet generates a
burst followed within a time window of ∆ = 100 ms by a burst in the target (postsynaptic)
subnet, we call such a burst synchronous. We then define the connection efficiency between
the source and target subnets as:

P =
Fsyn − αFsrc

(1− α)Fsrc
, (9)

where Fsrc is the mean frequency of bursts generated by the source subnet, Fsyn is the mean
frequency of synchronous bursts, and α is the by-chance factor. This factor is the probability
of the temporal overlap of bursts in the absence of connections between the source and
target subnets. Under the hypothesis of a Poisson process, in the first approximation
α ≈ ∆Ftrg, where Ftrg is the mean frequency of bursts in the target subnet. Our direct
estimate of α from numerical simulations provided results in complete agreement with the
theoretical formula. The connection efficiency is P = 0 and P = 1 if all bursts generated
by the target subnet are by-chance (i.e., no causal connection) and by excitation from the
source subnet (i.e., all bursts are causal), respectively.



Mathematics 2023, 11, 234 5 of 14

3. Results
3.1. Self-Reinforcing of Internetwork Couplings in Neural Circuits

In model studies, the coupling efficiency between neurons is usually understood
as the synaptic weight, w, which determines the current arising in the postsynaptic neu-
ron [Equation (4)]. However, the direct measurement of w is unfeasible in experimental
conditions. Therefore, the coupling efficiency is usually estimated indirectly using the
postsynaptic potential amplitude or by using the number of spikes “transmitted” from one
neuron to another. The latter measure assesses the effectiveness of connections between
subnets in vitro [19,53,54].

To address this issue, we study couplings between the individual neurons and subnets
(Figure 2A, this and other figures showing network structures are schematic and do not
display all the simulated neurons). By default, the source subnet makes ten synaptic
connections to the target subnet. These couplings simulate axons grown along microfluidic
channels in PDMS chips [16–25]. Note that the geometric architecture of the network plays
an essential role, and internetwork connections link the closest neurons from the connected
subnets as happens in in vitro experiments.
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cultures of cortical neurons. More specifically, the percentage of bursts propagating from 
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Figure 2. Quantification of interneuron couplings in single neurons and network structures. (A) Two
model architectures with unidirectionally coupled individual neurons (top) and subnets by ten
projecting axons (bottom). (B) The connection efficiency (bursts “passing” from one structure to the
other) vs. coupling weight (for subnets the average weight is used). (C) Self-reinforcement of the
coupling weight for individual neurons in spontaneous conditions (Spont), under stimulation of the
presynaptic neuron (S1), and paired stimulation (S1 + S2). (D) The same as in (C) but for the subnets.

The connection efficiency P [Equation (9)] is the ratio of individual spikes or bursts
fired either by the postsynaptic neuron or target subnet within a short time after the
activation of the presynaptic neuron or target subnet. Figure 2B shows the results of the
simulations. The connection efficiency P has a pronounced sigmoid-like dependence on
the coupling strength w for the individual neurons and subnets (in the latter case, we used
the mean value of w). A similar result has been observed in in vitro experiments with the
cultures of cortical neurons. More specifically, the percentage of bursts propagating from
the source subnet to target one increased with the number of axon-contained tunnels in a
PDMS chip [19].

STDP in unidirectional connections can lead to a self-reinforcement phenomenon, i.e.,
the potentiation of the spike transfer through an “effective” coupling (evoked response).
Such an effect is most apparent for the paired stimulation protocol, i.e., when a postsynaptic
neuron is stimulated with a 10 ms delay after the presynaptic cell [36,37]. Figure 2C
illustrates the dynamics of the synaptic weight between two neurons in spontaneous
conditions, under stimulation of the presynaptic neuron only, and the paired stimulation
protocol (S1 + S2). We observe that potentiation is significantly slower for stimulating
the presynaptic neuron only (Figure 2C, S1). Notably, an extremely slow potentiation
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also occurs under spontaneous activity. The presynaptic neuron sometimes excites the
postsynaptic one, and the STDP rule increases the coupling (Figure 2C, Spont).

We adapted the stimulation protocols used for single neurons to the modular network.
A small region of each subnet, including five excitatory neurons, was stimulated by a
sequence of square pulses delivered at 10 Hz (Figure 2A, bottom panel). In the case of
the paired stimulation protocol, the time delay (i.e., the time shift between S1 and S2)
was increased to 30 ms. The obtained results are similar to what has been observed for
individual neurons (Figure 2D). However, the synaptic weights change much slower,
and the difference between evoked and spontaneous activity is lower. We also note a
pronounced time lag in the rising synaptic weights in the case of evoked activity. It is
explained by a relatively slow intra-network rearrangement of synaptic weights required
to initiate changes in the inter-network weights.

