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Simple Summary: A radial basis function neural network (RBFNN) is proposed for identifying
and diagnosing non-linear systems. The neural network developed was optimized not only for
RBFNN output layer parameters, including centers, width, and weights, but also for network size
(the count of neurons stored in the hidden layer). Two optimization methods, namely, particle swarm
optimization (PSO) and hybrid PSO coupled with a spiral-shaped mechanism (HPSO-SSM), were
used to train the RBFNN hyperparameters and network size. Simulation results showed that the
suggested technique outperformed other current approaches with respect to prediction precision and
network compactness.

Abstract: A method is proposed for recognizing and predicting non-linear systems employing a
radial basis function neural network (RBFNN) and robust hybrid particle swarm optimization (HPSO)
approach. A PSO is coupled with a spiral-shaped mechanism (HPSO-SSM) to optimize the PSO
performance by mitigating its constraints, such as sluggish convergence and the local minimum
dilemma. Three advancements are incorporated into the hypothesized HPSO-SSM algorithms to
achieve remarkable results. First, the diversity of the search process is promoted to update the
inertial weight ω based on the logistic map sequence. Then, two distinct parameters are trained in
the original position update algorithm to enhance the work efficiency of the successive generation.
Finally, the proposed approach employs a spiral-shaped mechanism as a local search operator inside
the optimum solution space. Moreover, the HPSO-SSM method concurrently improves the RBFNN
parameters and network size, building a model with a compact configuration and higher precision.
Two non-linear benchmark functions and the total phosphorus (TP) modelling issue in a waste water
treatment process (WWTP) are utilized to assess the overall efficacy of the creative technique. The
results of testing indicate that the projected HPSO-SSM-RBFNN algorithm performed very effectively.

Keywords: RBFNN; non-linear system modelling; time-series prediction; HPSO

MSC: 68T20

1. Introduction

It is widely recognized that many real-world problems can be addressed by employing
a non-linear model.

Hence, non-linear system modelling has been a consistent focus of research [1]. Several
novel methods have been used for the development of non-linear modelling systems,
including non-linear regression, multivariate statistical methods, and neural network-
based architectures [2,3]. Due to their efficient approximation abilities, research interest in

Mathematics 2023, 11, 242. https://doi.org/10.3390/math11010242 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010242
https://doi.org/10.3390/math11010242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1995-9249
https://orcid.org/0000-0002-4299-7756
https://doi.org/10.3390/math11010242
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010242?type=check_update&version=2


Mathematics 2023, 11, 242 2 of 16

artificial neural networks (ANNs) has increased enormously [4,5]. In contrast to traditional
approaches, ANNs can model non-linear connections between input and output variables.

Artificial network-based techniques are used in several scientific and technical do-
mains and applications, such as non-linear systems modelling, adaptive learning control,
and pattern recognition strategies [6–9]. Various neural network topologies are available
due to their adaptability and extensive parameter-tuning options. RBFNN algorithms
have been widely utilized for modelling and controlling non-linear systems owing to their
universal computation capability and structural elegance [10]. It has been demonstrated
that the RBFNN approach can simulate any continuous function given adequate RBF neu-
rons [11]. Standard RBFNN learning-based algorithms can address problems in predicting
network sizes (the degree of RBF neurons) and updating hyperparameters (i.e., RBF center
coordinates, RBF neuron widths, and output weights) to attain the required approximation
precision [12,13].

Error back-propagation (BP) is one of the most used methods for modifying the
RBFNN architecture [14]. However, the BP approach results in a poor global search
experience and the problem of a prolonged convergence rate. Several studies have been
conducted to determine the local minimum. Recursive least squares (RLS) may yield a
more optimal convergence rate and heightened accuracy than the BP solution [15]. This
enhancement necessitates a set of very complex mathematical expressions and greater use
of computing resources. The RBFNN size has a substantial effect on its performance and it
is important to improve RBFNN size for overall performance enhancement. The adaptive
growth and pruning method [16] is used to develop a recurrent neural network, with the
hyperparameters fine-tuned to enhance the network’s performance. The self-organizing
RBFNN network is then trained, while simultaneously modifying the network size and
features using forward and backward selection techniques [17].

