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1. Introduction and Background

Let O(H ) denote a C∗-algebra of linear and bounded operators defined on a separable
complex Hilbert space H . Let I denote the identity operator in O(H ). In this framework,
the numerical radius of M ∈ O(H ) is defined by

w(M) := sup{|〈Ma, a〉|: a ∈H , ‖ a ‖= 1},

where 〈·, ·〉 and ‖ · ‖ are the inner product and its associated norm, respectively. The
numerical radius w is a norm, which is tantamount to the operator norm ‖ · ‖ on O(H ).
Indeed, for any M ∈ O(H ), we have

‖M‖ ≥ w(M) ≥ 1
2
‖M‖. (1)

For more details, see page 9 in [1–3]. Recent results pertaining to the numerical radius can
be found in [4–12].

As another essential notion, the spectrum of an operator M, denoted by sp(M), cor-
responds to the set of all λ ∈ C for which the operator λI −M does not have a bounded
linear inverse. The spectral radius of an operator M is defined by

r(M) = sup{|λ|: λ ∈ sp(M)}. (2)

If M ∈ O(H ) is positive, then, according to [13], we have

〈Ma, a〉α ≤ 〈Mαa, a〉, a ∈H , α ≥ 1. (3)
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Note that the inequality formulated in (3) is reversed if α ∈ [0, 1].
Aujla and Silva [14] showed that if f is non-negative real convex, and M, N are positive

operators, then ∥∥∥∥ f (M) + f (N)

2

∥∥∥∥ ≥ ∥∥∥∥ f
(

M + N
2

)∥∥∥∥. (4)

Kittaneh [15,16] showed some refinements of the inequalities stated in (1). In particular,
it was proved that

w(J) ≤ 1
2
‖|J|+ |J∗|‖ ≤ 1

2

(
‖J‖+ ‖J2‖1/2

)
(5)

and

1
4
‖J∗ J + J J∗‖ ≤ w2(J) ≤ 1

2
‖J∗ J + J J∗‖, (6)

for any J ∈ O(H ), where J∗ denotes the corresponding adjoint operator. Furthermore,
Kittaneh et al. [17] established some inequalities that can be presented as

ωα(J) ≤ 1
2

∥∥∥|J|2αs + |J∗|2α(1−s)
∥∥∥ (7)

and

ω2α(J) ≤
∥∥∥s|J|2α + (1− s)|J∗|2α

∥∥∥, (8)

where J ∈ O(H ), 0 ≤ s ≤ 1, and α ≥ 1.
For the product of two Hilbert space operators, M, N ∈ O(H ), Dragomir [18] proved

the following numerical radius:

ωα(M∗N) ≤ 1
2

∥∥∥|M|2α + |N|2α
∥∥∥, α ≥ 1. (9)

Moreover, the well-known Schwarz inequality asserts that

|〈Ja, b〉|2 ≤ 〈Jb, b〉〈Ja, a〉,

where J ∈ O(H ) is positive and a, b ∈H . In general, a numerical radius is not submulti-
plicative, that is, w(MN) ≤ w(M)w(N), for all operators M and N. Hence, it is helpful to
ask: when does this inequality hold? Note that the numerical radius is submultiplicative if
MN = NM and M is a normal operator.

Reid [19] demonstrated the Schwarz inequality given by

|〈MNa, a〉| ≤ ‖M‖〈Na, a〉,

where a ∈H , for all positive operators M, N ∈ O(H ), such that MN = N∗M∗.
Kato [20] proposed a mixed Schwarz inequality, which is expressed as

|〈Ja, b〉|2 ≤ 〈|J|2sa, a〉〈|J∗2(1−s)b, b〉, 0 ≤ s ≤ 1,

where |J| = (J∗ J)1/2 for J ∈ O(H ) and a, b are vectors in H .
Kittaneh [21] showed an extension of the inequalities given in (5) and (9), proving that

|〈NJa, b〉| ≤ r(N)‖ f (|J|)a‖‖g(|J∗|)b‖, (10)



Mathematics 2023, 11, 36 3 of 11

for all vectors a, b ∈ H and N, M ∈ O(H ), such that |N|M = M∗|N|, where f , g are
nonnegative continuous functions, with f (t) = t/g(t), for t ≥ 0, and r(N) being the
spectral radius of an operator N, as defined in (2).

