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Abstract

:

Let G be a Poisson–Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle   T G   of   G .   In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle   T G  , and we express in different cases the contravariant Levi-Civita connection and curvature of   T G   in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms    Ω *   ( G )    on G is a differential graded Poisson algebra if, and only if,    Ω *   ( T G )    is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson–Lie group if, and only if, the Sanchez de Alvarez tangent Poisson–Lie group   T G   is also a pseudo-Riemannian Poisson–Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson–Lie groups are given.
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1. Introduction


The Riemannian geometry of tangent bundles and cotangent bundles of smooth manifolds is an important area in physics, classical mechanics and geometrical optics. If M is the configuration space of a mechanical system, then each point of the cotangent bundle    T *  M   of M determines a state of the system and    T *  M   is called the phase space [1]. Moreover, Poisson manifolds play a fundamental role in Hamiltonian dynamics, where they serve as a phase space. For this reason, there is some interest on how structures and, more generally, properties of M carry down to    T *  M  . Furthermore, if M is equipped with a pseudo-Riemannian metric compatible with the Poisson structure on M [2,3], it would be interesting to see if the compatibility remains fulfilled on the tangent bundle   T M  . First, recall that the notion of compatibility between a Poisson structure   Π M   and a contravariant pseudo-Riemannian metric    〈 , 〉  M *   on a smooth manifold M was first introduced by M.Boucetta in [2]. A triplet   ( M ,  Π M  ,   〈 , 〉  M *  )   is compatible in the sense of M.Boucetta [2,4] and is a so-called pseudo-Riemannian Poisson manifold if, for any   α , β , γ ∈  Ω 1   ( M )   :


   D M   Π M   ( α , β , γ )  =  Π M ♯   ( α )   Π M   ( β , γ )  −  Π M   (  D α M  β , γ )  −  Π M   ( β ,  D α M  γ )  = 0 ,  








where   D M   is the contravariant Levi-Civita connection associated with the couple   (  Π M  ,   〈 , 〉  M *  )  .



In [3,5], Hawkins showed that, if a deformation of the graded algebra    Ω *   ( M )    of differential forms on a pseudo-Riemannian manifold   ( M ,   〈 , 〉  M  )   comes from a spectral triple describing the pseudo-Riemannian structure, then the Poisson tensor   Π M   on M (which characterizes the deformation) and the pseudo-Riemannian metric    〈 , 〉  M   satisfy the following compatibility conditions:




	  (  H 1  )  

	
The metric contravariant connection   D M   associated with   (  Π M  ,   〈 , 〉  M  )   is flat.




	  (  H 2  )  

	
The metacurvature   M M   of   D M   is zero, i.e., the connection   D M   is metaflat.









The metric contravariant connection   D M   naturally associated with   (  Π M  ,   〈 , 〉  M  )   is exactly the Levi-Civita contravariant connection.



A triplet   ( M ,  Π M  ,   〈 , 〉  M  )   satisfying conditions   H 1   and   H 2   is said to be compatible in the sense of Hawkins. A deformation of the differential graded algebra of differential forms    Ω *   ( M )    defines a generalized Poisson bracket on this space. Moreover, a generalized Poisson bracket making    Ω *   ( M )    a differential graded Poisson algebra exists if, and only if,   ( M ,  Π M  ,   〈 , 〉  M  )   is compatible in the sense of Hawkins [3].



An important class of Poisson manifolds equipped with pseudo-Riemannian metrics is the family of Poisson–Lie groups equipped with left invariant pseudo-Riemannian metrics.



The notion of the Poisson–Lie group was first introduced by Drinfel’d [6,7] and Semenov–Tian–Shansky [8]. Semenov, Kosmann–Schwarzbach and Magri [9] used Poisson–Lie groups to understand the Hamiltonian structure of the group of dressing transformations of certain integrable systems. These Poisson–Lie groups play the role of symmetry groups.



In [10], M.Boumaiza and N.Zaalani showed that if   ( G ,  Π G  )   is a Poisson–Lie group, then the tangent bundle   ( T G ,  Π  T G   )   of G, with its tangent Poisson structure   Π  T G    defined in the sense of Sanchez de Alvarez [11], is a Poisson–Lie group. This Poisson–Lie group   ( T G ,  Π  T G   )   is called a Sanchez de Alvarez tangent Poisson–Lie group of G [12].



The second author and N. Zaalani [12] have studied the compatibility between the Sanchez de Alvarez Poisson structure and the natural left invariant Riemannian metric. The non-compatibility between the Sanchez de Alvarez Poisson structure and the natural Riemannian metric (except in the trivial case    Π G  = 0  ) on   T G   leads us to define another metric on the tangent Lie group   T G   which is compatible with the Sanchez de Alvarez Poisson structure.



In this paper, we equip G with a Poisson structure and a pseudo-Riemannian metric. Then, we lift these structures on the tangent bundle   T G   of G, and we study the Riemannian geometry of G and its relations with the geometry of   T G  .



This paper is organized as follows: In Section 2, we recall basic definitions and facts about contravariant connections, curvatures, metacurvatures, generalized Poisson brackets and pseudo-Riemannian Poisson–Lie groups. In Section 3, we induce a left invariant contravariant pseudo-Riemannian metric    〈 , 〉   T G  *   on the tangent Poisson–Lie group   ( T G ,  Π  T G   )   and we express in different cases the Levi-Civita connection and curvature of   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   in terms of the Levi-Civita connection and curvature of   ( G ,  Π G  ,   〈 , 〉  G *  )  . In the case where the tangent bundle   T G   is equipped with the Sanchez de Alvarez Poisson structure, we show that the space of differential forms    Ω *   ( T G )    on   T G   is a differential graded Poisson algebra if, and only if,    Ω *   ( G )    is a differential graded Poisson algebra. In Section 4, we show that   ( G ,  Π G  ,   〈 , 〉  G *  )   is a pseudo-Riemannian Poisson–Lie group if, and only if, the Sanchez de Alvarez tangent Poisson–Lie group   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   is also a pseudo-Riemannian Poisson–Lie group. In Section 5, we give some examples of pseudo-Riemannian tangent Poisson–Lie groups.




2. Preliminaries


2.1. Contravariant Connections and Curvatures


Contravariant connections on Poisson manifolds were defined by Vaisman [13] and studied in detail by Fernandes [14]. This notion appears extensively in the context of noncommutative deformations [3,5].



Let   ( M ,  Π M  )   be a Poisson manifold. We associate the Poisson tensor   Π M   with the anchor map    Π M ♯  :  T *  M → T M   defined by   β  (  Π M ♯   ( α )  )  =  Π M   ( α , β )    and the Koszul bracket    [ , ]  M   on the space of differential 1-forms    Ω 1   ( M )    given by:


      [ α , β ]  M    =     L   Π M ♯   ( α )    β −  L   Π M ♯   ( β )    α − d  (  Π M   ( α , β )  )  .     











A contravariant connection on   M ,   with respect to   Π M  , is an  R -bilinear map


   D M  :  Ω 1   ( M )  ×  Ω 1   ( M )  →  Ω 1   ( M )  ,   ( α , β )  ↦  D α M  β ,  








such that for all   f ∈  C ∞   ( M )   ,


   D  f α  M  β = f  D α M  β  and   D α M   ( f β )  = f  D α M  β +  Π M ♯   ( α )   ( f )  β .  











The torsion   T M   and the curvature   R M   of a contravariant connection   D M   are formally identical to the usual ones:


   T M   ( α , β )  =  D α M  β −  D β M  α −   [ α , β ]  M   










   R M   ( α , β )  γ =  D α M   D β M  γ −  D β M   D α M  γ −  D   [ α , β ]  M  M  γ .  



(1)







These are (2,1) and (3,1)-type tensor fields, respectively. When    T M  ≡ 0   (resp.,    R M  ≡ 0  ),   D M   is called torsion-free (resp., flat).



Let   ( M ,  Π M  )   be a Poisson manifold. Let    〈 , 〉  M   be a covariant Riemannian metric on M and    〈 , 〉   M  *   the contravariant Riemannian metric associated with    〈 , 〉  M  . The metric contravariant connection associated with   (  Π M  ,   〈 , 〉   M  *  )   is the unique contravariant connection   D M   such that   D M   is torsion-free and the metric    〈 , 〉   M  *   is parallel with respect to   D M  , i.e.,


   Π M ♯   ( α )    〈 β , γ 〉   M  *  =   〈  D α M  β , γ 〉   M  *  +   〈 β ,  D α M  γ 〉   M  *  .  



(2)







The connection   D M   is called the Levi-Civita contravariant connection associated with   (  Π M  ,   〈 , 〉   M  *  )   and can be defined by the Koszul formula:


     2   〈  D α M  β , γ 〉   M  *     =     Π M ♯   ( α )    〈 β , γ 〉   M  *  +  Π M ♯   ( β )    〈 α , γ 〉   M  *  −  Π M ♯   ( γ )    〈 α , β 〉   M  *        +      〈   [ α , β ]  M  , γ 〉   M  *  +   〈   [ γ , α ]  M  , β 〉   M  *  +   〈   [ γ , β ]  M  , α 〉   M  *  .     



(3)







We say that   D M   is locally symmetric if    D M   R M  = 0 ,   i.e., if for any   α , β , γ , δ ∈  Ω 1   ( M )  ,   we have:


      (  D α M   R M  )   ( β , γ )  δ     : =      D α M   (  R M   ( β , γ )  δ )  −  R M   (  D α M  β , γ )  δ −  R M   ( β , γ )   D α M  δ       −     R M   ( β ,  D α M  γ )  δ = 0 .     