The self-reinforcement phenomenon can underlie the formation of neural structures
with cyclic activity and, possibly, central pattern generators. Let us consider a system
consisting of four subnets closed into a ring by unidirectional connections (Figure 3A). With
low weights of internet connections and/or an insufficient number of them, the activity
of the subnets is almost uncorrelated (Figure 3B). In the presence of sufficient connections
between subnets, the self-reinforcement effect leads to their potentiation and the emergence
of a circulating activity. In this case, neural activity is transmitted from one subnet to
another, and a periodic cycle emerges (Figure 3C). Then, the connection efficiency P can
reach 0.8 after learning. Note that this effect occurs if the number of connections between
subnets Nw is high enough (Figure 3B). For Nw < 4, no circulating activity is observed,
whereas for Nw > 8, the connection efficiency saturates due to STDP.
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Figure 3. Emergence of cyclic structures and rhythmic activity. (A) Architecture with unidirectional
clockwise connections facilitates a clockwise cyclic activity. (B) The connection efficiency (bursts
passing from one subnet to another) vs. the number of connections between subnets (A) before
and after learning. (C) Raster plots of spiking activity before and after learning. Learning leads
to the emergence of a wave circulating in the network. Colors indicate spikes of neurons from the
corresponding subnets shown in (A). (D) Initial architecture with bidirectional connections. A cyclic
activity running either clockwise or counterclockwise can emerge. (E) An example of the weight’s
dynamics: Wckw and Wcckw are the average weights of clockwise and counterclockwise connections,
respectively. Clockwise connections are depressed, while counterclockwise couplings are potentiated.
(F) Example of raster plots for the bidirectional SNN with a counterclockwise activity after learning.
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Although the network structure was predetermined in the previous experiments, cir-
culating waves can be observed in a network with initially bidirectional couplings between
subnets (Figure 3D). Self-reinforcement breaks the initial symmetry, and connections that
facilitate a wave running either in a clockwise or counterclockwise direction are potentiated
(Figure 3E,F).

3.2. The Shortest Pathway Rule

A straightforward stimulus-response association can be achieved in a two-module
architecture (Figure 2). The activity of a postsynaptic neuron (or a target subnet) can be
considered the system’s output. Then, in Pavlovian conditioning, the stimulation of the
pre and postsynaptic neurons (source and target subnets) can be treated as conditional and
unconditional stimuli, respectively. However, here we face the following problems:

• Spontaneous (without stimuli) potentiation of connections (Figure 2C,D);
• Potentiation of connections when only the conditional stimulus is applied (no associa-

tion, Figure 2C,D);
• The lack of a mechanism for depressing an association when it becomes irrelevant

(e.g., when the conditional stimulus is not supported by an unconditional one).

Thus, the main problem of associative learning is not the potentiation of synapsis
representing associations, but the lack of a mechanism depressing (or controlling) synapses
not involved in the stimulus association. Earlier, to solve this problem, we introduced the
shortest pathway rule driving the synaptic dynamics and proposed a simple neural circuit
with associative learning [33]. Let us now extend this rule to modular SNNs.

Figure 4A shows an architecture with three coupled subnets. Subnet one sends
excitation to subnet three through two pathways: directly and via subnet two. In this
context, the term “shortest pathway” means both the minimum geometric length from
subnet one to subnet three (and hence the minimal axonal delay in spike transmission) and
the minimal number of synapses mediating the spike transmission (the minimal synaptic
delay). In the presence of two alternative routes, the shortest path (W1 in Figure 4) is
potentiated. At the same time, the synapses involved in the longer pathway (via subnet two)
are depressed (W2 in Figure 4A). Figure 4B illustrates the dynamics of the internet weights.
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Figure 4. The shortest pathway rule for modular SNNs solves the problem of depressing synapses
not involved in relevant associations of stimuli. (A) The network architecture. Subnet 3 receives
input from subnet 1 directly and through subnet 2. The rule states that the shortest path (through
W1) is potentiated while the longer (through W2) is inhibited. (B) Dynamics of the internetwork
connections. The red arrow indicates the moment when the stimulation is turned on.

The described effect comprises the shortest pathway rule in midscale modular SNNs
and provides synaptic competition. In turn, synaptic competition can solve the problem of
the uncontrolled growth of synapses and implements depressing synapsis not involved in
relevant associations of stimuli.

In our model, experimentally justified STDP is the only learning rule. It implements a
local mechanism of synaptic plasticity, which depends only on the activity of the pre- and
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postsynaptic neurons. Despite this, on a network scale, STDP can imitate global “meta”
learning rules through the interaction of the competing neuronal circuits. The shortest path
rule can be attributed to such a metarule. Then, the desired learning algorithm can use a
network architecture that provides “spatial neurocomputing” based on STDP.

3.3. Synaptic Competition in SNNs

Let us now use the shortest pathway rule to implement associative learning. Figure 5A
shows a three-module SNN receiving three different stimuli. We note that bidirectional
links couple subnets one and two. In Pavlovian conditioning, this architecture allows us
to model a situation with two conditional (CS1, CS2) and one unconditional (US) stimuli.
As in Section 3.2, to induce STDP, we use the paired stimulation protocol: US pulses are
applied 30 ms after the CS pulses. However, we start with “incorrect” pre-training by
associating the US with CS1 during preliminary training. In this stage, CS2 is not applied.
Then, we carry out the main learning phase, in which the US combines with CS2 (Figure 5B).
This procedure allows us to analyze the system’s ability to form associations and retrain
once external conditions have changed (i.e., when CS2 replaces CS1).
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Figure 5. Associative learning due to synaptic competition. (A) Network architecture with inter-
network connections WC implementing competition between subnets 1 and 2. The SNN provides
association of one of the conditional stimuli (CS 1 or CS 2) with unconditional stimulus US. (B) Dy-
namics of weights and the learning quality under conditional stimuli CS1 and CS2. Blue and orange
areas correspond to associations CS1-US and CS2-US, respectively. (C) Average weights of internet-
work connections W1 and W2 and the learning quality coefficient vs. average weights of internetwork
connections WC.