Furuta [22] asserted another extension of the inequalities formulated in (6), stating that

|〈M|M|s+t−1a, b〉|2 ≤ 〈|M|2sa, a〉〈|M|2tb, b〉, (11)

for any a, b ∈H and s, t ∈ [0, 1], with s + t ≥ 1.
Dragomir [23] established that, if M, N, J ∈ O(H ), such that M, N are positive, for

which ‖Ma‖ ≥ ‖Ja‖ and ‖Nb‖ ≥ ‖J∗b‖, then

|〈Ja, b〉| ≤ ‖Mta‖‖N1−tb‖,

for all a, b ∈H and t ∈ [0, 1]. Moreover, in [23], a Furuta-type inequality is given by

|〈VMNUa, b〉|2 ≤ 〈U∗|N|2Ua, a〉〈V|M∗|2V∗b, b〉, M, N, U, V ∈ O(H ), a, b ∈H . (12)

Using the formula expressed in (10), again in [23], Dragomir generalized the inequality
formulated in (7) by proving that

ωs(VMNU) ≤ 1
2
‖(U∗|N|2U)s + (V|M∗|2V∗)s‖, (13)

for all M, N, U, V ∈ O(H ) and s ≥ 1. Recently, Kittaneh et al. [24] introduced an inequality
presented as

ω2(M∗N) ≤ 1
6

∥∥∥|N|4 + |M|4∥∥∥+ 1
3

ω(M∗N)
∥∥∥|M|2 + |N|2∥∥∥ ≤ 1

2

∥∥∥|M|4 + |N|4∥∥∥, (14)

where M, N ∈ O(H ). When α = 2, the inequality established in (14) refines the expression
stated in (9). Now, observe that, for J ∈ O(H ), the inequality expressed as

|〈Ja, a〉| ≤
√
〈|J|a, a〉〈|J∗|a, a〉 (15)

is a special case of Kato’s inequality obtained in (9), when a = b ∈H . In the same work [24],
Kittaneh et al. proved a refinement of the inequality shown in (13), and presented as

|〈Ja, a〉|2 ≤ 2
3
|〈Ja, a〉|

√
〈|J|a, a〉〈|J∗|a, a〉+ 1

3
〈|J|a, a〉〈|J∗|a, a〉 ≤ 〈|J|a, a〉〈|J∗|a, a〉. (16)

Note that the inequality given in (16) yields a refinement of (6) established as

ω2(J) ≤ 1
3
‖|J|+ |J∗|‖ω(J) +

1
6

∥∥∥|J|2 + |J∗|2∥∥∥ ≤ 1
2

∥∥∥|J∗|2 + |J|2∥∥∥, J ∈ O(H ). (17)

To the best of our knowledge, general refinements of the Dragomir extension of
Furuta’s inequality stated in (10) have not been proved. Therefore, the objective of the
present study is to improve Furuta’s inequality as defined in (10). Then, we obtain stronger
refinements of the results presented in (11), (12) and (15). We apply our results to numerical
radius inequalities, which are supported by two numerical examples.

The plan for the rest of this article is as follows. In Section 2, we provide a refinement
of the Cauchy–Schwarz inequality. Section 3 introduces an application of our results to
numerical radius inequalities. The article finishes with some conclusions regarding the
present study in Section 4.

2. Refinement of the Cauchy–Schwarz Inequality

We start this section with the following lemma, which generalizes and refines Kato’s
inequality stated in (11).
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Lemma 1. Let M, N, U, V ∈ O(H ), λ ∈ [0, 1], and α ≥ 1. Then, we have

|〈VMNUa, b〉|2α ≤ λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

(18)

+ (1− λ)|〈VMNUa, b〉|α
√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

≤
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

,

for all a, b ∈H .