(4)








2.2. Generalized Poisson Bracket on the Space of Differential forms    Ω *   ( M )   


Let   ( M ,  Π M  )   be a Poisson manifold and   D M   a torsion-free and flat connection with respect to   Π M  . In [3], E.Hawkins showed that such a connection defines an  R -bilinear bracket on the space of differential forms    Ω *   ( M )   , also denoted by    { , }  M  , such that:




	
The bracket    { , }  M   is antisymmetric, i.e.,


    { σ , υ }  M  = −   ( − 1 )   deg ( σ ) deg ( υ )     { υ , σ }  M  ;  











	
   { , }  M   satisfies the product rule, i.e.,


    { σ , υ ∧ ν }  M  =   { σ , υ }  M  ∧ ν +   ( − 1 )   deg ( σ ) deg ( υ )   υ ∧   { σ , ν }  M  ;  











	
The exterior differential d is a derivation with respect to    { , }  M  , i.e.,


  d   { σ , υ }  M  =   { d σ , υ }  M  +   ( − 1 )   deg ( σ )     { σ , d υ }  M  ;  











	
For any    f 1  ,  f 2  ∈  C ∞   ( M )    and for any   σ ∈  Ω *   ( M )   , the bracket    {  f 1  ,  f 2  }  M   coincides with the initial Poisson bracket on M and





    {  f 1  , σ }  M  =  D  d f  M  σ .  
















This bracket is given for any   α , β ∈  Ω 1   ( M )    by [15]:


    { α , β }  M  = −  D α M  d β −  D β M  d α + d  D β M  α +   [ α , d β ]  M  ,  



(5)




where    [ , ]  M   is the generalized Koszul bracket on    Ω *   ( M )    satisfying the Leibnuz identity, i.e.,


    [ σ , υ ∧ ν ]  M  =   [ σ , υ ]  M  ∧ ν +   ( − 1 )   ( deg ( σ ) − 1 ) deg ( υ )   υ ∧   [ σ , ν ]  M  .  



(6)




Note that the generalized Koszul bracket for the differential forms is analogous to the Schouten–Nijenhuis bracket for the multivector fields (for more details, see [16] p. 44).



We call this bracket    { , }  M   a generalized pre-Poisson bracket associated with the contravariant connection    D M  .   E.Hawkins showed that there exists a (2,3) tensor   M M   that is symmetrical in the contravariant indices and antisymmetrical in the covariant indices such that the generalized pre-Poisson bracket satisfies the graded Jacobi identity


    { σ ,   { υ , ν }  M  }  M  −   {   { σ , υ }  M  , ν }  M  −   ( − 1 )   deg ( σ ) deg ( υ )     { υ ,   { σ , ν }  M  }  M  = 0 ,  








if, and only if,   M M   is identically zero.



  M M   is called metacurvature of   D M   and is given by


   M M   ( d  f 1  , α , β )  =   {  f 1  ,   { α , β }  M  }  M  −   {   {  f 1  , α }  M  , β }  M  −   {   {  f 1  , β }  M  , α }  M  .  



(7)







If   M M   vanishes identically, the contravariant connection   D M   is called metaflat and the bracket    { , }  M   is called the generalized Poisson bracket associated with   D M  , making    Ω *   ( M )    a differential graded Poisson algebra (for more details, see [3]).




2.3. Pseudo-Riemannian Poisson–Lie Group


An important class of Poisson manifolds is the family of Poisson–Lie groups. A Lie group G is called a Poisson–Lie group if it is also a Poisson manifold such that the product


  m : G × G → G : ( g , h ) ↦ g h  








is a Poisson map, where   G × G   is equipped with the product Poisson structure.



Let G be a Poisson Lie group with Lie algebra   ( g ,   [ , ]  g  )   and   Π G   the Poisson tensor on G. Pulling   Π G   back to the identity element e of G by the left translations, we obtain a map    Π  G  l  : G → g ∧ g  , defined by    Π G l   ( g )  =   (  L  g  − 1    )  *   Π G   ( g )  ,   where    (  L g  )  *   denotes the tangent map of the left translation   L g   of G by g. The intrinsic derivative


  ξ : =  d e   Π G l  : g → g ∧ g  








of   Π G l   at e is a 1-cocycle relative to the adjoint representation of  g  on   g ∧ g  . The dual map of  ξ  is a Lie bracket     [ , ]   g *   :  g *  ×  g *  →  g *    on    g *  .   It is well-known that   ( g ,  g *  )   is a Lie bialgebra.



Let   ( G ,  Π G  )   be a Poisson–Lie group with Lie bialgebra   ( g ,  g *  )  . Let    〈 , 〉   g *    be a bilinear, symmetric and non-degenerate form on   g *   and let    〈 , 〉   G  *   be the contravariant pseudo-Riemannian given by     〈 , 〉   G  *  =   (  L g  )  *    〈 , 〉   g *    . We say that   ( G ,  Π G  ,   〈 , 〉   G  *  )   is a pseudo-Riemannian Poisson–Lie group if, and only if, the Poisson tensor   Π G   and the metric    〈 , 〉   G  *   are compatible in the sense given by M.Boucetta in [4,17], as follows:


    [ A  d g *   (  A α  γ + a  d   Π G l   ( g )   ( α )   *  γ )  , A  d g *   ( β )  ]   g *   +   [ A  d g *   ( α )  , A  d g *   (  A β  γ + a  d   Π G l   ( g )   ( β )   *  γ )  ]   g *   = 0 ,  



(8)




for any   g ∈ G   and for any   α , β , γ ∈  g *   , where A is the infinitesimal Levi-Civita connection associated with   (   [ , ]   g *   ,   〈 , 〉   g *   )  .



Note that the infinitesimal Levi-Civita connection A is the restriction of the Levi-Civita contravariant connection   D G   to    g *  ×  g *    and is given for any   α , β , γ ∈  g *  ,   by:


  2   〈  A α  β , γ 〉   g *   =   〈   [ α , β ]   g *   , γ 〉   g *   +   〈   [ γ , α ]   g *   , β 〉   g *   +   〈   [ γ , β ]   g *   , α 〉   g *   .  



(9)







In [4], M.Boucetta showed that if   ( G ,  Π G  ,   〈 , 〉   G  *  )   is a pseudo-Riemannian Poisson–Lie group, then its dual Lie algebra   (  g *  ,   [ , ]   g *   ,   〈 , 〉   g *   )   equipped with the form    〈 , 〉   g *    is a pseudo-Riemannian Lie algebra, i.e, for any   α , β , γ ∈  g *   , we have


    [  A α  β , γ ]   g *   +   [ α ,  A γ  β ]   g *   = 0 .  



(10)









3. Pseudo-Riemannian Geometry of Tangent Poisson–Lie Group


Let G be a n-dimensional Lie group with multiplication   m : G × G → G : ( g , h ) ↦ g h   and with Lie algebra   ( g ,   [ , ]  g  )  . We denote by    L g  : G → G : h ↦ g h ,   the left translation and    R g  : G → G : h ↦ h g ,   the right translation of G by g.



The tangent map   T m   of   m ,  


  T m : T G × T G ↦ T G :  (  X g  ,  Y h  )  ↦  T h   L g   Y h  +  T g   R h   X g  ,  



(11)




defines a Lie group structure on   T G   with identity element   ( e , 0 )   and with Lie algebra the semi-direct product of Lie algebra   g ⋊ g  , with bracket [10,18]:


    [  ( X , Y )  ,  (  X   ′   ,  Y   ′   )  ]   g ⋊ g   =  (   [ X ,  X   ′   ]  g  ,   [ X ,  Y   ′   ]  g  +   [ Y ,  X   ′   ]  g  )  ,  



(12)




where    ( X ,  X   ′   )  ,  ( Y ,  Y   ′   )  ∈ g ⋊ g .  



Let   ( G ,  Π G  )   be a Poisson–Lie group with Lie bilagebra   ( g ,  g *  )   and let   T G   be the tangent bundle of G. According to M.Boumaiza and N.Zaalani [10], the tangent bundle   T G   of G with the multiplication (11) and with its tangent Poisson structure   Π  T G   , defined in the sense of Sanchez de Alvarez [11], is a Poisson–Lie group with Lie bialgebra   ( g ⋊ g ,  g *  ⋉  g *  )  , where    g *  ⋉  g *    is the semi-direct product Lie algebra with bracket:


    [  ( α , β )  ,  (  α ′  ,  β ′  )  ]     g  *  ⋉   g  *    =  (   [ α ,  β ′  ]   g *   +   [ β ,  α ′  ]   g *   ,   [ β ,  β ′  ]   g *   )  ,  



(13)




where    ( α , β )  ,   (  α ′  ,  β ′  )  ∈   g  *  ×   g  *   .



On the other hand, if   ( G ,  Π G  )   is a Poisson–Lie group, there exists a linear Poisson structure   Π g   on  g , whose value at   X ∈ g   is given by    Π g   ( X )  =  d e   Π G   ( X )  .   The linear Poisson structure   Π g   on   g =  T e  G   makes   ( g ,  Π g  )   an abelian Poisson–Lie group with Lie bialgebra   ( g ,  g *  )   such that the Lie bracket of  g  is zero and the Lie bracket of   g *   is    [ , ]   g *   .



If we identify the tangent bundle   T G ≡ G × g   with the direct product Poisson–Lie group of   ( G ,  Π G  )   and   ( g ,  Π g  )  ; then,   ( T G ≡ G × g ,  Π  G × g   )   is a Poisson–Lie group, with Lie-bialgebra   ( g × g ,   g  *  ×   g  *  )  , where   g × g   is the direct product Lie algebra with bracket:


    [  ( X , Y )  ,  (  X ′  ,  Y ′  )  ]   g × g   =  (   [ X ,  X ′  ]  g  , 0 )  ,     ( X , Y )  ,   (  X ′  ,  Y ′  )  ∈ g × g ,  



(14)




and     g  *  ×   g  *    is the direct product Lie algebra with bracket:


    [  ( α , β )  ,  (  α ′  ,  β ′  )  ]     g  *  ×   g  *    =  (   [ α ,  α ′  ]   g *   ,   [ β ,  β ′  ]   g *   )  ,    ( α , β )  ,   (  α ′  ,  β ′  )  ∈   g  *  ×   g  *  .  



(15)







Now, we equip G with a left invariant pseudo-Riemannian metric, and we lift this metric to the tangent bundle   T G .  