Evolutionary algorithms (EA) have been used to boost the performance of networks.
Xiao et al. [18], and Sheng et al. [19] introduced evolutionary algorithms to develop an
RBFNN approach. Feng et al. [20] employed PSO to overcome the widespread convergence
time problem encountered while training RBFNNs, resulting in a PSO-based self-generating
RBFNN. Alexandridis et al. [21] proposed a new approach based on fuzzy means and PSO
algorithms for training RBFNNs. Abdi at al. [22] developed an RBFNN model using a
non-linear time-varying evolutionary PSO (NTVE-PSO) technique. An NTVE-PSO method
was used to assess the RBFNN’s optimal hyperparameters and network size concurrently
for time-series prediction problems. Other EA approaches, including the ant colony search
algorithm [23], genetic algorithms [24] and artificial immune systems [25] have been applied
to prediction problems.

From the perspective of evolutionary approaches, the PSO algorithm has a relatively
quick approximation speed for optimal outcomes, enabling it to optimize system param-
eters efficiently [26–28]. The PSO method continuously updates the particle’s position
using the particle’s current position, global extremum, and individual extremum. The
PSO algorithm can meet the challenge of continually optimizing functions. However, con-
verging in advance is more manageable (especially when dealing with highly non-linear
optimization problems) because the local optimization potential is restricted. The core
formula for position updates must balance exploration and exploitation throughout the
probe operation. This might impair the efficacy of the accompanying algorithms. Moreover,
the current PSO-based algorithms need not fully use existing optimum solution data to
steer the search space.

To address these obstacles, a unique global optimization strategy, namely hybrid PSO
combined with a spiral-shaped mechanism (HPSO-SSM) [29,30], is proposed to design
RBFNNs with enhanced performance in the application of non-linear-system modelling and
prediction. The proposed HPSO-SSM-based RBF neural network (HPSO-SSM-RBFNN) has
dual advantages. Firstly, the logistic map sequence is employed in the original PSO method
to boost the search strategy’s variety. A unique position-updating model is incorporated for
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enhancing position quality and a spiral-shaped process. Second, the suggested HPSO-SSM
technique optimizes the RBFNN parameters and size.

The key contributions of the present study are as follows:

• To alleviate the limitations of PSO, such as sluggish convergence, eliminate the local
minimum dilemma and boost the quality of PSO outcomes, a hybrid HPSO-SSM
algorithm is developed.

• Three significant improvements are made to the original PSO: First, a logistic map
sequence is used to adjust the inertial weight ω, which provides sufficient variety and
facilitates the avoidance of optimal solutions throughout the selection process.

• Second, a significantly improved update equation for creating the next-generation
position is proposed, which can more effectively integrate exploration and exploitation.

• Third, a spiral-shaped mechanism (SSM) is coupled to the original PSO as a local
search strategy for the known optimum solution.

• Finally, the proposed HPSO-SSM approach is applied to optimize the network RBFNN
parameters and size. Two non-linear benchmark functions, namely, (1) Lorenz time-
series, (2) non-linear system identification and (3) the total phosphorus (TP) modelling
problem in a waste water treatment process (WWTP), were tested. Simulation results
of the RBFNN trained by HPSO-SSM were obtained to assess its performance with
respect to the root mean squared error (RMSE). The presented HPSO-SSM-RBFNN is
designed to enable greater solution precision with smaller network size. The findings
indicate that this model is superior to other RBFNN models.

The paper is structured as follows: Section 2 explains the operational principles of the
RBF neural network. In Section 3 particle swarm optimization (PSO), the hybrid method
HPSO-SSM models and the new implementation strategy for HPSO-SSM-RBFNN are
described. Section 4 presents the findings for evaluation of several optimization techniques
applied to a variety of benchmark situations. The norms obtained are relevant to non-
linear structural analysis, time-series prediction of the Lorenz system, and TP estimation
in WWTP. These findings are compared to data for existing approaches. Finally, Section 5
highlights and summarizes the study’s results.

2. Methods and Materials

A unified hybrid approach is proposed for optimizing the hyperparameters and size
of RBFNNs. Optimization of neural networks remains a difficult endeavour in the field
of machine learning. Traditional training methods are often susceptible to local optima
and premature convergence, rendering them inefficient for datasets containing multiple
attributes. However, EC-based training algorithms have become more widely considered
because of their robustness in overcoming the constraints of traditional methods. In the
present study, three benchmark datasets are used to investigate an integrated training
algorithm that combines particle swarm optimization (PSO) with a spiral-shaped mech-
anism (SSM). The proposed logistic map sequence boosts the search process diversity to
overcome the conventional PSO algorithm’s limitations, such as slow convergence, the
local minimum problem, and low-quality results. In addition, an updated algorithm and
spiral-shaped method are implemented to enhance the position features.