Proof. Using (3) and (12), one can easily obtain that

λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

+ (1− λ)|〈VMNUa, b〉|α
√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

≥ λ
〈

U∗|N|2Ua, a
〉α〈

V|M∗|2V∗b, b
〉α

(19)

+ (1− λ)|〈VMNUa, b〉|α
〈

U∗|N|2Ua, a
〉 α

2
〈

V|M∗|2V∗b, b
〉 α

2

≥ λ|〈VMNUa, b〉|2α + (1− λ)|〈VMNUa, b〉|α|〈VMNUa, b〉|α –by (12)–

= |〈VMNUa, b〉|2α,

for all λ ∈ [0, 1] and α ≥ 1. In addition, we have

λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

+ (1− λ)|〈VMNUa, b〉|α
√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

≤λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉
+ (1− λ) –by (13)–

×
√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

=λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

+ (1− λ)
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

=
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

. (20)

Combining (19) and (20), we infer that

|〈VMNUa, b〉|2α ≤ λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

+ (1− λ)|〈VMNUa, b〉|α
√〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

≤
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

b, b
〉

,

for any α ≥ 1, which proves the inequality stated in (18).
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Corollary 1. Let M ∈ O(H ), s, t ≥ 0, with s + t ≥ 1, and α ≥ 1. Then, we have∣∣∣〈M|M|s+t−1a, b
〉∣∣∣2α

≤ λ
〈
|M|2αsa, a

〉〈
|M∗|2αtb, b

〉
(21)

+ (1− λ)
∣∣∣〈M|M|s+t−1a, b

〉∣∣∣α√〈|M|2αsa, a
〉〈
|M∗|2αtb, b

〉
≤
〈
|M|2αsa, a

〉〈
|M∗|2αtb, b

〉
,

for all a, b ∈H .

Proof. Let M, Z ∈ O(H ) such that Z|M| is the polar decomposition of M, where Z is
partial isometry. Setting V = Z, N = I, U = |M|s, and replacing M by |M|t such that
s + t ≥ 1 in (18), we obtain VMNU = Z|M|t|M|s = Z|M||M|s+t−1 = M|M|s+t−1, and also
U∗|N|2U = |M|2s, V|M∗|2V∗ = Z|M|2tZ∗ = |M∗|2t. This completes the proof.

Remark 1. As an example, in Corollary 1, assume s, t ∈ [0, 1] with s+ t = 1. Then, the expression
given in (21) reduces to Lemma 5 in [2], which refines the celebrated mixed Schwarz inequality
stated in (11).

In the next corollary, we show a refinement of the Cauchy–Schwarz inequality for
arbitrary operators.

Corollary 2. Let N, M ∈ O(H ), λ ∈ [0, 1], and α ≥ 1. Then, we get

|〈Na, Mb〉|2α ≤ λ
〈
|N|2αa, a

〉〈
|M|2αb, b

〉
+ (1− λ)|〈Na, Mb〉|α

√〈
|M|2αb, b

〉〈
|N|2αa, a

〉
≤
〈
|N|2αa, a

〉〈
|M|2αb, b

〉
,

for all a, b in H .

Proof. The result follows by setting V = U = I and replacing M by M∗ in (18).

3. Applications to Numerical Radius Inequalities

In this section, we present some applications of Corollary 1 with inequalities involving
the operator norm and numerical radius. We start this section with the following theorem.

Theorem 1. Let M, N, U, V ∈ O(H ). Then, we arrive at

ω2α(VMNU) ≤ 1
2

λ

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥ (22)

+
1
2
(1− λ)ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

≤ 1
2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥,

for all α ≥ 1 and λ ∈ [0, 1].

Proof. First, note that the well-known power-mean inequality states that

(αup + (1− α)vp)
1
p ≥ αu + (1− α)v ≥ uαv1−α, (23)

where u, v > 0, α ∈ [0, 1], and p ≥ 1 [25].