Let   π : T G → G : ( g , X ) ↦ g ,   be the natural projection. The differential mapping   d π ( e , 0 )   at the point   ( e , 0 )   is given by:


  d π ( e , 0 ) : g × g → g : ( X , Y ) ↦ X ,  








and the vertical subspace   V  ( e , 0 )    of   g × g   is given by    V  ( e , 0 )   = ker  ( d π  ( e , 0 )  )  =  { 0 }  × g .  



It has been shown that the complete and vertical lifts of any left invariant vector fields of G are left invariant fields on the tangent Lie group   T G   (see proposition 1.3 page 183 of [19] or theorems 1.2.2 and 1.2.3 of [20]). In fact, if   (  X 1  , … ,  X n  )   is a basis for the Lie algebra  g  of G, then   {  X 1 v  =  ( 0 ,  X 1  )  , … ,  X n v  =  ( 0 ,  X n  )  ,  X 1 c  =  (  X 1  , 0 )  , … ,  X  n  c  =  (  X n  , 0 )  }   is a basis for the Lie algebra   g × g   of   T G ,   where    X  1  v  =  ( 0 ,  X 1  )    (resp.,    X  1  c  =  (  X 1  , 0 )   ) is the vertical lift (resp., the complete lift) of the vector field   X 1   on G to   T G .  



Let    〈 , 〉  G   be a left invariant pseudo-Riemannian metric on G. Then, we define a left invariant pseudo-Riemannian metric    〈 , 〉   T G    on   T G   as follows:


       〈  ( 0 , Y )  ,  ( 0 ,  Y   ′   )  〉   T G    ( e , 0 )     =    0 ,         〈  ( X , 0 )  ,  ( 0 ,  Y   ′   )  〉   T G    ( e , 0 )     =      〈 X ,  Y   ′   〉  G   ( e )          〈  ( X , 0 )  ,  (  X   ′   , 0 )  〉   T G    ( e , 0 )     =      〈 X ,  X   ′   〉  G   ( e )  ,     



(16)




where    ( X , Y )  ,  (  X   ′   ,  Y   ′   )  ∈ g × g  .



The left invariant contravariant pseudo-Riemannian metric    〈 , 〉   T G  *   on   T G   associated with    〈 , 〉   T G    is given for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ∈  g *  ×  g *    by:


       〈  ( α , 0 )  ,  (  α   ′   , 0 )  〉   T G  *   ( e , 0 )     =    0 ,         〈  ( α , 0 )  ,  ( 0 ,  β   ′   )  〉   T G  *   ( e , 0 )     =      〈 α ,  β   ′   〉  G *   ( e )          〈  ( 0 , β )  ,  ( 0 ,  β   ′   )  〉   T G  *   ( e , 0 )     =      〈 β ,  β   ′   〉  *   ( e )  ,     



(17)




where    α v  =  ( α , 0 )    (resp.,    α c  =  ( 0 , α )   ) is the vertical lift (resp., the complete lift) of the 1-form  α  on G to   T G .   (for more details on lift tensor fields, see [19]).



3.1. Pseudo-Riemannian Geometry of Product Poisson Structure on   T G  


In this subsection, we consider the left invariant contravariant pseudo-Riemannian metric    〈 , 〉   T G  *   defined as above on the tangent bundle   ( T G ,  Π  G × g   )   equipped with the product Poisson structure. Then, we study the geometry of the triplet   ( T G ,  Π  G × g   ,   〈 , 〉   T G  *  )   and its relations with the geometry of   ( G ,  Π G  ,   〈 , 〉  G *  ) .  



First of all, we note that if we denote by   D g   the Levi-Civita connection associated with   (  Π g  ,   〈 , 〉  G   ( e )  )   and by   R g   the curvature of   D g  , then the restriction of   D G   to    g *  ×  g *    coincides with   D g   and the restriction of the curvature   R G   of   D G   to   g *   coincides with   R g  , i.e.,


   D α G  β =  D α g  β ,   R G   ( α , β )  γ =  R g   ( α , β )  γ ,  








for any   α , β , γ ∈  g *  .  



Proposition 1. 

Let   D G   and   D  G × g    be the Levi-Civita contravariant connections associated with   (  Π G  ,   〈 , 〉  G *  )   and   (  Π  G × g   ,   〈 , 〉   T G  *  )  , respectively. Then, for any    ( α , β )  ,  (  α ′  ,  β ′  )  ,  (  α  ″   ,  β  ″   )  ∈  g *  ×  g *  ,   we have:








	1. 

	
     〈  D  ( α , 0 )   G × g    (  α ′  , 0 )  ,  (  α  ″   , 0 )  〉   T G  *  = 0 ,   




	2. 

	
     〈  D  ( α , 0 )   G × g    (  α ′  , 0 )  ,  ( 0 ,  β  ″   )  〉   T G  *  =  1 2    〈  (   [ α ,  α   ′   ]   g *   , 0 )  ,  ( 0 ,  β  ″   )  〉   T G  *  ,   




	3. 

	
     〈  D  ( α , 0 )   G × g    ( 0 ,  β ′  )  ,  (  α  ″   , 0 )  〉   T G  *  = −  1 2    〈  ( 0 ,  ad α t   β   ′   )  ,  (  α  ″   , 0 )  〉   T G  *  ,   




	4. 

	
     〈  D  ( α , 0 )   G × g    ( 0 ,  β ′  )  ,  ( 0 ,  β  ″   )  〉   T G  *  = −  1 2    〈  (  ad  β   ′   t  α , 0 )  ,  ( 0 ,  β    ″    )  〉   T G  *  ,   




	5. 

	
     〈  D  ( 0 , β )   G × g    (  α ′  , 0 )  ,  (  α  ″   , 0 )  〉   T G  *  = −  1 2    〈  ( 0 ,  ad  α   ′   t  β )  ,  (  α  ″   , 0 )  〉   T G  *  ,   




	6. 

	
     〈  D  ( 0 , β )   G × g    (  α ′  , 0 )  ,  ( 0 ,  β  ″   )  〉   T G  *  = −  1 2    〈  (  ad β t   α   ′   , 0 )  ,  ( 0 ,  β    ″    )  〉   T G  *  ,   




	7. 

	
     〈  D  ( 0 , β )   G × g    ( 0 ,  β ′  )  ,  (  α  ″   , 0 )  〉   T G  *  =  1 2    〈  ( 0 ,   [ β ,  β   ′   ]   g *   )  ,  (  α  ″   , 0 )  〉   T G  *  ,   




	8. 

	
     〈  D  ( 0 , β )   G × g    ( 0 ,  β ′  )  ,  ( 0 ,  β  ″   )  〉   T G  *  =   〈  ( 0 ,  D β G   β ′  )  ,  ( 0 ,  β  ″   )  〉   T G  *  ,   









where   ad α t   denotes the transpose of   ad α   with respect to     〈 , 〉  G *  .  





Proof. 

According to Equations (9), (15) and (17), for example for (5) we obtain:


     2   〈  D  ( 0 , β )   T G    (  α ′  , 0 )  ,  (  α  ″   , 0 )  〉   T G  *     =     〈   [  ( 0 , β )  ,  (  α ′  , 0 )  ]    g *  ×  g *    ,  (  α  ″   , 0 )  〉   T G  *       +     〈   [  (  α  ″   , 0 )  ,  ( 0 , β )  ]    g *  ×  g *    ,  (  α ′  , 0 )  〉   T G  *       +     〈   [  (  α  ″   , 0 )  ,  (  α ′  , 0 )  ]    g *  ×  g *    ,  ( 0 , β )  〉   T G  *       =     〈   [  α    ″    ,  α ′  ]   g *   ,  ( β , 0 )  〉  G *       =    −   〈  α    ″    ,  ad  α   ′   t  β 〉  G *        =    −   〈  ( 0 ,  ad  α   ′   t  β )  ,  (  α    ″    , 0 )  〉   T G  *  .     











□





Lemma 1. 

For any    ( α , β )  ,  (  α ′  ,  β ′  )  ∈  g *  ×  g *  ,   we have:








	1. 

	
    D  ( α , 0 )   G × g    (  α ′  , 0 )  =  1 2   (   [ α ,  α   ′   ]   g *   , 0 )  ,   




	2. 

	
    D  ( α , 0 )   G × g    ( 0 ,  β ′  )  =  1 2   (  ad α t   β   ′   −  ad  β   ′   t  α , −  ad α t   β   ′   )  ,   




	3. 

	
    D  ( 0 , β )   G × g    (  α ′  , 0 )  =  1 2   (  ad  α   ′   t  β −  ad β t   α   ′   , −  ad  α   ′   t  β )  ,   




	4. 

	
    D  ( 0 , β )   G × g    ( 0 ,  β ′  )  =  1 2   (  D β G   β   ′   +  D  β   ′   G  β ,   [ β ,  β   ′   ]   g *   )  .   











Proof. 

Using the previous proposition we obtain:




	(1)

	


      〈  D  ( α , 0 )   G × g    (  α ′  , 0 )  ,  (  α  ″   ,  β  ″   )  〉   T G  *    =      〈  D  ( α , 0 )   G × g    (  α ′  , 0 )  ,  (  α  ″   , 0 )  〉   T G  *  +   〈  D  ( α , 0 )   G × g    (  α ′  , 0 )  ,  ( 0 ,  β  ″   )  〉   T G  *        =     1 2    〈  (   [ α ,  α   ′   ]   g *   , 0 )  ,  ( 0 ,  β  ″   )  〉   T G  *        =      〈  1 2   (   [ α ,  α   ′   ]   g *   , 0 )  ,  (  α  ″   ,  β  ″   )  〉   T G  *  ,     








then,    D  ( α , 0 )   G × g    (  α ′  , 0 )  =  1 2   (   [ α ,  α   ′   ]   g *   , 0 )   .