During learning, the output subnet three changes connections coming from subnets
one and two depending on the correlation with their activity. Since both potentiation and
depression of the incoming connections determine the training quality, we introduce the
joint coefficient:

Q =
2Wpot

Wpot + Wdep
− 1, (10)

where Wpot and Wdep are the average values of the connections between subnets that should
be potentiated and depressed, respectively. The value Q = 1 corresponds to perfect learning.
If learning is poor, Q has a value close to zero, and Q is negative for “wrong” learning.
Below, we conventionally assume that a SNN with Q > 0.5 is properly trained.

Bidirectional connections between two input subnets (WC in Figure 5A) play a critical
role in synaptic competition. They close the long alternative pathway when one of the
inputs is activated (see also Figure 4). As a result, along with the strengthening of the
currently relevant associative connections, a weakening of the irrelevant associations occurs,
and, accordingly, the learning coefficient Q increases (Figure 5B). The simulations with
different weights of the competing connections show a specific range for which optimal
learning is observed (Figure 5C, pink area).

In a uniform network, some axons connect neurons in different directions and can
implement synaptic competition accordingly. Thus, there is no reason to have subnets one
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and two separate (Figure 5A). Instead, one can build a single but elongated subnetwork and
stimulate its extreme points (see also Section 3.4). We tested this hypothesis by combining
input subnets one and two into a single network. As expected, the network learned quite
well, and the learning coefficient reached the value Q = 0.63 ± 0.11 (n = 6). In the following
sections, we use such elongated networks to form input and output modules.

3.4. Neuronal Competition of SNN Outputs

A neural network can have several input modules that receive conditioned signals
and several output modules that respond to unconditioned stimuli. Therefore, for ef-
fective learning, it is necessary to implement competition between inputs (i.e., synaptic
competition, Section 3.3) and between outputs (neuronal competition).

Let us consider an SNN with one input and two outputs (Figure 6A). Here, we
have combined two output modules into one elongated. In Pavlovian conditioning, this
architecture models a situation with one conditional signal CS and two unconditional
stimuli, US1 and US2. To implement neural competition, we use lateral inhibition, which
suppresses the activity of neighboring neurons upon a strong excitation of one neuron, the
winner [33,43]. As a result of this process, only the winning element undergoes learning
and forms an association. Since we do not use the mechanism of removing irrelevant
associations, the training protocol cannot contain a phase of “wrong” pre-training. In this
case, we combined two output networks into one, bearing in mind the impossibility of
forming exclusively inhibitory connections between subnets of biological neurons.
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Figure 6. Neural competition enables associative learning of conditional stimulus with two uncondi-
tional ones. (A) Modular SNN with a single conditional stimulus CS and two unconditional stimuli
(US1, US2) applied to a single elongated module. Inhibitory interneurons, which suppress the spread
of excitation in subnet 2, provide neuronal competition and association of CS either with US1 or US2.
(B) Learning quality Q as a function of the parameters of inhibitory connections: coupling weight WI

and decay time τI.

We study how the parameters of the inhibitory neurons determine the learning quality.
To this end, we chose the weight of inhibitory connections WI and the decay time of
inhibitory postsynaptic current τI as governing parameters. Figure 6B shows that learning
fails for WI < 0.1 or τI < 40 ms. Thus, lateral inhibition is necessary for learning.

3.5. Robotic Embodiment of Associative Learning

Let us now provide a practical application of the phenomena studied above. We
consider the problem of obstacle avoidance using a mobile robot driven by an SNN [33].
The robot has two touch sensors and two ultrasonic sonars (Figure 7A). The activity of a
pacemaker neuron drives the right and left motors, which leads to the forward movement
of the robot. Figure 7B shows the modular SNN consisting of two elongated subnets. The
internal couplings in subnet 1 provide synaptic competition for internetwork connections
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WP and WD (Figure 7B). In turn, the inhibitory neurons of subnet two provide neuronal
competition. If one of the zones of subnet two is excited, the other zone is inhibited.
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Figure 7. Embedding a modular SNN capable of Pavlovian conditioning in a mobile robot. The
robot learns collision avoidance. (A) The LEGO robot and mapping of sensory stimuli. (B) Mod-
ular SNN consisting of two subnets connected by unidirectional couplings (WP and WD) and the
configuration of stimuli. (C) Training the robot. The left touch sensor and left ultrasonic sonar are
simultaneously triggered. (D) The dynamics of the connections WP and WD, and the learning quality
Q during learning.