Mathematics 2023, 11, 36 6 of 11

Now, let a = b and set α = 1 in (18). Then, by applying the inequality (23), we obtain

|〈(VMNU)a, a〉|2 ≤ λ
〈(

U∗|N|2U
)

a, a
〉〈(

V|M∗|2V∗
)

a, a
〉

+ (1− λ)|〈VMNUa, a〉|
√〈(

U∗|N|2U
)

a, a
〉〈(

V|M∗|2V∗
)

a, a
〉

≤
(

λ
〈(

U∗|N|2U
)

a, a
〉α〈(

V|M∗|2V∗
)

a, a
〉α

+ (1− λ)|〈VMNUa, a〉|α
√〈(

U∗|N|2U
)

a, a
〉α〈(

V|M∗|2V∗
)

a, a
〉α
) 1

α

.

This implies that

|〈(VMNU)a, a〉|2α ≤ λ
〈(

U∗|N|2U
)

a, a
〉α〈(

V|M∗|2V∗
)

a, a
〉α

+ (1− λ)|〈VMNUa, a〉|α
√〈(

U∗|N|2U
)

a, a
〉α〈(

V|M∗|2V∗
)

a, a
〉α

≤ λ
〈(

U∗|N|2U
)α

a, a
〉〈(

V|M∗|2V∗
)α

a, a
〉

–by (3)–

+ (1− λ)|〈VMNUa, a〉|α
〈(

U∗|N|2U
)α

a, a
〉 1

2
〈(

V|M∗|2V∗
)α

a, a
〉 1

2

≤
λ
(〈(

U∗|N|2U
)α

a, a
〉
+
〈(

V|M∗|2V∗
)α

a, a
〉)2

4
–by (23)–

+
(1− λ)

2
|〈VMNUa, a〉|α

(〈(
U∗|N|2U

)α
a, a
〉
+
〈(

V|M∗|2V∗
)α

a, a
〉)

≤
λ

〈(
U∗|N|2U

)2α
a, a
〉
+

〈(
V|M∗|2V∗

)2α
a, a
〉

2
–by (23)–

+
(1− λ)

2
|〈VMNUa, b〉|α

〈[(
U∗|N|2U

)α
+
(

V|M∗|2V∗
)α]

a, a
〉

≤ λ

2

〈[(
U∗|N|2U

)2α
+
(

V|M∗|2V∗
)2α
]

a, a
〉

+
(1− λ)

2
|〈VMNUa, a〉|α

〈[(
U∗|N|2U

)α
+
(

V|M∗|2V∗
)α]

a, a
〉

.

Hence, by obtaining the supremum over all unit vectors a ∈H , we reach the first inequality
stated in (22). Moreover, to prove the second inequality in (22), we employ (8) on the first
inequality, obtaining

ω2α(VMNU) ≤ λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

≤ λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

4

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥2

=
λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

4

∥∥∥∥∥∥∥
2
(

U∗|N|2U
)α

+ 2
(

V|M∗|2V∗
)α

2


2∥∥∥∥∥∥∥
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≤ λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

4

∥∥∥∥∥∥∥
(

2
(

U∗|N|2U
)α)2

+
(

2
(

V|M∗|2V∗
)α)2

2

∥∥∥∥∥∥∥ –by (4)–

≤ λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

=
1
2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥,

which proves the second inequality stated in (22).

Corollary 3. Let M ∈ O(H ), and s, t ≥ 0, with s + t ≥ 1. Then, we have

ω2α
(

M|M|s+t−1
)
≤ λ

2

∥∥∥|M|4αs + |M∗|4αt
∥∥∥

+
(1− λ)

2
ωα
(

M|M|s+t−1
)∥∥∥|M|2αs + |M∗|2αt

∥∥∥
≤ 1

2

∥∥∥|M|4αs + |M∗|4αt
∥∥∥,

for all α ≥ 1 and λ ∈ [0, 1].

Proof. These inequalities are proved by the formula given in (22) and the corresponding
technique presented in Corollary 1.