	(2)

	


      〈  D  ( α , 0 )   G × g    ( 0 ,  β ′  )  ,  (  α  ″   ,  β  ″   )  〉   T G  *    =      〈  D  ( α , 0 )   G × g    ( 0 ,  β ′  )  ,  (  α  ″   , 0 )  〉   T G  *  +   〈  D  ( α , 0 )   G × g    ( 0 ,  β ′  )  ,  ( 0 ,  β  ″   )  〉   T G  *        =    −  1 2    〈  ( 0 ,  ad α t   β   ′   )  ,  (  α  ″   , 0 )  〉   T G  *  + −  1 2    〈  (  ad  β   ′   t  α , 0 )  ,  ( 0 ,  β    ″    )  〉   T G  *        =      〈  1 2   (  ad α t   β   ′   −  ad  β   ′   t  α , −  ad α t   β   ′   )  ,  (  α  ″   ,  β  ″   )  〉   T G  *  ,     








then,    D  ( α , 0 )   G × g    ( 0 ,  β ′  )  =  1 2   (  ad α t   β   ′   −  ad  β   ′   t  α , −  ad α t   β   ′   )  .  



In the same way, we can obtain   ( 3 )   and   ( 4 )  .









□





Theorem 1. 

Let   R G   and   R  G × g    be the curvatures of   D G   and   D  G × g    respectively. Then for any    ( α , β )  ,  (  α ′  ,  β ′  )  ,  (  α  ″   ,  β  ″   )  ∈  g *  ×  g *  ,   we have:








	1. 

	


       R  G × g    (  ( α , 0 )  ,  (  α ′  , 0 )  )   (  α  ″   , 0 )     =     1 4  (   [ α ,   [  α   ′   ,  α    ″    ]   g *   ]    g *    +   [  α   ′   ,   [  α    ″    , α ]   g *   ]   g *         +    2   [  α    ″    ,   [ α ,  α   ′   ]   g *   ]   g *   , 0 ) .      












	2. 

	


       R  G × g    (  ( α , 0 )  ,  (  α ′  , 0 )  )   ( 0 ,  β  ″   )      =  1 4  (   [ α ,  ad  α   ′   t   β    ″    −  ad  β    ″    t   α   ′   ]   g *   −   [  α   ′   ,  ad α t   β    ″    −  ad  β    ″    t  α ]   g *             −   ad α t   ad  α   ′   t   β    ″    +  ad   ad  α   ′   t   β    ″     t  α +  ad  α   ′   t   ad α t   β    ″    −  ad   ad α t   β    ″     t   α   ′             −  2  ad   [ α ,  α   ′   ]   g *   t   β    ″    + 2  ad  β    ″    t    [ α ,  α   ′   ]   g *   ,  ad α t   ad  α   ′   t   β    ″    −  ad  α   ′   t   ad α t   β    ″              +  2  ad   [ α ,  α   ′   ]   g *   t   β    ″    ) .      












	3. 

	


       R  G × g    (  ( 0 , β )  ,  (  α ′  , 0 )  )   (  α  ″   , 0 )      =  1 4  (  ad   [  α   ′   ,  α    ″    ]   g *   t  β −  ad β t    [  α   ′   ,  α    ″    ]   g *   −   [  α   ′   ,  ad  α    ″    t  β −  ad β t   α    ″    ]   g *             +   ad  α   ′   t   ad  α    ″    t  β −  ad   ad  α    ″    t  β  t   α   ′   , −  ad   [  α   ′   ,  α    ″    ]   g *   t  β −  ad  α   ′   t   ad  α    ″    t  β ) .      












	4. 

	


       R  G × g    (  ( 0 , β )  ,  (  α ′  , 0 )  )   ( 0 ,  β  ″   )      =  1 4  (  ad   ad  α   ′   t   β    ″    −  ad  β    ″    t   α   ′    t  β −  ad β t   ad  α   ′   t   β    ″    +  ad β t   ad  β    ″    t   α   ′   −  D β G   ad  α   ′   t   β    ″              −   D   ad  α   ′   t   β    ″     G  β −   [  α   ′   ,  D β G   β    ″    +  D  β    ″    G  β ]   g *   −  ad  α   ′   t    [ β ,  β    ″    ]   g *             +   ad   [ β ,  β    ″    ]   g *   t   α   ′   , −  ad   ad  α   ′   t   β   ′   −  ad  β    ″    t   α   ′    t  β −   [ β ,  ad  α   ′   t   β    ″    ]   g *             −   ad  α   ′   t    [ β ,  β   ′   ]   g *   ) .      












	5. 

	


       R  G × g    (  ( 0 , β )  ,  ( 0 ,  β ′  )  )   (  α  ″   , 0 )      =  1 4  (  ad   ad  α    ″    t   β   ′   −  ad  β   ′   t   α    ″     t  β −  ad β t   ad  α    ″    t   β   ′   +  ad β t   ad  β   ′   t   α    ″    −  D β G   ad  α    ″    t   β   ′             −   D   ad  α    ″    t  β  G   β   ′   −  ad   ad  α    ″    t  β −  ad β t   α    ″     t   β   ′   +  ad  β   ′   t   ad  α    ″    t  β −  ad  β   ′   t   ad β t   α    ″              +   D  β   ′   G   ad  α    ″    t  β +  D   ad  α    ″    t  β  G   β   ′   − 2  ad  α    ″    t    [ β ,  β   ′   ]   g *             +  2  ad   [ β ,  β   ′   ]   g *   t   α    ″    , −  ad   ad  α    ″    t   β   ′   −  ad  β   ′   t   α    ″     t  β −   [ β ,  ad  α    ″    t   β   ′   ]   g *             +   ad   ad  α    ″    t  β −  ad β t   α    ″     t   β   ′   +   [  β   ′   ,  ad  α    ″    t  β ]   g *   − 2  ad  α    ″    t    [ β ,  β   ′   ]   g *   ) .      












	6. 

	


       R  G × g    (  ( 0 , β )  ,  ( 0 ,  β ′  )  )   ( 0 ,  β  ″   )      =  1 4  (  R G   ( β ,  β   ′   )   β    ″    −  D β G   D  β    ″    G   β   ′   +  D β G   D  β    ″    G   β   ′   −  D   [ β ,  β   ′   ]   g *   G   β    ″              +   ad  (  D  β   ′   G   β    ″    +  D  β    ″    G   β   ′   )  t  β −  ad β t   (  D  β   ′   G   β    ″    +  D  β    ″    G   β   ′   )            −   ad  (  D β G   β    ″    +  D  β    ″    G  β )  t   β   ′   +  ad  β   ′   t   (  D β G   β    ″    +  D  β    ″    G  β )  −  D   [ β ,  β    ″    ]   g *   G   β   ′             +  2  D  β    ″    G    [ β ,  β   ′   ]   g *   , −  ad  (  D  β   ′   G   β    ″    +  D  β    ″    G   β   ′   )  t  β           +   ad  (  D β G   β    ″    +  D  β    ″    G  β )  t   β   ′   +   [  β    ″    ,   [ β ,  β   ′   ]   g *   ]   g *   ) .      



















Proof. 

Using the Equation (1) and the Lemma 1, for example, for (3), we find:


      R  G × g    (  ( 0 , β )  ,  (  α ′  , 0 )  )   (  α  ″   , 0 )     =     D  ( 0 , β )   G × g    D  (  α   ′   , 0 )   G × g    (  α    ″    , 0 )  −  D  (  α   ′   , 0 )   G × g    D  ( 0 , β )   G × g    (  α    ″    , 0 )        −     D   [  ( 0 , β )  ,  (  α   ′   , 0 )  ]    g *  ×  g *     G × g    (  α    ″    , 0 )        =     D  ( 0 , β )   G × g    1 2   (   [  α   ′   ,  α    ″    ]   g *   , 0 )  −  D  (  α   ′   , 0 )   G × g    1 2   (  ad  α    ″    t  β −  ad β t   α    ″    , −  ad  α    ″    t  β )        =     1 4    ad   [  α   ′   ,  α    ″    ]   g *    β −  ad β t    [  α   ′   ,  α    ″    ]   g *   , −  ad   [  α   ′   ,  α    ″    ]   g *   t  β        −     1 4     [  α   ′   ,  ad  α    ″    t  β −  ad β t   α    ″    ]   g *   , 0        +     1 4    ad  α   ′   t   ad  α    ″    t  β −  ad   ad  α    ″    t  β  t   α   ′   , −  ad  α   ′   t   ad  α    ″    t  β        =     1 4  (  ad   [  α   ′   ,  α    ″    ]   g *   t  β −  ad β t    [  α   ′   ,  α    ″    ]   g *   −   [  α   ′   ,  ad  α    ″    t  β −  ad β t   α    ″    ]   g *         +     ad  α   ′   t   ad  α    ″    t  β −  ad   ad  α    ″    t  β  t   α   ′   , −  ad   [  α   ′   ,  α    ″    ]   g *   t  β −  ad  α   ′   t   ad  α    ″    t  β ) .     











□





If    〈 , 〉  G *   is a bi-invariant pseudo-Riemannian metric on a Poisson–Lie group   ( G ,  Π G  )  , then as a consequence of Formula (9), we have    D α G  β =  1 2    [ α , β ]   g *     and    ad α t  = −  ad α  ,   for any   α , β ∈  g *  .   (For more details in the covariant case, see [21]).



Corollary 1. 

If we let    〈 , 〉  G *   be a bi-invariant contravariant pseudo-Riemannian metric on a Poisson–Lie group   ( G ,  Π G  )  , then for any    ( α , β )  ,  (  α ′  ,  β ′  )  ∈  g *  ×  g *  ,   we have:








	1. 

	
    D  ( α , 0 )   G × g    (  α ′  , 0 )  =  (  D α G   α   ′   , 0 )  ;   




	2. 

	
    D  ( α , 0 )   G × g    ( 0 ,  β ′  )  =  ( 2  D  β   ′   G  α ,  D α G   β   ′   )  ;   




	3. 

	
    D  ( 0 , β )   G × g    (  α ′  , 0 )  =  ( 2  D β G   α   ′   ,  D  α   ′   G  β )  ;   




	4. 

	
    D  ( 0 , β )   G × g    ( 0 ,  β ′  )  =  ( 0 ,  D β G   β   ′   )  .   











Proof. 