Signals from the touch sensors serve as unconditional stimuli. They are activated if the
robot hits an obstacle. Stimulation of the corresponding US-zone in subnet two (Figure 7B)
is transmitted to motoneurons that brake the corresponding wheel. As a result of such an
unconditioned reaction, the robot can avoid obstacles upon touching them. Signals from
the sonars serve as conditional stimuli. They can detect obstacles at a distance. When one
of the CS zones in subnet one (CS one or CS two, Figure 7B) is activated simultaneously
with the activation of one of the US zones (US one or US two, Figure 7B), the corresponding
connections are potentiated, and the robot learns to go around obstacles in advance without
hitting them. Training the robot to mimic Pavlovian conditioning consists of presenting
stimuli regularly from both the left and right sides (Figure 7C).

The embodiment of the SNN enables learning of two associative CS-US pairs reacting
to obstacles on the left and right sides of the robot. Generally, the CS zones in subnet one
(CS one or CS two, Figure 7B) can be mapped to the pair of sonars in an arbitrary order
(left–right or right–left). Depending on the mapping, there can be two types of associations
between the stimuli and motors: either with strong “parallel” or strong “diagonal” inter-
network connections (WP or WD in Figure 7, respectively). Proper learning leads to the
potentiation of WP and depression of WD in the case of “the parallel association” and vice
versa in the opposite case. Such freedom ensures no a priori chosen structure in the entire
SNN. Instead, the SNN adapts to the stimuli coming from the environment.

Figure 7D illustrates an example of learning during the training process. After several
learning cycles, the learning quality reaches values close to 0.8, and the robot successfully
avoids obstacles. We then tested the robot’s performance for different learning qualities
(Q) while moving in an arena with several obstacles (Figure 8A). Figure 8B shows the
relationship between Q and the robot’s behavior. The dependence of the number of
collisions on Q fits rather well via an exponential function. As expected, the higher the
learning quality, the fewer collisions registered during the test (10 min).
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4. Discussion

We have studied Pavlovian learning in modular SNNs consisting of several synap-
tically coupled subnets. The numerical study suggests approaches for implementing
associative learning in prospective experimental works on neural networks grown in vitro.

STDP in unidirectional connections between two modules can lead to the self-reinforcement
of synapses with efficient spike transfer. We have observed this effect under stimulation of
the presynaptic subnet, paired stimulation, and spontaneous activity. Consequently, the
efficiency of communication by bursts increases, which can be measured experimentally. An
attempt to use a two-module SNN for associative learning has identified several negative
factors. The main problem was not the potentiation of the connections responsible for the
association of conditional and unconditional stimuli, but the insufficient weakening of the
couplings not involved in the association.

Modular SNNs with two presynaptic subnets and one postsynaptic subnet (2IN-
1OUT architecture) can implement associative learning with two conditional stimuli and
one unconditional stimulus. Then, the competition between converging internetwork
connections is essential; we call this phenomenon synaptic competition. We used the
shortest pathway rule to implement it: STDP potentiates the shortest neural pathways and
depresses alternative longer routes. To simplify the network architecture, we proposed an
elongated network module merging the input subnets. Simulations confirmed the validity
of this approach. It is worth noting that this rule and the SNN architectures are ready for
experimental testing in vitro.

Modular SNNs with one input and two outputs (1IN-2OUT architecture) can imple-
ment associative learning with one conditional stimulus and two unconditional stimuli.
It requires competition between diverging connections, which we call neuronal compe-
tition, meaning that neurons in subnets compete, suppressing their counterparts in the
neighboring subnet. We implemented neuronal competition using lateral inhibition and
employed a single elongated module for two outputs. Currently, in vitro testing of this
result is challenging due to a lack of technology enabling the selection of parameters of
excitatory and inhibitory elements in cultures of dissociated neurons.

Then, we proposed a modular SNN with a 2IN-2OUT architecture capable of handling
two conditional and two unconditional stimuli and providing two associative links. The
two-module SNN has been embedded in a mobile robot, and signals from the robot’s
sensors innervated certain local areas of the SNN. Initially, the robot could only avoid
obstacles when hitting them due to the activation of unconditional stimuli (touch sensors).
Learning consisted of presenting to the robot obstacles, which associated conditional stimuli
(mediated by ultrasonic sensors) with unconditional ones. After training, the robot could
avoid obstacles without bumping against them by relying on sonars. Experiments with the
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robot driven by the SNN revealed an exponential decay in the number of collisions with
obstacles with an increase in the learning quality.

Note that one can implement the 2IN-2OUT architecture using two 2IN-1OUT mod-
ular networks. However, such an attempt is likely to fail in in vitro experiments. The
self-reinforcing effect may form false associations upon presenting a conditioned stimulus
without an unconditioned one. Moreover, the proposed network architecture (Figure 7C)
requires crossing axon-conducting tunnels without forming synapses at the intersection,
which can be an issue for in vitro experiments. As a possible solution, there may be a
transition from 2D to 3D network architectures [7,17,55]. Besides, the length of axonal inter-
network connections can be crucial for bursting network dynamics. Keren and Marom [56]
have shown that a circulating activity in a network of cortical neurons can emerge if either
the geometric dimension of the network is sufficiently large (tens of centimeters) or the
conducting velocity is low (due to, for e.g., inhibitors).