A novel machine-learning-based algorithm is proposed to handle imbalanced datasets,
which can be misleading when training algorithms during the classification task. The
proposed approach contributes to improving algorithm performance and reducing the
problems of over-fitting and under-fitting. A strategy for creating a master feature vec-
tor (MFV) is also presented, which avoids the unfavourable effects of the classification
scheme caused by data inconsistencies, missing values, and classification-related issues.
The proposed MFV achieves high prediction performance scores, while addressing data
inconsistencies, issues related to missing values, and data imbalance problems. The primary
purpose of the present study is to boost data quality by introducing a cutting-edge approach
to impute missing thresholds and enrich the predictive performance of algorithms.
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2.1. Datasets

Three experiments were carried out to assess the efficacy of the newly created algo-
rithms. Five hundred input-output data samples were collected from a natural small-scale
wastewater treatment plant in China (Beijing) between June 2019 and May 2020. After
denoising and normalizing employing the wavelet approach, 250 cases were selected for
model training and 150 for testing [31,32]. The proposed algorithm’s performance was
improved by discrediting attribute values and allowing missing values. The efficacy of the
proposed hybrid HPSO-SSM-based RBF neural networks (HPSO-SSM-RBFNN) was eval-
uated using Lorenz time-series and non-linear system identification benchmark datasets.
Experiments were then conducted on a real application issue for the TP modelling problem
in a WWTP to demonstrate the proposed algorithm’s superiority in prediction accuracy.

2.2. Data Enhancement

Initial data preprocessing was crucial for achieving the remarkable results obtained in
the experiments. Data-processing techniques used included data discretization, the imputa-
tion of missing values, and the accommodation of imbalanced data for the robust training
of the recommended models. Moreover, essential features were recognized throughout the
discretization procedure.

The proposed strategy eliminated noise from the dataset and enhanced the algorithm’s
performance.

2.3. Cutting-Edge Methods
2.3.1. Improved Particle Swarm Optimization (PSO) Algorithms

PSO is a stochastic searching efficient algorithm that mimics fish schooling and bird
flocking within a swarm [33]. Each particle in PSO depicts a possible remedy within the
search range. In this study, every particle optimizes its onward path set on its optimal initial
position and the most suitable existing location of every particle to obtain the globally
optimal solution. A vector indicates the previous position of particle i during the searching
phase, as described in Equation (1).

xi = (xi1, xi2, xi3, . . . xiD) (1)

Here, D specifies the extent of the pest space and N swarm size with i = 1, 2, . . . N.
Every particle has a flight velocity, explained by Equation (2).

vi = (vi1, vi2, . . . viD) (2)

Each particle’s velocity is based on its acquired memory so that it may explore all
of the search areas. Now, consider pbesti, the previous best position of the particle i, is
designated as pbesti = pbesti1, pbesti2, pbesti3, . . . pbestiD. Consequently, gbesti = gbest1,
gbest2, . . . gbestD is stated to be the optimal position determined by the whole swarm.

The improved PSO algorithm requires adjustment of the flight speed and position
every iteration. The updating methods of the ith particle’s velocity vt+1

id and position xt+1
id

of the (t + 1)th iteration and d-dimension are defined using Equations (3) and (4).

vt+1
id = ω× vt

id + c1 × ri1 × (pbestid − xt
id) + c2 × ri2 × (pbestd − xt

id) (3)

xt+1
id = xt

id + vt+1
id (4)

where, r1i and r2i are random numbers within 0 and 1. ω represents the inertia weight. c1
and c2, are the position constants also known as acceleration constants.

2.3.2. HPSO-SSM Algorithm

Although the PSO approach is effective for discovering an appropriate solution, it has
three drawbacks, including early convergence, inadequate imbalance between local and
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global search efficiency, and a lack of modification near locally optimal locations. Here, a
new fused particle swarm optimization approach melded with a spiral-shaped mechanism
(HPSO-SSM) is proposed to overcome the inadequacies of PSO. In the suggested HPSO-
SSM approach, the original PSO is modified in three significant ways. The PSO approach
uses a logistic map to update the inertia weight ω to drive the result’s convergence toward
the global optimum solution, as represented in Equation (5).

ωt = µ×ωt−1 × (1−ωt−1) (5)

Here, µ is a positive constant (µ = 4) and t is the current iteration number. The
features of randomness and ergodicity of the sequence boost the algorithm’s capacity to
avoid locally optimum solutions.