Since    〈 , 〉  G *   is bi-invariant, then using Lemma 1, for example, for (2), we find:


      D  ( α , 0 )   G × g    ( 0 ,  β ′  )     =     1 2   (  ad α t   β   ′   −  ad  β   ′   t  α , −  ad α t   β   ′   )        =     1 2   ( −  ad α   β   ′   +  ad  β   ′    α ,  ad α   β   ′   )        =    (   [  β   ′   , α ]   g *   ,  1 2    [ α ,  β   ′   ]   g *   )       =    ( 2  D  β   ′   G  α ,  D α G   β   ′   ) .     











□





Corollary 2. 

If we let    〈 , 〉  G *   be a bi-invariant contravariant pseudo-Riemannian metric on a Poisson–Lie group   ( G ,  Π G  )  , then for any    ( α , β )  ,  (  α ′  ,  β ′  )  ,  (  α    ″    ,  β    ″    )  ∈  g *  ×  g *  ,   we have:








	1. 

	
   R  G × g    (  ( α , 0 )  ,  (  α ′  , 0 )  )   (  α  ″   , 0 )  =  (  R G   ( α ,  α   ′   )   α    ″    , 0 )   ;




	2. 

	


        R  G × g    (  ( α , 0 )  ,  (  α ′  , 0 )  )   ( 0 ,  β    ″    )     =    ( 2  (  R G   ( α ,  β    ″    )   α   ′   +  R G   (  β    ″    ,  α   ′   )  α )  −  D   D  β    ″    G  α  G   α   ′         +     D   D  β    ″    G   α   ′    G  α ,  R G   ( α ,  α   ′   )   β    ″    )     ;   












	3. 

	


        R  G × g    (  ( 0 , β )  ,  (  α ′  , 0 )  )   (  α    ″    , 0 )     =    ( 2  (  D β G   D  α   ′   G   α    ″    −  D  α   ′   G   D β G   β    ″    −  D   D  α    ′ ′    G  β  G   α   ′   )  ,  D   D  α   ′   G   α    ″     G  β       −     D  α   ′   G   D  α    ″    G  β )     ;   












	4. 

	
    R  G × g    (  ( 0 , β )  ,  (  α ′  , 0 )  )   ( 0 ,  β    ″    )  =  4  D β G   D  β    ″    G   α   ′   − 2  D   D β G   β    ″     G   α   ′   , 2  D   D  β    ″    G   α   ′    G  β −  D β G   D  α   ′   G   β    ″     ;   




	5. 

	


        R  G × g    (  ( 0 , β )  ,  ( 0 ,  β   ′   )  )   (  α    ″    , 0 )     =    ( 4  R G   ( β ,  β   ′   )   α    ″    + 2  D   [ β ,  β   ′   ]   g *   G   α    ″    ,  D β G   D  α    ″    G   β   ′         −     D  β   ′   G   D  α    ″    G  β + 2  D   D  β   ′   G   α    ″     G  β − 2  D   D β G   α    ″     G   β   ′   −  D  α    ″    G    [ β ,  β   ′   ]   g *   )     ;   












	6. 

	
    R  G × g    (  ( 0 , β )  ,  ( 0 ,  β   ′   )  )   ( 0 ,  β    ″    )  =  0 ,  R G   ( β ,  β   ′   )   β    ″     .   











According to the Theorem 1 if the connection   D G   is flat, then the connection   D  G × g    is not necessarily flat. So, in this case, we cannot study the generalized Poisson bracket on the space of differential forms    Ω *   ( T G )   . For this reason, we focus on the Sanchez de Alvarez Poisson structure on the tangent bundle   T G   in the following subsection.




3.2. Pseudo-Riemannian Geometry of Sanchez de Alvarez Tangent Poisson–Lie Group


In this subsection, we consider the left invariant contravariant pseudo-Riemannian metric    〈 , 〉   T G  *   on the Sanchez de Alvarez Poisson–Lie group   ( T G ,  Π  T G   )  , and we study the geometry of the triplet   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   and its relations with the geometry of   ( G ,  Π G  ,   〈 , 〉  G *  ) .  



Proposition 2. 

Let   ( G ,  Π G  ,   〈 , 〉  G *  )   be a Poisson–Lie group equipped with the left invariant contravariant pseudo-Riemannian metric    〈 , 〉  G *   and   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   the Sanchez de Alvarez tangent Poisson–Lie group of G equipped with the left invariant pseudo-Riemannian metric    〈 , 〉   T G  *   associated with    〈 , 〉  G *  . Let   D  T G    and   D G   be the Levi-Civita contravariant connections associated with   (  Π  T G   ,   〈 , 〉   T G  *  )   and   (  Π G  ,   〈 , 〉  G *  )  , respectively. Then, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ∈  g *  ×  g *   , we have:


    D  ( α , β )   T G    (  α   ′   ,  β   ′   )  =   D α G   β   ′   +  D β G   α   ′   ,  D β G   β   ′    .   













Proof. 

According to Equations (9), (13) and (17), we obtain:


      2   〈  D  ( α , β )   T G    (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  〉   T G  *     =     〈   [  ( α , β )  ,  (  α   ′   ,  β   ′   )  ]    g *  ⋉  g *    ,  (  α    ″    ,  β    ″    )  〉   T G  *       +     〈   [  (  α    ″    ,  β    ″    )  ,  ( α , β )  ]    g *  ⋉  g *    ,  (  α   ′   ,  β   ′   )  〉   T G  *       +     〈   [  (  α    ″    ,  β    ″    )  ,  (  α   ′   ,  β   ′   )  ]    g *  ⋉  g *    ,  ( α , β )  〉   T G  *       =     〈  (   [ α ,  β   ′   ]   g *   +   [ β ,  α   ′   ]   g *   ,   [ β ,  β   ′   ]   g *   )  ,  (  α    ″    ,  β    ″    )  〉   T G  *       +     〈  (   [  α    ″    , β ]   g *   +   [  β    ″    , α ]   g *   ,   [  β    ″    , β ]   g *   )  ,  (  α   ′   ,  β   ′   )  〉   T G  *       +     〈   [  α    ″    ,  β   ′   ]   g *   +   [  β    ″    ,  α   ′   ]   g *   ,   [  β    ″    ,  β   ′   ]   g *   )  ,  ( α , β )    〉   T G  *        =   2   〈  (  D α G   β   ′   +  D β G   α   ′   ,  D β G   β   ′   )  ,  (  α    ″    ,  β    ″    )  〉   T G  *  .     








□





Lemma 2. 

Let   R  T G    and   R G   be the curvatures of   D  T G    and   D G  , respectively. Then, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ∈  g *  ×  g *   , we have:


    R  T G    (  ( α , β )  ,  (  α   ′   ,  β   ′   )  )   (  α    ″    ,  β    ″    )  =   R G   ( α ,  β   ′   )   β    ″    +  R G   ( β ,  α   ′   )   β    ″    +  R G   ( β ,  β   ′   )   α    ″    ,  R G   ( β ,  β   ′   )   β    ″     .   













Proof. 

Using the definition of the curvature tensor (1) and Proposition 2, we obtain:


      R  T G    (  ( α , β )  ,  (  α   ′   ,  β   ′   )  )   (  α    ″    ,  β    ″    )     =     D  ( α , β )   T G    D  (  α   ′   ,  β   ′   )   T G    (  α    ″    ,  β    ″    )  −  D  (  α   ′   ,  β   ′   )   T G    D  ( α , β )   T G    (  α    ″    ,  β    ″    )        −     D   [  ( α , β )  ,  (  α   ′   ,  β   ′   )  ]     g  *  ⋉   g  *     T G    (  α    ″    ,  β    ″    )        =     D  ( α , β )   T G    (  D  α   ′   G   β    ″    +  D  β   ′   G   α    ″    ,  D  β   ′   G   β    ″    )        −     D  (  α   ′   ,  β   ′   )   T G    (  D α G   β    ″    +  D β G   α    ″    ,  D β G   β    ″    )        −     D  (   [ α ,  β   ′   ]   g *   +   [ β ,  α   ′   ]   g *   ,   [ β ,  β   ′   ]   g *   )   T G    (  α    ″    ,  β    ″    )        =     D α G   D  β   ′   G   β    ″    +  D β G   D  α   ′   G   β    ″    +  D β G   D  β   ′   G   α    ″    ,  D β G   D  β   ′   G   β    ″          −     D  α   ′   G   D β G   β    ″    +  D  β   ′   G   D α G   β    ″    +  D  β   ′   G   D β G   α    ″    ,  D  β   ′   G   D β G   β    ″          −     D   [ α ,  β   ′   ]   g *   G   β    ″    +  D   [ β ,  α   ′   ]   g *   G   β    ″    +  D   [ β ,  β   ′   ]   g *   G   α    ″    ,  D   [ β ,  β   ′   ]   g *   G   β    ″          =     R G   ( α ,  β   ′   )   β    ″    +  R G   ( β ,  α   ′   )   β    ″    +  R G   ( β ,  β   ′   )   α    ″    ,  R G   ( β ,  β   ′   )   β    ″        











□





Proposition 3. 

The Levi-Civita contravariant connection   D G   is locally symmetric if and only if the connection   D  T G    is locally symmetric.





Proof. 