However, all these difficulties are technical and can be solved using a neurohybrid
approach with memristive devices instead of internetwork axons. Memristors and memris-
tive systems [57], which are implemented in the form of a CMOS-compatible nanostructure
with a memory effect, are ideally suited for the role of such connections [44,58]. Recently,
the first step in this direction has been taken: commercial memristive devices with the effect
of short-term plasticity are used to arrange communication between individual subnets
in vitro and provide synchronous activity of target subnets under the control of the source
subnet [59]. Following the general concept of memristive neurohybrid systems [60] and
the first experimental results [59,61], we expect that memristive devices could provide
a balance in terms of miniaturization, energy efficiency, and computational capabilities
required for interfaces between living neurons and their networks.

Author Contributions: Conceptualization: S.A.L., A.N.M., V.A.M. and V.B.K.; methodology: S.A.L.,
E.S.B. and V.A.M.; software: S.A.L.; robotics experiments: S.A.L. and E.S.B.; writing: S.A.L., A.N.M.,
V.A.M., and V.B.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Russian Science Foundation (grant No. 21-12-00246, SNN
simulation), by the Russian Foundation for Basic Research (grant No. 20-01-00368, spatial neuro-
computation concept), by the Ministry of Science and Higher Education of the Russian Federation
(project No. 0729-2020-0061, experiments with the neurorobot), by the scientific program of the
National Center for Physics and Mathematics (project “Artificial intelligence and big data in technical,
industrial, natural and social systems”, neurohybrid systems), by the Spanish Ministerio de Ciencia e
Innovación (PID2021-124047NB-I00), and by the Santander-UCM grant PR44/21-29927.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Potter, S.M.; Fraser, S.E.; Pine, J. Animat in a petri dish: Cultured neural networks for studying neural computation. In Proceedings

of the 4th Joint Symposium on Neural Computation, San Diego, CA, USA, 17 May 1997; pp. 167–174.
2. Pamies, D.; Hartung, T.; Hogberg, H.T. Biological and medical applications of a brain-on-a-chip. Exp. Biol. Med. 2014, 239,

1096–1107. [CrossRef] [PubMed]
3. Meyer, J.A.; Wilson, S.W. From animals to animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior;

MIT Press: Cambridge, MA, USA, 1991.
4. Reger, B.D.; Fleming, K.M.; Sanguineti, V.; Alford, S.; Mussa-Ivaldi, F.A. Connecting brains to robots: An artificial body for

studying the computational properties of neural tissues. Artif. Life 2000, 6, 307–324. [CrossRef] [PubMed]
5. Wheeler, B.C. Building a brain on a chip. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1604–1606.
6. Brofiga, M.; Pisano, M.; Raiteri, R.; Massobrio, P. On the road to the brain-on-a-chip: A review on strategies, methods, and

applications. J. Neural Eng. 2021, 18, 41005. [CrossRef]
7. Forro, C.; Caron, D.; Angotzi, G.N.; Gallo, V.; Berdondini, L.; Santoro, F.; Palazzolo, G.; Panuccio, G. Electrophysiology read-out

tools for brain-on-chip biotechnology. Micromachines 2021, 12, 124. [CrossRef]
8. Maoz, B.M. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous

system. APL Bioeng. 2021, 5, 30902. [CrossRef]

http://doi.org/10.1177/1535370214537738
http://www.ncbi.nlm.nih.gov/pubmed/24912505
http://doi.org/10.1162/106454600300103656
http://www.ncbi.nlm.nih.gov/pubmed/11348584
http://doi.org/10.1088/1741-2552/ac15e4
http://doi.org/10.3390/mi12020124
http://doi.org/10.1063/5.0055812


Mathematics 2023, 11, 234 13 of 14

9. Aaser, P.; Knudsen, M.; Huse Ramstad, O.; van de Wijdeven, R.; Nichele, S.; Sandvig, I.; Tufte, G.; Bauer, U.S.; Halaas, Ø.;
Hendseth, S.; et al. Towards making a cyborg: A closed-loop reservoir-neuro system. In Proceedings of the European Conference on
Artificial Life; Knibbe, C., Beslon, G., Parsons, D.P., Misevic, D., Rouzaud-Cornabas, J., Bredèche, N., Hassas, S., Simonin, O., Soula,
H., Eds.; MIT Press: Lyon, France, 2017; Volume 2017, pp. 430–437.

10. Bakkum, D.J.; Chao, Z.C.; Potter, S.M. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a
goal-directed learning task. J. Neural Eng. 2008, 5, 310. [CrossRef]

11. Shahaf, G.; Eytan, D.; Gal, A.; Kermany, E.; Lyakhov, V.; Zrenner, C.; Marom, S. Order-based representation in random networks
of cortical neurons. PLoS Comput. Biol. 2008, 4, e1000228. [CrossRef]

12. Kagan, B.J.; Kitchen, A.C.; Tran, N.T.; Habibollahi, F.; Khajehnejad, M.; Parker, B.J.; Bhat, A.; Rollo, B.; Razi, A.; Friston, K.J. In vitro
neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022, 110, 3952–3969.e8. [CrossRef]