In the proposed HPSO-SSM technique, the particle locations are updated in two
distinct ways. Firstly, spiral-shaped mechanisms are used, and, in the second step, the
modified standard PSO position update formula is implemented. The designed spiral-
shaped mechanism enhances the local recognition ability and maximizes the probability of
finding the PSO algorithm’s global result during the search phase. The trajectory of the
spiral-shaped process is computed based on the distance of the preceding and ith particle
positions in the search area [34]. A suggested mechanism is proposed for developing the
next generation of particle locations to describe the two position update techniques.

A probability of 80% based on the results of several investigations was obtained.
The variable p determines the method using a random value within 0 and 1 selected

at every operation.
If the p > 0.8, the spiral-shaped mechanism is applied; otherwise a modified updating

formula is used. Using Equation (6), the spiral-shaped mechanism determines the following
location of a particle.

xt+1
id = | gbestd − xt

id | × exp(b× l)× cos(2πl) + gbestd (6)

Here, b represents a positive constant (b = 2), and l is a random value between −1
and 1. Otherwise, the position is updated using the modified formula, as described in
Equation (7).

xt+1
id = <t

1 × xt
id +<

t
2 × vt+1

id (7)

In Equation (7), the <1 and <2 are dynamic correction factors, introduced in the HPSO-
SSM algorithm to control the trade-off between exploration and exploitation throughout
the search process. Since, in the HPSO-SSM algorithm, the position values are limited to
the range between 0 and 1, the formulas for the dynamic correction factors were slightly
modified, to preserve their functionality in the domain of the chosen objective function, as
illustrated in Equations (8)–(11).

<t
1 =

1(
1 + exp

(
a× (− min(SP)

max(SP) )

))t (8)

<t
2 = 1−<t

1 (9)

SPt
i =

xt−1
i
M
×
[

xt−1
i
M

]T

(10)

M = max(| Amin |, | Amax |) (11)

where a is a constant (a = 2) and SP is the modified position magnitude formula. M is the
normalization factor in which Amin and Amax denote the boundaries of the search space.
The flow diagram of the developed HPSO-SSM approach is shown in Figure 1.
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Figure 1. Step-wise description of the suggested HPSO-SSM algorithm.

2.3.3. RBFNN Architecture

The RBFNN is a straightforward network architecture with robust non-linear approx-
imation capability, resulting in an efficient learning rate. The suggested model is based
on a multi-layer architecture comprising input, hidden, and output layers, as depicted in
Figure 2.

Figure 2. The multi-layer architecture of RBFNN algorithms comprises an input layer, hidden layer,
and output layer.

The RBF architecture transfers the vector from the input to the hidden layer. RBF
handles the concealed layer and has solid non-linear fitting capability. The hidden layer
node remakes the non-linear operation into a high-dimensional linearly separable space
with the aid of the basis function. The final predicted finding is yielded by linearly merging
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the outcomes of the hidden nodes. A Gaussian function is utilized as the RBF in the hidden
layer. Equation (12) illustrates finding of the ith hidden node.

φi(x) = R‖x− ci‖ = exp
(
− ‖x− ci‖

2σ2
i

)
(12)

Here, x represents the inputs of RBFNN; ci and σi represent the hidden node’s centre
vector and width value, respectively. Equation (13) shows the RBFNN predicted output y.

y =
H

∑
i=1

ωiΦi(x) (13)

In Equation (13), ωi represents the weight of the hidden nodes and i = 1, 2, . . . , H,
H designates the count of hidden nodes. During the learning phase, parameters (ci, σi,
ωi) and the hidden node are fine-tuned using the training data samples. The HPSO-SSM
strategy is proposed to determine the best combination of these parameters iteratively.

3. Proposed HPSO-SSM-RBFNN Architecture

This section explores the HPSO-SSM-RBF-based neural network (HPSO-SSM-RBFNN)
with configurable network scope and parameters. During the learning phase, the position
of the ith particle is described in Equation (14).

xi = [ cT
i,1, σi,1, ωi,1, cT

i,2, σi,2, ωi,2 . . . cT
i,Hi

, σi,Hi , ωi,Hi ] (14)

In Equation (14), the Hi denotes network size (number of hidden neurons) and Di =
(2 + n)Hi describes the dimension of the ith particle. The HPSO-SSM-RBFNN approach
searches for the optimal particle to select the optimal RBFNN between all particles. The
dimensions of other particles may also be modified, as specified in Equation (15)

Hi =

{
Hi − 1 i f Hbest < Hi

Hi − 1 i f Hbest ≥ Hi

}
(15)

here, Hbest represents the best particle’s network size.
The following are the HPSO-SSM-RBFNN functioning procedures.
Step. 1: Initialize algorithm parameters, comprising the volume of swarm N, the

boundary of position xmax and velocity vmax, the acceleration coefficients c1 and c2 and
the maximum iteration number t = 1. For each particle i, initialize t = 1 and pick two D-
dimensional vectors at random to initialize the xi position and vi velocity of each particle i.