For any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ,  (  α    ‴    ,  β    ‴    )  ∈  g *  ×  g *    we obtain



  H =  (  D  ( α , β )   T G    R  T G   )   (  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )   . According to Equation (4), Proposition 2 and Lemma 2, we obtain:


    H   =     D  ( α , β )   T G    (   R  T G    (  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )  −  R  T G    (  D  ( α , β )   T G    (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )        −     R  T G    (  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   D  ( α , β )   T G    (  α    ‴    ,  β    ‴    )  −  R  T G    (  (  α   ′   ,  β   ′   )  ,  D  ( α , β )   T G    (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )        =     D  ( α , β )   T G    (  R G   (  α   ′   ,  β    ″    )   β    ‴    +  R G   (  β   ′   ,  α    ″    )   β    ‴    +  R G   (  β   ′   ,  β    ″    )   α    ‴    ,  R G   (  β   ′   ,  β    ″    )   β    ‴           −     R  T G    (  (  D α G   β   ′   +  D β G   α   ′   ,  D β G   β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )        −     R  T G    (  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  D α G   β    ‴    +  D β G   α    ‴    ,  D β G   β    ‴    )        −     R  T G    (  (  α   ′   ,  β   ′   )  ,  (  D α G   β    ″    +  D β G   α    ″    ,  D β G   β    ″    )  )   (  α    ‴    ,  β    ‴    )      











By developing again with Proposition 2 and Lemma 2, we obtain:


      (  D  ( α , β )   T G    R  T G   )   (  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )   (  α    ‴    ,  β    ‴    )     =    (  (  D α G   R G  )   (  β   ′   ,  β    ″    )   β    ‴    +  (  D β G   R G  )   (  α   ′   ,  β    ″    )   β    ‴          +     (  D β G   R G  )   (  β   ′   ,  α    ″    )   β    ‴          +     (  D β G   R G  )   (  β   ′   ,  β    ″    )   α    ‴    ,  (  D β G   R G  )   (  β   ′   ,  β    ″    )   β    ‴    )     











If    D G   R G  = 0 ,   then    D  T G    R  T G   =  ( 0 , 0 )  .   Conversely, if    D  T G    R  T G   =  ( 0 , 0 )   , then for any   β ,  β   ′   ,  β    ″    ,  β    ‴    ∈  g *   , we have


   D β G   R G   (  β   ′   ,  β    ″    )   β    ‴    = 0 .  











Hence,   D G   is locally symmetric. □





Lemma 3. 

Let    [ , ]  G   and    [ , ]   T G    be the generalized Koszul brackets on    Ω *   ( G )    and    Ω *   ( T G )   , respectively. Then, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ∈  g *  ×  g *   , we have:


       [  ( α , β )  , d  (  α   ′   ,  β   ′   )  ]   T G     =    (   [ α , d  β   ′   ]  G  +   [ β , d  α   ′   ]  G  ,   [ β , d  β   ′   ]  G  )       =      (   [ α , d  β   ′   ]  G  +   [ β , d  α   ′   ]  G  )  v  +   (   [ β , d  β   ′   ]  G  )  c  ,      








where    (   [ α , d  β   ′   ]  G  )  v   (resp.,    (   [ β , d  β   ′   ]  G  )  c  ) is the vertical lift (resp., the complete lift) of the 2-form    [ α , d  β   ′   ]  G   (resp.,    [ β , d  β   ′   ]  G  ) on G to   T G .  





Proof. 

Let   (  x i  )   be local coordinates of G in a neighborhood of e and   (  x i  ,  y i  )   be the correspondent local coordinates of   T G ,   in a neighborhood of   ( e , 0 )  . Let   α =    ∑ i     α i  d  x i    and    β   ′   =    ∑ i     β  i    ′   d  x i    be elements of   g *  . We write    ( α , 0 )  =    ∑ i     α i  d  x i    and    ( 0 ,  β   ′   )  =    ∑ i     β  i    ′   d  y i   . Then, using Equations (6) and (13), for example, for    [  ( α , 0 )  , d  ( 0 ,  β   ′   )  ]   T G   , we have:


      [  ( α , 0 )  , d  ( 0 ,  β   ′   )  ]   T G     =      ∑ i     [  ( α , 0 )  , d  ( 0 ,  β  i    ′   d  x i  )  ]   T G   =   ∑ i     [  ( α , 0 )  ,  ( 0 , d  β  i    ′   ∧ d  x i  )  ]   T G         =      ∑ i      [  ( α , 0 )  ,  ( 0 , d  β  i    ′   )  ∧  ( d  x i  , 0 )  +  ( d  β  i    ′   , 0 )  ∧  ( 0 , d  x i  )  ]   T G          =      ∑ i   (   [  ( α , 0 )  ,  ( 0 , d  β  i    ′   )  ]   T G   ∧  ( d  x i  , 0 )  +  ( 0 , d  β  i    ′   )  ∧   [  ( α , 0 )  ,  ( d  x i  , 0 )  ]   T G         +      [  ( α , 0 )  ,  ( d  β  i    ′   , 0 )  ]   T G   ∧  ( 0 , d  x i  )  +  ( d  β  i    ′   , 0 )  ∧   [  ( α , 0 )  ,  ( 0 , d  x i  )  ]   T G   )       =      ∑ i     (   [ α , d  β  i    ′   ]  G  , 0 )  ∧  ( d  x i  , 0 )  +  ( d  β  i    ′   , 0 )  ∧  (   [ α , d  x i  ]  G  , 0 )         =      ∑ i     (   [ α , d  β  i    ′   ]  G  ∧ d  x i  , 0 )  +  ( d  β  i    ′   ∧   [ α , d  x i  ]  G  , 0 )         =      ∑ i    (   [ α , d  β  i    ′   ∧ d  x i  ]  G  , 0 )        =    (   [ α , d  β   ′   ]  G  , 0 )       =      (   [ α , d  β   ′   ]  G  )  v  .     











Considering all the possible cases


  (   [  ( 0 , β )  , d  ( 0 ,  β   ′   )  ]   T G   ,   [  ( 0 , β )  , d  (  α   ′   , 0 )  ]   T G   ,   [  ( α , 0 )  , d  ( 0 ,  β   ′   )  ]   T G   ,   [  ( α , 0 )  , d  (  α   ′   , 0 )  ]   T G   ) ,  








we obtain the following lemma. □





Proposition 4. 

Let    { , }   T G    and    { , }  G   be the Hawkins generalized pre-Poisson brackets of the Levi-Civita contravariant connections   D  T G    and   D G  , respectively. Then, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ∈  g *  ×  g *   , we have:


       {  ( α , β )  ,  (  α   ′   ,  β   ′   )  }   T G     =    (   { α ,  β   ′   }  G  +   { β ,  α   ′   }  G  ,   { β ,  β   ′   }  G  )       =      (   { α ,  β   ′   }  G  +   { β ,  α   ′   }  G  )  v  +   (   { β ,  β   ′   }  G  )  c  .      













Proof. 

Note that the Levi-Civita contravariant connections   D G   and   D  T G    naturally extend to    Ω 2   ( G )    and    Ω 2   ( T G )   , respectively. Using Equation (5), Proposition 2 and Lemma 3, we obtain


      {  ( α , β )  ,  (  α   ′   ,  β   ′   )  }   T G     =    −  D  ( α , β )   T G   d  (  α   ′   ,  β   ′   )  −  D  (  α   ′   ,  β   ′   )   T G   d  ( α , β )  + d  D  (  α   ′   ,  β   ′   )   T G    ( α , β )        +     [  ( α , β )  , d  (  α   ′   ,  β   ′   )  ]   T G        =    −  (  D α G  d  β   ′   +  D β G  d  α   ′   ,  D β G  d  β   ′   )  −  (  D  α   ′   G  d β +  D  β   ′   G  d α ,  D  β   ′   G  d β )        +     ( d  D  α   ′   G  β + d  D  β   ′   G  α , d  D  β   ′   G  β )  +  (   [ α , d  β   ′   ]  G  +   [ β , d  α   ′   ]  G  ,   [ β , d  β   ′   ]  G  )        =    ( −  D α G  d  β   ′   −  D β G  d  α   ′   −  D  α   ′   G  d β −  D  β   ′   G  d α + d  D  α   ′   G  β + d  D  β   ′   G  α       +      [ α , d  β   ′   ]  G  +   [ β , d  α   ′   ]  G  , −  D β G  d  β   ′   −  D  β   ′   G  d β + d  D  β   ′   G  β +   [ β , d  β   ′   ]  G  )       =      { α ,  β   ′   }  G  +   { β ,  α   ′   }  G  ,   { β ,  β   ′   }  G        =      (   { α ,  β   ′   }  G  +   { β ,  α   ′   }  G  )  v  +   (   { β ,  β   ′   }  G  )  c  .     











□





Lemma 4. 

Let   M G   and   M  T G    be the metacurvatures of the Levi-Civita contravariant connections   D G   and   D  T G   , respectively. Then, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ∈  g *  ×  g *   , we have:








	1. 

	
    M  T G    (  ( α , 0 )  ,  (  α   ′   , 0 )  ,  (  α    ″    , 0 )  )  = 0 ;   




	2. 

	
    M  T G    (  ( α , 0 )  ,  (  α   ′   , 0 )  ,  ( 0 ,  β    ″    )  )  = 0 ;   




	3. 

	
   M  T G    (  ( α , 0 )  ,  ( 0 ,  β   ′   )  ,  ( 0 ,  β    ″    )  )  =  (  M G   ( α ,  β   ′   ,  β    ″    )  , 0 )   ;




	4. 

	
    M  T G    (  ( 0 , β )  ,  ( 0 ,  β   ′   )  ,  ( 0 ,  β    ″    )  )  =  ( 0 ,  M G   ( β ,  β   ′   ,  β    ″    )  )  ;   




	5. 

	
    M  T G    (  ( 0 , β )  ,  ( 0 ,  β   ′   )  ,  (  α    ″    , 0 )  )  =  (  M G   ( β ,  β   ′   ,  α    ″    )  , 0 )  ;   




	6. 

	
    M  T G    (  ( 0 , β )  ,  (  α   ′   , 0 )  ,  (  α    ″    , 0 )  )  = 0 .   











Proof. 