13. Dauth, S.; Maoz, B.M.; Sheehy, S.P.; Hemphill, M.A.; Murty, T.; Macedonia, M.K.; Greer, A.M.; Budnik, B.; Parker, K.K. Neurons
derived from different brain regions are inherently different in vitro: A novel multiregional brain-on-a-chip. J. Neurophysiol. 2016,
117, 1320–1341. [CrossRef] [PubMed]

14. Pimashkin, A.; Gladkov, A.; Mukhina, I.; Kazantsev, V. Adaptive enhancement of learning protocol in hippocampal cultured
networks grown on multielectrode arrays. Front. Neural Circuits 2013, 7, 87. [CrossRef]

15. Pimashkin, A.; Gladkov, A.; Agrba, E.; Mukhina, I.; Kazantsev, V. Selectivity of stimulus induced responses in cultured
hippocampal networks on microelectrode arrays. Cogn. Neurodyn. 2016, 10, 287–299. [CrossRef] [PubMed]

16. Taylor, A.M.; Rhee, S.W.; Tu, C.H.; Cribbs, D.H.; Cotman, C.W.; Jeon, N.L. Microfluidic multicompartment device for neuroscience
research. Langmuir 2003, 19, 1551–1556. [CrossRef] [PubMed]

17. Habibey, R.; Rojo Arias, J.E.; Striebel, J.; Busskamp, V. Microfluidics for Neuronal cell and circuit engineering. Chem. Rev. 2022,
122, 14842–14880. [CrossRef] [PubMed]

18. Pan, L.; Alagapan, S.; Franca, E.; Brewer, G.J.; Wheeler, B.C. Propagation of action potential activity in a predefined microtunnel
neural network. J. Neural Eng. 2011, 8, 46031. [CrossRef] [PubMed]

19. Pan, L.; Alagapan, S.; Franca, E.; Leondopulos, S.S.; DeMarse, T.B.; Brewer, G.J.; Wheeler, B.C. An in vitro method to manipulate
the direction and functional strength between neural populations. Front. Neural Circuits 2015, 9, 32. [CrossRef]

20. DeMarse, T.B.; Pan, L.; Alagapan, S.; Brewer, G.J.; Wheeler, B.C. Feed-forward propagation of temporal and rate information
between cortical populations during coherent activation in engineered in vitro networks. Front. Neural Circuits 2016, 10, 32.
[CrossRef]

21. le Feber, J.; Postma, W.; de Weerd, E.; Weusthof, M.; Rutten, W.L.C. Barbed channels enhance unidirectional connectivity between
neuronal networks cultured on multi electrode arrays. Front. Neurosci. 2015, 9, 412. [CrossRef]

22. Malishev, E.; Pimashkin, A.; Arseniy, G.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M. Microfluidic device for
unidirectional axon growth. J. Phys. Conf. Ser. 2015, 643, 012025. [CrossRef]

23. Gladkov, A.; Pigareva, Y.; Kutyina, D.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A. Design of cultured
neuron networks in vitro with predefined connectivity using asymmetric microfluidic channels. Sci. Rep. 2017, 7, 15625.
[CrossRef]

24. Forró, C.; Thompson-Steckel, G.; Weaver, S.; Weydert, S.; Ihle, S.; Dermutz, H.; Aebersold, M.J.; Pilz, R.; Demkó, L.; Vörös, J.
Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens. Bioelectron. 2018, 122,
75–87. [CrossRef]

25. Na, S.; Kang, M.; Bang, S.; Park, D.; Kim, J.; Sim, S.J.; Chang, S.; Jeon, N.L. Microfluidic neural axon diode. Technology 2016, 4,
240–248. [CrossRef]

26. Dworak, B.J.; Wheeler, B.C. Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation
from isolated axons in culture. Lab. Chip 2009, 9, 404–410. [CrossRef] [PubMed]

27. Park, J.; Kim, S.; Park, S.I.; Choe, Y.; Li, J.; Han, A. A microchip for quantitative analysis of CNS axon growth under localized
biomolecular treatments. J. Neurosci. Methods 2014, 221, 166–174. [CrossRef] [PubMed]

28. van de Wijdeven, R.; Ramstad, O.H.; Bauer, U.S.; Halaas, Ø.; Sandvig, A.; Sandvig, I. Structuring a multi-nodal neural network
in vitro within a novel design microfluidic chip. Biomed. Microdevices 2018, 20, 9. [CrossRef] [PubMed]

29. Chang, C.; Furukawa, T.; Asahina, T.; Shimba, K.; Kotani, K.; Jimbo, Y. Coupling of in vitro neocortical-hippocampal coculture
bursts induces different spike shythms in individual networks. Front. Neurosci. 2022, 16, 873664. [CrossRef] [PubMed]

30. Callegari, F.; Brofiga, M.; Poggio, F.; Massobrio, P. Stimulus-evoked activity modulation of in vitro engineered cortical and
hippocampal networks. Micromachines 2022, 13, 1212. [CrossRef]

31. Lobov, S.A.; Zhuravlev, M.O.; Makarov, V.A.; Kazantsev, V.B. Noise enhanced signaling in STDP driven spiking-neuron network.
Math. Model. Nat. Phenom. 2017, 12, 109–124. [CrossRef]

32. Lobov, S.; Balashova, K.; Makarov, V.A.; Kazantsev, V. Competition of spike-conducting pathways in STDP driven neural networks.
In Proceedings of the 5th International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2017); SciTePress:
Setúbal, Portugalija, 2017; pp. 15–21.