Step. 2 Encoding: The RBF algorithm is bound by each rule, including precedent and
subsequent parameters; hence, with the centre ci, the width σi, and output weight ωi, as
well as the network size, are evenly encoded into an individual. All individuals could
characterise the RBFNN structure.

Step. 3: Each particle’s fitness value reflects the network’s precision. The RBFNN
hyperparameters and network size are optimized by determining the fitness value of every
particle depending on the error criteria and network size. The less the fitness value, the
more superior the ith approach, as explained in Equation (16).

f (xi(t)) = Ei(t) + aHi(t) (16)
Here, f (xi(t)) shows the cost value of ith particle, Hi is the network size, and Ei(k)

is the root mean square error (RMSE). The RMSE is applied to assess the efficacy of the
network, as in Equation (17).

Ei(t) =

√√√√ 1
T

T

∑
t=1

(y(t)− yd(t))2 (17)
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Here, yd(t) represents the required output, y(t) is the predicted network output, and
T is number of data instances.

Step. 4: Compute the fitness function for every particle i according to Equation (17).
Set each particle’s current position as the personal fine fitness gbesti. Then, as the global
finest fitness gbest of the whole swarm, estimate the finest fitness value.

Step. 5: Evaluate the velocities and positions of each of the particles outlined in
Equations (3) and (4).

Step. 6: Update the inertia weight ω using Equation (5).
Step. 7: Based on the results of many tests, the likelihood is set at 80%. The particle

position is updated by SSM using Equation (6).
Step. 8: Determine whether the current iterations exceed the highest number of

iterations. If that happens, the method terminates and produces an optimum solution.
Then, orders t = t + 1, returns to Step 3, and enters into step9.

Step. 9: Calculate dynamic correction factors <1 and <2 using Equations (8) and (9).
Step. 10: Update the particle’s position using update formula Equation (7).
Step. 11: Update the network size Hi using Equation (15).
Step. 12: Select the optimal particle position as the RBFNN structural parameter for

the network topology. Train the network to develop an RBFNN suitable for predicting
non-linear time-series.

The pseudo-code of the proposed HPSO-SSM-RBFNN model is represented in
Algorithm 1.

Algorithm 1: Pseudo-code of HPSO-SSM-RBFNN
Input : Population size N, maximum number of iterations for optimization T,

dimensionality of decision variables
Output : trained HPSO-SSM-RBFNN

1 Initialize algorithm relative parameters, c1, c2 ,vmin, vmax, population size N, and
maximal iterations T.

2 Construct the topology structure of RBFNN for every particle and initialize the
position of the particles.

3 Calculate the dimension of the particle Di(t)
4 Estimate each particle with fitness value (using Equation (16))
5 Assess the RMSE (using Equation (17))
6 Select the best position of particles as gbest from the swarm
7 Set the position of each particle as pbesti
8 T = 1 to maximum iterations

9 for i = 1 to N do
10 Update velocity v(t+1)

i and position x(t+1)
i of all particles (using Equations (3)

and (4))
11 Compute the inertia weight ω (using Equation (5))
12 end
13 Define the awareness probability.

14 if p <= 0.8 then
15 Calculate dynamic correction factors <1 and <2 (using Equations (8) and (9))
16 Update particle’s next position using updated formula (using Equation (7))
17 end
18 else
19 Update the particle’s next position using SSM (using Equation (6)) Update

network size Hi (using Equation (15))
20 end
21 Attain optimal value
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4. Results Analysis and Discussion
4.1. Experimental Discussion

The simulation results for three benchmark problems for the proposed RBFNN and
hybrid HPSO-SSM algorithm were compared with those of other state-of-the-art models.
These problems involve non-linear model identification, time-series prediction of the
Lorenz system, and TP estimation in WWTP. Several experiments were carried out to verify
the effectiveness of the HPSO-SSM-RBFNNN, including consideration of two benchmark
optimization problems and TP estimation in WWTP. All datasets were normalized to the
range [−1, 1]. The training datasets were gathered to construct the system model and
testing datasets were utilized to assess the model’s generalization competency. In addition,
the RMSE derived from Equation (17) was used to intuitively evaluate the performance of
HPSO-SSM-RBFNN. Many indicators were used for evaluation, including the values for
training and testing RMSE and the number of hidden neurons stored. The superior results
confirm that the suggested technique achieves greater solution precision with a smaller
network size than other RBFNN models. Each experiment was carried out on the MATLAB
R2016b platform. Each experiment was assessed using an Intel(R) Core procession i7 with
a 3.8GHz, 16GB of RAM, and GTX 1020Ti NVIDIA graphics card.