Let   (  x i  )   be local coordinates of G in a neighborhood of e and let   (  x i  ,  y i  )   be the correspondent local coordinates of   T G   in a neighborhood of   ( e , 0 )  . Let   α =    ∑ i     α i  d  x i    and   β =    ∑ i     β i  d  x i    be elements of   g *  . We write    ( α , 0 )  =    ∑ i     α i  d  x i    and    ( 0 , β )  =   ∑ i    β i  d  y i   . Using Equation (7) and Propositions 2 and 4, then—for example, for (3)—we obtain:


      M  T G    (  ( α , 0 )  ,  ( 0 ,  β   ′   )  ,  ( 0 ,  β    ″    )  )     =      ∑ i    α i  (   {  x i  ∘ π ,   {  ( 0 ,  β   ′   )  ,  ( 0 ,  β    ″    )  }   T G   }   T G         −     {   {  x i  ∘ π ,  ( 0 ,  β   ′   )  }   T G   ,  ( 0 ,  β    ″    )  }   T G        −      {   {  x i  ∘ π ,  ( 0 ,  β    ″    )  }   T G   ,  ( 0 ,  β   ′   )  }   T G   )       =      ∑ i    α i  (  D  ( d  x i  , 0 )   T G    ( 0 ,   {  β   ′   ,  β    ″    }  G  )  −   {  D  ( d  x i  , 0 )   T G    ( 0 ,  β   ′   )  ,  ( 0 ,  β    ″    )  }   T G         −      {  D  ( d  x i  , 0 )   T G    ( 0 ,  β    ″    )  ,  ( 0 ,  β   ′   )  }   T G   )       =      ∑ i    α i  (  (  D  d  x i   G    {  β   ′   ,  β    ″    }  G  , 0 )  −  (   {  D  d  x i   G   β   ′   ,  β    ″    }  G  , 0 )        −    (   {  D  d  x i   G   β    ″    ,  β   ′   }  G  , 0 ) )       =      ∑ i    α i  (  (   {  x i  ,   {  β   ′   ,  β    ″    }  G  }  G  , 0 )  −  (   {   {  x i  ,  β   ′   }  G  ,  β    ″    }  G  , 0 )        −    (   {   {  x i  ,  β    ″    }  G  ,  β   ′   }  G  , 0 ) )       =    (  M G   ( α ,  β   ′   ,  β    ″    )  , 0 ) .     











□





Theorem 2. 

Let   ( G ,  Π G  ,   〈 , 〉  G *  )   be a Poisson–Lie group equipped with the left invariant contravariant pseudo-Riemannian metric    〈 , 〉  G *   and   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   the Sanchez de Alvarez tangent Poisson–Lie group of G equipped with the left invariant pseudo-Riemannian metric    〈 , 〉   T G  *   associated with    〈 , 〉  G *  . Then, the space of the differential form    Ω *   ( G )    is a differential graded Poisson algebra if, and only if,    Ω *   ( T G )    is a differential graded Poisson algebra.





Proof. 

According to Lemma 2, if    R G  = 0 ,   then    R  T G   =  ( 0 , 0 )  .   We now assume that    R  T G   =  ( 0 , 0 )   ; then, for any   β ,  β   ′   ,  β    ″    ∈  g *   , we have


   R G   ( β ,  β   ′   )   β    ″    = 0 .  











Then,   D G   is flat if, and only if,   D  T G    is flat.



Moreover, According to Lemma 4, for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ∈  g *  ×  g *   , we obtain:


      M  T G    (  ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  )     =    (  M G   ( α ,  β   ′   ,  β    ″    )  +  M G   ( β ,  α   ′   ,  β    ″    )        +     M G   ( β ,  β   ′   ,  α    ″    )  ,  M G   ( β ,  β   ′   ,  β    ″    )  ) .     











So, if    M G  = 0 ,   then    M  T G   =  ( 0 , 0 )  .   We now assume that    M  T G   =  ( 0 , 0 )   ; then, for any   β ,  β   ′   ,  β    ″    ∈  g *   , we have


   M G   ( β ,  β   ′   )   β    ″    = 0 .  











Then,   D G   is metaflat if, and only if,   D  T G    is metaflat.



Hence, we deduce that the connection   D G   defines a generalized Poisson bracket    { , }  G   on    Ω *   ( G )    if, and only if, the connection   D  T G    defines a generalized Poisson bracket    { , }   T G    on    Ω *   ( T G )   . □







4. Pseudo-Riemannian Sanchez de Alvarez Tangent Poisson–Lie Group


The second author and N.Zaalani [12] showed that the Sanchez de Alvarez tangent Poisson–Lie group   ( T G ,  Π  T G   )   equipped with the natural left invariant Riemannian metric is a Riemannian Poisson–Lie group if, and only if,   ( G ,  Π G  )   is a trivial Poisson–Lie group. In this section, we study the compatibility in the sense of M.Boucetta between the Sanchez de Alvarez Poisson–Lie structure   Π  T G    and the pseudo-Riemannian metric    〈 , 〉   T G  *   given in (17).



Let    〈 , 〉   g *    be a bilinear, symmetric and non-degenerate form on   g *  . We define a bilinear, symmetric and non-degenerate form    〈 , 〉    g *  ×  g *     on    g *  ×  g *   , which is analogous to (17), as follows:


      〈  ( α , 0 )  ,  (  α   ′   , 0 )  〉    g *  ×  g *      =    0 ,        〈  ( α , 0 )  ,  ( 0 ,  β   ′   )  〉    g *  ×  g *      =     〈 α ,  β   ′   〉   g *         〈  ( 0 , β )  ,  ( 0 ,  β   ′   )  〉    g *  ×  g *      =      〈 β ,  β   ′   〉   g *   .     








where    ( α , β )  ,  (  α   ′   ,  β   ′   )  ∈  g *  ×  g *   .



Let    〈 , 〉  G *   be the left invariant contravariant pseudo-Riemannian metric associated with    〈 , 〉   g *    and let    〈 , 〉   T G  *   be the metric associated with    〈 , 〉    g *  ×  g *    .



Remark 1.

If   ( G ,  Π G  ,   〈 , 〉  G *  )   is a pseudo-Riemannian Poisson Lie group, then its dual Lie algebra   (  g *  ,   [ , ]   g *   ,   〈 , 〉   g *   )   equipped with the form    〈 , 〉   g *    is a pseudo-Riemannian Lie algebra and the abelian Poisson–Lie group   ( g ,  Π g  ,   〈 , 〉  g  )   equipped with the form    〈 , 〉  g   associated with    〈 , 〉   g *    is a pseudo-Riemannian Poisson–Lie group [4].





Theorem 3. 

Let   ( G ,  Π G  ,   〈 , 〉  G *  )   be a Poisson–Lie group equipped with the left invariant contravariant pseudo-Riemannian metric    〈 , 〉  G *   and let   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   be the Sanchez de Alvarez tangent Poisson–Lie group of G equipped with the left invariant pseudo-Riemannian metric    〈 , 〉   T G  *  . Then,   ( G ,  Π G  ,   〈 , 〉  G *  )   is a pseudo-Riemannian Poisson–Lie group if, and only if,   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   is a pseudo-Riemannian Poisson–Lie group.





Proof. 

Note that the linear transformation   A  d g *  :  g *  →  g *    is a Lie algebra automorphism [22].



The infinitesimal Levi-Civita connection B associated with   (   [ , ]    g *  ⋉  g *    ,   〈 , 〉    g *  ×  g *    )   is given for any    ( α ,  α   ′   )  ,  ( γ ,  γ   ′   )  ∈  g *  ×  g *    by:


   B  ( α ,  α   ′   )    ( γ ,  γ   ′   )  =  (  A α   γ   ′   +  A  α   ′    γ ,  A  α   ′     γ   ′   )  ,  








where A is the infinitesimal Levi-Civita connection associated with   (   [ , ]   g *   ,   〈 , 〉   g *   )  , respectively.



For any   ( X , Y ) ∈ g ⋊ g   and    ( γ ,  γ   ′   )  ∈  g *  ⋉  g *  ,  


  a  d  ( X , Y )  *   ( γ ,  γ   ′   )  =  ( a  d X *  γ + a  d Y *   γ   ′   , a  d X *   γ   ′   )  .  











Let   (  x i  )   be local coordinates of G in a neighborhood of e and let   (  x i  ,  y i  )   be the correspondent local coordinates of   T G  . The Poisson tensors of G and   T G   are expressed by [10]:


   Π G  =  ∑  i , j    Π  G   i j    ∂  ∂  x i    ∧  ∂  ∂  x j    ,  








and


   Π  T G   =  ∑  i , j , k    Π  G   i j    ∂  ∂  x i    ∧  ∂  ∂  y j    +  y k    ∂  Π  G   i j     ∂  x k     ∂  ∂  y i    ∧  ∂  ∂  y j    ,  



(18)




respectively. Then, for any   ( g , X ) ∈ T G   and for any    ( α ,  α   ′   )  ∈  g *  ×  g *   , we have


   Π  T G  l   ( g , X )   ( α ,  α   ′   )  =  (  Π G l   ( g )   (  α   ′   )  ,  Π G l   ( g )   ( α )  +  Π g   ( X )   (  α   ′   )  )  ,  








where   Π g   is the linear Poisson structure on  g  associated with   Π G  .