33. Lobov, S.A.; Mikhaylov, A.N.; Shamshin, M.; Makarov, V.A.; Kazantsev, V.B. Spatial properties of STDP in a self-learning spiking
neural network enable controlling a mobile robot. Front. Neurosci. 2020, 14, 88. [CrossRef] [PubMed]

34. Markram, H.; Gerstner, W.; Sjöström, P.J. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 2011, 3, 4.
[CrossRef] [PubMed]

http://doi.org/10.1088/1741-2560/5/3/004
http://doi.org/10.1371/journal.pcbi.1000228
http://doi.org/10.1016/j.neuron.2022.09.001
http://doi.org/10.1152/jn.00575.2016
http://www.ncbi.nlm.nih.gov/pubmed/28031399
http://doi.org/10.3389/fncir.2013.00087
http://doi.org/10.1007/s11571-016-9380-6
http://www.ncbi.nlm.nih.gov/pubmed/27468317
http://doi.org/10.1021/la026417v
http://www.ncbi.nlm.nih.gov/pubmed/20725530
http://doi.org/10.1021/acs.chemrev.2c00212
http://www.ncbi.nlm.nih.gov/pubmed/36070858
http://doi.org/10.1088/1741-2560/8/4/046031
http://www.ncbi.nlm.nih.gov/pubmed/21750372
http://doi.org/10.3389/fncir.2015.00032
http://doi.org/10.3389/fncir.2016.00032
http://doi.org/10.3389/fnins.2015.00412
http://doi.org/10.1088/1742-6596/643/1/012025
http://doi.org/10.1038/s41598-017-15506-2
http://doi.org/10.1016/j.bios.2018.08.075
http://doi.org/10.1142/S2339547816500102
http://doi.org/10.1039/B806689B
http://www.ncbi.nlm.nih.gov/pubmed/19156289
http://doi.org/10.1016/j.jneumeth.2013.09.018
http://www.ncbi.nlm.nih.gov/pubmed/24161788
http://doi.org/10.1007/s10544-017-0254-4
http://www.ncbi.nlm.nih.gov/pubmed/29294210
http://doi.org/10.3389/fnins.2022.873664
http://www.ncbi.nlm.nih.gov/pubmed/35677356
http://doi.org/10.3390/mi13081212
http://doi.org/10.1051/mmnp/201712409
http://doi.org/10.3389/fnins.2020.00088
http://www.ncbi.nlm.nih.gov/pubmed/32174804
http://doi.org/10.3389/fnsyn.2011.00004
http://www.ncbi.nlm.nih.gov/pubmed/22007168


Mathematics 2023, 11, 234 14 of 14

35. Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.
Science 1997, 275, 213–215. [CrossRef]

36. Bi, G.Q.; Poo, M.M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [CrossRef] [PubMed]

37. Sjöström, P.J.; Turrigiano, G.G.; Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron
2001, 32, 1149–1164. [CrossRef] [PubMed]

38. Jäckel, D.; Bakkum, D.J.; Russell, T.L.; Müller, J.; Radivojevic, M.; Frey, U.; Franke, F.; Hierlemann, A. Combination of high-density
microelectrode array and patch clamp recordings to enable studies of multisynaptic integration. Sci. Rep. 2017, 7, 978. [CrossRef]
[PubMed]

39. Rigby, M.; Anthonisen, M.; Chua, X.Y.; Kaplan, A.; Fournier, A.E.; Grütter, P. Building an artificial neural network with neurons.
AIP Adv. 2019, 9, 075009. [CrossRef]

40. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Networks 2003, 14, 1569–1572. [CrossRef]
41. Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 2004, 15, 1063–1070. [CrossRef]
42. Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting; The MIT Press: Cambridge, MA,

USA; London, UK, 2007.
43. Lobov, S.A.; Chernyshov, A.V.; Krilova, N.P.; Shamshin, M.O.; Kazantsev, V.B. Competitive learning in a spiking neural network:

Towards an intelligent pattern classifier. Sensors 2020, 20, 500. [CrossRef]
44. Makarov, V.A.; Lobov, S.A.; Shchanikov, S.; Mikhaylov, A.; Kazantsev, V.B. Toward reflective spiking neural networks exploiting

memristive devices. Front. Comput. Neurosci. 2022, 16, 859874. [CrossRef]
45. Tsodyks, M.; Pawelzik, K.; Markram, H. Neural networks with dynamic synapses. Neural Comput. 1998, 10, 821–835. [CrossRef]
46. Morrison, A.; Diesmann, M.; Gerstner, W. Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern.

2008, 98, 459–478. [CrossRef]
47. Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat.

Neurosci. 2000, 3, 919. [CrossRef] [PubMed]
48. Lobov, S.A.; Zharinov, A.I.; Semenova, O.; Kazantsev, V.B. Topological classification of population activity in spiking neural

network. In Proceedings of SPIE: The Saratov Fall Meeting 2020: Computations and Data Analysis: From Molecular Processes to Brain
Functions; Postnov, D.E., Ed.; SPIE: Bellingham, DC, USA, 2021; Volume 11847, pp. 1–6.