4.2. Model Hyper-Parameters Fine-Tuning

The network architecture of HPSO-SSM-RBFNNN is critical in the training phase,
especially for the network size (Hi) and network parameters (ci, σi, ωi). These parameters
are set according to the corresponding tasks. To optimize the RBFNN, the PSO and HPSO-
SSM algorithms involve numerous control parameters, such as the number of iterations
for optimization, the number of particles, the inertia weight, acceleration coefficients, and
random values linked to the social and cognitive features of the velocity update equation.
Additionally, the maximum velocity and coefficient of constriction are determined to be
mainly operational control parameters if velocity clamping and constriction are utilized [35].
These factors greatly impact the solution’s performance, quality, and convergence rate. To
avoid early convergence, it is necessary to fine-tune the parameters. Han et al. [36,37] pro-
posed efficient neural network architectures for simulating uncertain non-linear dynamics.
The suggested strategy increased the particle’s searching capabilities by fine-tuning the
network parameters and modifying the inertia weights concurrently with the network size
throughout the learning processes. The experimental findings suggest that the proposed
methods are more effective and have significant potential for real-world application, such
as in the dynamical estimation of crucial parameters in WWTP systems and the adaptive
control of uncertain non-linear systems.

In the HPSO-SSM algorithm, the initial parameter settings, including the population
size, were fixed at 30, while the maximum number of iterations for optimization was
dynamically adjusted in each testing experiment. In the first testing experiment, the
prediction of Lorenz time-series, the iterations were set to 300; in the remaining two
testing experiments, the iterations were set to 200. Every particle’s minimum vmin and
maximum velocity vmax were assigned in the interval of [−1 − 1]. Conversely, every
particle’s minimum position xmin and maximum position xmax were assigned in the interval
of [−5, 5]. Additionally, control parameters were applied to the PSO and HPSO-SSM
algorithms. To achieve optimal results, the position constants c1 and c2 parameters required
to be adjusted during the proposed algorithm iterations; the ideal range for these values
was chosen to be in the range [0.5–2.5]. The starting value of the inertia weight ω was
set to 0.5. Each simulation experiment employed the proposed methodology with these
parameters adjusted to guarantee consistent results. The parameters used in the PSO and
HPSO-SSM algorithms are presented in Table 1 Setting the parameters of the RBFNN model
requires expert knowledge of the process, such as setting the initial number of hidden nodes
to 3 in the first and third testing experiment and 6 in the second testing experiment. All the
experiments were performed several times; the overall average was determined to avoid
the consequences of random initialization of particular network parameters. In HPSO-
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SSM-RBFNN, membership function parameters of each rule of RBFNN were encoded into
distinct particle position features. Each particle represents a particular RBFNN structure.
Particle swarm optimization proceeded until the ideal individual was determined. Among
the 40 best particles, the one with the smallest RMSE was chosen as the optimal RBFNN.

Table 1. PSO and HPSO-SSM parameter fine-tuning configuration.

Configuration Value

Population Size 40
Iterations (Lorenz time-series) 300
Iterations (Non-linear system identification) 200
Iterations (TP prediction in WWTP) 200
Inertia weight ω 0.5
Constriction coefficient (C) 1
r1,r2 Random in [0, 1]
c1,c2 Dynamic adjusts
HPSO Positive constants (µ, a, b) 4, 2, 2

4.3. Lorenz Time-Series Predicting Scheme

The Lorenz series is utilized as a standard in different applications for various prob-
lems [38]. The Lorenz series example is a collection of numerical models for atmospheric
convection.

The three-dimensional (3-D) and non-linear framework of the Lorenz series are defined
as in Equation (18). 

dx
di

= a(−x + y)
dy
di

= bx− y + xz
dz
di

= xy− cz

(18)

The model’s parameters are adjusted to a = 10, b = 28 and c = 8/3. The Kutta–Runge
method with phase 0.01 generates values for the Lorenz time sequence. y(k− 3), y(k− 2)
and y(k− 1), and y(k− 1) are employed to predict y(k) for each training pair. A total of
1500 samples were collected for model evaluation, of which 1000 were used for the training
and 500 for the testing set.