Then, for any    ( α ,  α   ′   )  ,  ( β ,  β   ′   )  ,  ( γ ,  γ   ′   )  ∈  g *  ×  g *   , we obtain:


        [  B  ( α ,  α   ′   )    ( γ ,  γ   ′   )  + a  d   Π  T G  l   ( g , X )   ( α ,  α   ′   )   *   ( γ ,  γ   ′   )  ,  ( β ,  β   ′   )  ]    g *  ⋉  g *         +     [  ( α ,  α   ′   )  ,  B  ( β ,  β   ′   )    ( γ ,  γ   ′   )  + a  d   Π  T G  l   ( g , X )   ( β ,  β   ′   )   *   ( γ ,  γ   ′   )  ]    g *  ⋉  g *         =     [  (  A α   γ   ′   +  A  α   ′    γ ,  A  α   ′     γ   ′   )  + a  d  (  Π G l   ( g )   (  α   ′   )  ,  Π G l   ( g )   ( α )  +  Π g   ( X )   (  α   ′   )  )  *   ( γ ,  γ   ′   )  ,  ( β ,  β   ′   )  ]    g *  ⋉  g *         +     [  ( α ,  α   ′   )  ,  (  A β   γ   ′   +  A  β   ′    γ ,  A  β   ′     γ   ′   )  + a  d  (  Π G l   ( g )   (  β   ′   )  ,  Π G l   ( g )   ( β )  +  Π g   ( X )   (  β   ′   )  )  *   ( γ ,  γ   ′   )  ]    g *  ⋉  g *         =     [ (   A α   γ   ′   +  A  α   ′    γ + a  d   Π G l   ( g )   (  α   ′   )   *  γ + a  d   Π G l   ( g )   ( α )  +  Π g   ( X )   (  α   ′   )   *   γ   ′   ,  A  α   ′     γ   ′         +    a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′     ) ,  ( β ,  β   ′   )  ]    g *  ⋉  g *          +     [   ( α ,  α   ′   )   , (   A β   γ   ′   +  A  β   ′    γ + a  d   Π G l   ( g )   (  β   ′   )   *  γ + a  d   Π G l   ( g )   ( β )  +  Π g   ( X )   (  β   ′   )   *   γ   ′   ,  A  β   ′     γ   ′         +    a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′     ) ]    g *  ⋉  g *          =    (   [  A α   γ   ′   +  A  α   ′    γ + a  d   Π G l   ( g )   (  α   ′   )   *  γ + a  d   Π G l   ( g )   ( α )   *   γ   ′   + a  d   Π g   ( X )   (  α   ′   )   *   γ   ′   ,  β   ′   ]   g *         +      [  A  α   ′     γ   ′   + a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′   , β ]   g *   ,   [  A  α   ′     γ   ′   + a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′   , β ]   g *   )       +    (   [ α ,  A  β   ′     γ   ′   + a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′   ]   g *    + [ α ,   A β   γ   ′   +  A  β   ′    γ + a  d   Π G l   ( g )   (  β   ′   )   *  γ + a  d   Π G l   ( g )   ( β )   *   γ   ′         +    a  d   Π g   ( X )   (  β   ′   )   *   γ   ′     ]  g *   , [   α   ′   ,  A  β   ′     γ   ′   + a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′   )       =    (   [  A α   γ   ′   + a  d   Π G l   ( g )   ( α )   *   γ   ′   ,  β   ′   ]   g *   +   [ α ,  A  β   ′     γ   ′   + a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′   ]   g *   +   [  A  α   ′    γ + a  d   Π G l   ( g )   (  α   ′   )   *  γ ,  β   ′   ]   g *         +      [  α   ′   ,  A  β   ′    γ + a  d   Π G l   ( g )   (  β   ′   )   *  γ ]   g *   +   [  A  α   ′     γ   ′   + a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′   , β ]   g *   +   [  α   ′   ,  A β   γ   ′   + a  d   Π G l   ( g )   ( β )   *   γ   ′   ]   g *         +      [ a  d   Π g   ( X )   (  α   ′   )   *   γ   ′   ,  β   ′   ]   g *   +   [  α   ′   , a  d   Π g   ( X )   (  β   ′   )   *   γ   ′   ]   g *   ,   [  A  α   ′     γ   ′   + a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′   ,  β   ′   ]   g *         +      [  α   ′   ,  A  β   ′     γ   ′   + a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′   ]   g *   ) .     











Then, using Remark 1, if   ( G ,  Π G  ,   〈 , 〉  G *  )   is a pseudo-Riemannian Poisson–Lie group, then   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   is a pseudo-Riemannian Poisson–Lie group. Conversely, if   ( T G ,  Π  T G   ,   〈 , 〉   T G  *  )   is a pseudo-Riemannian Poisson–Lie group, then for any   x ∈ G   and for any    α   ′   ,  β   ′   ,  γ   ′   ∈  g *   , we have


    [  A  α   ′     γ   ′   + a  d   Π G l   ( g )   (  α   ′   )   *   γ   ′   ,  β   ′   ]   g *   +   [  α   ′   ,  A  β   ′     γ   ′   + a  d   Π G l   ( g )   (  β   ′   )   *   γ   ′   ]   g *   = 0 .  











Therefore,   ( G ,  Π G  ,   〈 , 〉  G *  )   is a pseudo-Riemannian Poisson–Lie group. □





Corollary 3. 

The semi-direct product Lie algebra   (  g *  ⋉  g *  ,   [ , ]    g *  ⋉  g *    ,   〈 , 〉    g *  ×  g *    )   equipped with the form    〈 , 〉    g *  ×  g *     is a pseudo-Riemannian Lie algebra if, and only if,   (  g *  ,   [ , ]   g *   ,   〈 , 〉   g *   )   is a pseudo-Riemannian Lie algebra.





Proof. 

According to Equation (10), for any    ( α , β )  ,  (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ∈  g *  ⋉  g *  ,   we obtain:


         [  B  ( α , β )    (  α   ′   ,  β   ′   )  ,  (  α    ″    ,  β    ″    )  ]    g *  ⋉  g *    +   [  ( α , β )  ,  B  (  α    ″    ,  β    ″    )    (  α   ′   ,  β   ′   )  ]    g *  ⋉  g *          =    (   [  A α   β   ′   ,  β    ″    ]   g *   +   [ α ,  A  β    ″      β   ′   ]   g *   +   [  A β   α   ′   ,  β    ″    ]   g *   +   [ β ,  A  β    ″      α   ′   ]   g *   +   [  A β   β   ′   ,  α    ″    ]   g *                +    [ β ,  A  α    ″      β   ′   ]  g  ,   [  A β   β   ′   ,  β    ″    ]   g *   +   [ β ,  A  β    ″      β   ′   ]   g *   ) ,     











Then we obtain the corollary. □






5. Examples


Let   (  x i  )   be local coordinates of G in a neighborhood of e and let   (  x i  ,  y i  )   be the correspondent local coordinates of   T G  . The pseudo-Riemannian metrics on G and   T G   are expressed by:


    〈 , 〉  G  =  ∑  i , j    g  i j   d  x i  ⊗ d  x j   








and


    〈 , 〉   T G   =  ∑  i , j , k    y k    ∂  g  i j     ∂  x k    d  x i  ⊗ d  x j  +  g  i j   d  x i  ⊗ d  y j  +  g  i j   d  y i  ⊗ d  x j  ,  



(19)




respectively.



	
Let   (  e 1  ,  e 2  ,  e 3  )   be an orthonormal basis of   R 3  . The Lie algebra   R 3   with the bracket


    [  e 1  ,  e 2  ]   R 3   = λ  e 3  ,    [  e 1  ,  e 3  ]   R 3   = − λ  e 2  ,    [  e 2  ,  e 3  ]   R 3   = 0 ,  λ < 0 ,  








is a Riemannian Lie algebra [4]. The infinitesimal situation can be integrated, and we obtain that the triplet   (  R 3  ,  Π  R 3   ,   〈 , 〉   R 3   )   is a Riemannian Poisson Lie group, where   R 3   is equipped with its abelian Lie group structure,    〈 , 〉   R 3    its canonical Euclidian metric and


   Π  R 3   = λ  ∂  ∂ x   ∧  ( z  ∂  ∂ y   − y  ∂  ∂ z   )  ,  λ < 0 .  











Using Equations (18) and (19), the six-dimensional Sanchez de Alvarez tangent Poisson–Lie group   ( T  R 3  ≡  R 6  ,  Π  R 6   ,   〈 , 〉   T G   )  , where   R 6   is equipped with its abelian Lie group structure with coordinate   ( x , y , z , u , v , w )  ,


   Π  R 6   = λ  ∂  ∂ x   ∧  ( z  ∂  ∂ v   − y  ∂  ∂ w   )  + λ  ∂  ∂ u   ∧  ( w  ∂  ∂ v   − v  ∂  ∂ w   )   








and


    〈 , 〉   R 6   = d x d u + d y d v + d z d w + d u d x + d v d y + d w d z ,  








is a pseudo-Riemannian Poisson–Lie group.



	
The Poisson–Lie group   (  R 4  ,  Π  R 4   ,   〈 , 〉   R 4   )  , where


   Π  R 4   =  ∂  ∂ x   ∧  ( z  ∂  ∂ t   − t  ∂  ∂ z   )  ,    〈 , 〉   R 4   = d  x 2  + d  y 2  + d  z 2  + d  t 2  ,  








is compatible in the sense of Hawkins and is also a Riemannian Poisson–Lie group [22]. Then, the eight-dimensional tangent Poisson–Lie group   ( T  R 4  =  R 8  ,  Π  R 8   ,   〈 , 〉   R 8   )  , with coordinates   ( x , y , z , t , u , v , w , s )  ,


   Π  R 8   =  ∂  ∂ x   ∧  ( z  ∂  ∂ s   − t  ∂  ∂ w   )  +  ∂  ∂ u   ∧  ( w  ∂  ∂ s   − s  ∂  ∂ w   )   








and


    〈 , 〉   R 8   = d x d u + d y d v + d z d w + d t d s + d u d x + d v d y + d w d z + d s d t  








is also compatible in the sense of Hawkins and a pseudo-Riemannian Poisson–Lie group.



	
By [22], the four-dimensional torus   (  T 4  =  R 4  /  Z 4  ,  Π  T 4   ,   〈 , 〉  G  )  , is a Riemannian Poisson–Lie group (resp., compatible in the sense of Hawkins), where


   T 4  =  {  (  e  i x   ,  e  i y   ,  e  i z   ,  e  i t   )    /    x , y , z , t ∈ [  0 , 2 π  ]   }  ,  










   Π  T 4   =  ∂  ∂ x   ∧  ( z  ∂  ∂ t   − t  ∂  ∂ z   )   and  g = d  x 2  + d  y 2  + d  z 2  + d  t 2  .  











Then, the eight-dimensional tangent Poisson–Lie group   ( T  T 4  ,  Π  T  T 4    ,   〈 , 〉   T G   )  , with coordinates   ( x , y , z , t , u , v , w , s )  ,


   Π  T  T 4    =  ∂  ∂ x   ∧  ( z  ∂  ∂ s   − t  ∂  ∂ w   )  +  ∂  ∂ u   ∧  ( w  ∂  ∂ s   − s  ∂  ∂ w   )   








and


    〈 , 〉   T  T 4    = d x d u + d y d v + d z d w + d t d s + d u d x + d v d y + d w d z + d s d t  








is also a pseudo-Riemannian Poisson–Lie group (resp., compatible in the sense of Hawkins).
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