49. Spiking Neurosimulator NeuroNet with a User-Friendly Graphical Interface. Available online: http://spneuro.net/ (accessed on
29 December 2022).

50. Wagenaar, D.A.; Pine, J.; Potter, S.M. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
BMC Neurosci. 2006, 7, 11. [CrossRef] [PubMed]

51. Chiappalone, M.; Novellino, A.; Vajda, I.; Vato, A.; Martinoia, S.; van Pelt, J. Burst detection algorithms for the analysis of
spatio-temporal patterns in cortical networks of neurons. Neurocomputing 2005, 65–66, 653–662. [CrossRef]

52. Stegenga, J.; Le Feber, J.; Marani, E.; Rutten, W.L.C. Analysis of cultured neuronal networks using intraburst firing characteristics.
IEEE Trans. Biomed. Eng. 2008, 55, 1382–1390. [CrossRef] [PubMed]

53. Pigareva, Y.; Gladkov, A.; Kolpakov, V.; Mukhina, I.; Bukatin, A.; Kazantsev, V.B.; Pimashkin, A. Experimental platform to study
spiking pattern propagation in modular networks in vitro. Brain Sci. 2021, 11, 717. [CrossRef]

54. Pan, L.; Alagapan, S.; Franca, E.; DeMarse, T.; Brewer, G.J.; Wheeler, B.C. Large extracellular spikes recordable from axons in
microtunnels. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 453–459. [CrossRef]

55. Geramifard, N.; Lawson, J.; Cogan, S.F.; Black, B.J. A novel 3D helical microelectrode array for in vitro extracellular action
potential recording. Micromachines 2022, 13, 1692. [CrossRef] [PubMed]

56. Keren, H.; Marom, S. Long-range synchrony and emergence of neural reentry. Sci. Rep. 2016, 6, 36837. [CrossRef]
57. Chua, L.O.; Kang, S.M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [CrossRef]
58. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]
59. Dias, C.; Castro, D.; Aroso, M.; Ventura, J.; Aguiar, P. A memristor-based neuromodulation device for real-time monitoring and

adaptive control of in vitro neuronal populations. ACS Appl. Electron. Mater. 2022, 4, 2380–2387. [CrossRef] [PubMed]
60. Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.A.; Lobov, S.; Gryaznov, E.; Talanov, M.; Lavrov, I.; Demin, V.; Erokhin,

V.; et al. Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprostetics. Front. Neurosci. 2020, 14, 358.
[CrossRef] [PubMed]

61. Juzekaeva, E.; Nasretdinov, A.; Battistoni, S.; Berzina, T.; Iannotta, S.; Khazipov, R.; Erokhin, V.; Mukhtarov, M. Coupling cortical
neurons through electronic memristive synapse. Adv. Mater. Technol. 2019, 4, 1800350. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1126/science.275.5297.213
http://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://www.ncbi.nlm.nih.gov/pubmed/9852584
http://doi.org/10.1016/S0896-6273(01)00542-6
http://www.ncbi.nlm.nih.gov/pubmed/11754844
http://doi.org/10.1038/s41598-017-00981-4
http://www.ncbi.nlm.nih.gov/pubmed/28428560
http://doi.org/10.1063/1.5086873
http://doi.org/10.1109/TNN.2003.820440
http://doi.org/10.1109/TNN.2004.832719
http://doi.org/10.3390/s20020500
http://doi.org/10.3389/fncom.2022.859874
http://doi.org/10.1162/089976698300017502
http://doi.org/10.1007/s00422-008-0233-1
http://doi.org/10.1038/78829
http://www.ncbi.nlm.nih.gov/pubmed/10966623
http://spneuro.net/
http://doi.org/10.1186/1471-2202-7-11
http://www.ncbi.nlm.nih.gov/pubmed/16464257
http://doi.org/10.1016/j.neucom.2004.10.094
http://doi.org/10.1109/TBME.2007.913987
http://www.ncbi.nlm.nih.gov/pubmed/18390329
http://doi.org/10.3390/brainsci11060717
http://doi.org/10.1109/TNSRE.2013.2289911
http://doi.org/10.3390/mi13101692
http://www.ncbi.nlm.nih.gov/pubmed/36296045
http://doi.org/10.1038/srep36837
http://doi.org/10.1109/PROC.1976.10092
http://doi.org/10.1038/nature06932
http://doi.org/10.1021/acsaelm.2c00198
http://www.ncbi.nlm.nih.gov/pubmed/36571090
http://doi.org/10.3389/fnins.2020.00358
http://www.ncbi.nlm.nih.gov/pubmed/32410943
http://doi.org/10.1002/admt.201800350

	Introduction 
	Models and Methods 
	Results 
	Self-Reinforcing of Internetwork Couplings in Neural Circuits 
	The Shortest Pathway Rule 
	Synaptic Competition in SNNs 
	Neuronal Competition of SNN Outputs 
	Robotic Embodiment of Associative Learning 

	Discussion 
	References