There were initially three hidden neurons in the suggested approach and the prede-
termined training RMSE was set at 0.01. Figure 3 shows the RMSE findings, such as the
number of hidden neurons during training, the predicted outcomes, and the predicted error
between the target findings and the proposed HPSO-SSM-RBFNN algorithm findings.

Figure 3a depicts the findings of hidden neurons against algorithm iterations during
the training period. As shown in Figure 3a, the final number of hidden neurons was
approximately five. The training RMSE values of the proposed approach against algorithm
iterations are shown in Figure 3b, gradually decreasing and finally stabilizing at about
0.0107. The obtained values highlight the proposed approach’s advantages with respect to
convergence speed and modelling precision. Figure 3c shows the prediction outputs of the
proposed approach HPSO-SSM-RBFNN against the target outputs. Figure 3c shows that
the prediction results based on HPSO-SSM-RBFNN accurately match the real pattern of
the Lorenz time-series test samples 1000− 1500. Figure 3d highlights the testing error find-
ings for HPSO-SSM-RBFNN, showing that the suggested HPSO-SSM-RBFNN algorithms
produced excellent results, with a prediction error for the test samples 1000–1500 falling
within the range [−0.03, 0.12].
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(a) (b)

(c) (d)

Figure 3. The presented approach’s efficacy is measured in terms of (a) comparison of hidden neurons
for the training of proposed and other conventional algorithms, (b) RMSE values during the training
phase, (c) predicted outcomes of HPSO-SSM-RBFNN during the testing phase, (d) the prediction
errors during the testing phase.

4.4. Non-Linear Model Identification

The non-linear models are applied to realistically characterize the neural network
performance [39], as expressed by Equation (19).

y× (t + 1) = 0.72y× (t) + 0.025y× (t− 1)× u(t− 1) + 0.01u2 × (t− 2) + 0.2u× (t− 3) (19)

Two inputs, u(t), y(t) and y(t + 1) are required for Equation (19).
The training inputs are constantly classified for approximately half of the training time

throughout the interval [−2, 2].
In contrast, the rest of the training period comprises a single sinusoid signal emitted by

1.5× sin(t/45). This method uses 1000 sample sizes earmarked for the training and testing
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phases. The check input signal is described as in Equation (19) to evaluate the specific proof
outcomes for the test signals.

u(t) =


sin( π

25 ), 250 > t > 0
1.00 500 ≥ t ≥ 250
−1.00 750 ≥ t ≥ 500
0.3 sin×((πt

25 ) + 0.1((πt
32 ) + 0.6((πt

10 )), 1000 ≥ t ≥ 750

(20)

In the training stage, the HPSO-SSM-RBFNN algorithm and the training dataset are
used to obtain the trained network. In the evolving phase of the proposed approach, the
training RMSE value is set as the fitness function. The results are displayed in Figure 4a–d.

(a) (b)

(c) (d)

Figure 4. The presented approach’s efficacy is measured in terms of (a) the number of hidden neurons
during training, (b) RMSE values in the training phase, (c) the predicted results by HPSO-SSM-
RBFNN during the testing phase, (d) prediction errors during the testing phase.

Figure 4a shows the findings for comparison of hidden neurons with the algorithm
iterations.

The initial number of hidden neurons in the proposed approach was set to six and
its final number was nine. The training RMSE values of the proposed approach against
algorithm iterations are presented in Figure Figure 4b. The training RMSE values gradually
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decrease and finally stabilize at about 0.0029, demonstrating that the proposed approach
can approximate the desired accuracy, while maintaining rapid convergence speed.

The testing data sample was utilized to assess the generalisation effectiveness of the
designed HPSO-SSM-RBFNN algorithm after network training. The one-step-ahead predic-
tion findings of HPSO-SSM-RBFNN for test samples 0− 1000 are shown in Figure Figure 4c.
Figure 4c shows that the prediction results based on HPSO-SSM-RBFNN accurately match
the system output. Figure 4d illustrates that most testing errors for HPSO-SSM-RBFNN
were confined to the range [−0.03, 0.03], indicating that the suggested approach showed
superior testing performance.

4.5. Total Phosphorus (TP) Prognosis in WWTP

Wastewater treatment techniques are one of best options for tackling the challenge
of water contamination. The TP quantity is the fundamental parameter for determining
the performance of wastewater processes. The online computation of suitable TP values
is challenging in wastewater treatment. The developed HPSO-SSM-RBFNN was used to
estimate the TP value. Several easily observable measurements were selected as input
variables for the HPSO-SSM-RRBFNN, including pH, the concentration of dissolved oxygen
(DO), temperature (T), total suspended solids (TSS), and the influent TP. Experimental
datasets for the training of models were obtained from a wastewater treatment plant in
Beijing, China. After removing anomalous data, 250 instances for training and 150 samples
were utilized for testing. Figure 5a–d shows the experimental findings for the training and
testing approach.

Figure 5a shows the number of hidden neurons throughout the training period. With
eight hidden neurons, the designed HPSO-SSM-RBNN provided the most compact frame-
work of all the algorithms. Figure 5b shows the RMSE value of the suggested algorithms
during the training phase. The developed algorithm gave the smallest root mean square
error when comparing the training RMSE of the HPSO-SSM-RBFNN. In Figure 5c, the
TP values of the two prediction models, i.e., HPSO-SSM-RBFNN and the PSO-RBFNN
are plotted together with the actual values for the test data samples 0− 150. Figure 5d
illustrates the modelling capability of the HPSO-SSM-RBFNN by displaying the error rates
of these two models. Figure 5d indicates that the proposed HPSO-SSM-RBFNN showed
higher prediction performance with the range of predicted error [−0.2, 0.2].

In Table 2, the prediction values are compared for RBFNN [16], PSO-RBFNN [20],
and AI-PSO-RRBFNN [40] to demonstrate the performance of the designed HPSO-SSM-
RBFNN. The suggested HPSO-SSM-RBFNN produced the lowest (0.103) testing RMSE
value, indicating that the suggested technique performed better than existing algorithms
for TP value prediction in the WWTP.

Table 2. Comparing the performance of suggested algorithms with conventional approaches.

Algorithms

Lorenz Time-Series Pre. Nonlinear System Ident. TP Prediction in WWTP

No. of
HN

RMSE for
Training

RMSE for
Testing

No. of
HN

RMSE for
Training

RMSE for
Testing

No. of
HN

RMSE for
Training

RMSE for
Testing

RBFNN [16] 10 0.073 0.098 10 0.073 0.098 10 0.227 0.409
PSO-RBF [20] 9 0.061 0.054 9 0.013 0.025 14 0.188 0.156

AI-PSO-RBFNN [40] 6 0.063 0.058 11 0.018 0.022 12 0.191 0.170
HPSO-SSM-RBFNN 5 0.017 0.013 9 0.0029 0.010 8 0.162 0.103
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(a) (b)

(c) (d)

Figure 5. The presented approach’s efficacy is measured in terms of (a) neurons buried during
training, (b) the RMSE values in the training phase, (c) prediction results during the testing phase,
(d) the proposed HPSO-SSM-RBFNN for total phosphorus (TP) prediction in WWTP.

4.6. Comparative Analysis with Cutting-Edge Methods

The effectiveness of the presented algorithms was evaluated for RBFNN [16], PSO-
RBFNN [20], and AI-PSO-RBFNN [40], as summarized in Table 2. Various indices were
selected for performance evaluation, including hidden neurons stored, and the training and
testing RMSE values. HPSO-SSM-RBFNN achieved the most compact network topology,
with six, nine, and eight hidden neurons and the lowest training and testing RMSE values
compared to the other standard techniques. In addition, HPSO-SSM-RBFNN is known for
its superior prediction and generalization capabilities. Hence, the experimental findings
demonstrate that the HPSO-SSM-RBFNN shows remarkable identification capabilities with
a compact network architecture.

5. Conclusions and Future Work

An RBF computational approach for the detection of non-linear models is described.
The presented approach is based on the PSO convergence capacity and incorporates a
spiral search mechanism. The hybrid HPSO-SSM algorithm can simultaneously boost the
parameter and network topology of the RBFNN during the learning process. Performance
assessment of the suggested approach HPSO-SSM-RBFNN indicated a compact neural
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network. Experimental findings obtained indicate that the suggested strategy was effective
in minimizing prediction error and RMSE values relative to existing RBFNNs. The results
of the investigation are relevant to real-world applications. The number of simulation
results for different time series and different engineering models indicates potential for real-
world applications. The HPSO-SSM-RBFNN can calculate dynamical estimates of essential
parameters in WWTP systems and govern uncertain non-linear systems adaptively. In
the future, we intend to examine the effectiveness of the HPSO-SSM in training various
kinds of neural networks. Moreover, techniques to encourage use of the algorithm should
be considered.
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