Remark 2. Setting λ = 0 in Corollary 3, the first inequality can be restated in a new form given by

ωα
(

M|M|s+t−1
)
≤ 1

2

∥∥∥|M|2αs + |M∗|2αt
∥∥∥,

for all s, t ≥ 0, such that s + t ≥ 1, and α ≥ 1.

Theorem 2. Let M, N, U, V ∈ O(H ), α ≥ 1, and λ ∈ [0, 1]. Then, we attain

ω2α(VMNU) ≤ λ

4

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥2

(24)

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

≤ λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

≤ 1
2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥.
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Proof. For all λ ∈ [0, 1], we have

ω2α(VMNU) = λω2α(VMNU) + (1− λ)ω2α(VMNU)

= λω2α(VMNU) + (1− λ)ωα(VMNU)ωα(VMNU)

≤ λ

4

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥2

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥. –by (8)–

Furthermore, by using (4), we reach

ω2α(VMNU) ≤ λ

4

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥2

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

=
λ

4

∥∥∥∥∥∥∥
2
(

U∗|N|2U
)α

+ 2
(

V|M∗|2V∗
)α

2


2∥∥∥∥∥∥∥

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

≤ λ

4

∥∥∥∥∥∥∥
(

2
(

U∗|N|2U
)α)2

+
(

2
(

V|M∗|2V∗
)α)2

2

∥∥∥∥∥∥∥
+

(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥

=
λ

2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
(1− λ)

2
ωα(VMNU)

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥, –by (22)–

which completes the proof.

Corollary 4. Let M, N, U, V ∈ O(H ). Then, we get

ω2α(VMNU) ≤ 1
12

∥∥∥(U∗|N|2U
)α

+
(

V|M∗|2V∗
)α∥∥∥2

+
1
3

ωα(VMNU)
∥∥∥(U∗|N|2U

)α
+
(

V|M∗|2V∗
)α∥∥∥

≤ 1
6

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥

+
1
3

ωα(VMNU)
∥∥∥(U∗|N|2U

)α
+
(

V|M∗|2V∗
)α∥∥∥

≤ 1
2

∥∥∥∥(U∗|N|2U
)2α

+
(

V|M∗|2V∗
)2α
∥∥∥∥.

Proof. The results follows by setting λ = 1/3 in (24).

Remark 3. The inequality given in Corollory 4 is a refinement of (14) when V = U = I, α = 1,
λ = 1/3, and M is replaced by M∗.

The following example shows that the inequality given in Corollary 4 is a refinement
of (14) and hence of (9).
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Example 1. Let us set V = U = I, α = 1, and replace M by M∗ in Corollary 4. In addition,
consider

M =

[
0 2
1 1

]
, N =

[
1 1
3 0

]
.

Then, it is clear that ω(M∗N) = 3, ‖|N|2 + |M|2‖ = 15.3007, and ‖|N|4 + |M|4‖ = 129.3063.
Therefore, we have

ω2(M∗N) = 9

≤ 1
12

∥∥∥|N|2 + |M|2∥∥∥2
+

1
3

ω(M∗N)
∥∥∥|N|2 + |M|2∥∥∥

= 34.80998504

≤ 1
6

∥∥∥|N|4 + |M|4∥∥∥+ 1
3

ω(M∗N)
∥∥∥|N|2 + |M|2∥∥∥

= 36.85175667

≤ 1
2

∥∥∥|N|4 + |M|4∥∥∥
= 64.65317000,

which is equivalent to write 3 = ω(M∗N) ≤ 5.899999 � 6.070564 � 8.040719.

Corollary 5. Let M ∈ O(H ) and s, t ≥ 0, with s + t ≥ 1. Then, we attain

ω2α
(

M|M|s+t−1
)
≤ λ

4

∥∥∥|M|2αs + |M∗|2αt
∥∥∥2

+
(1− λ)

2
ωα
(

M|M|s+t−1
)∥∥∥|M|2αs + |M∗|2αt

∥∥∥
≤ λ

2

∥∥∥|M|4αs + |M∗|4αt
∥∥∥+ (1− λ)

2
ωα
(

M|M|s+t−1
)∥∥∥|M|2αt + |M∗|2αs

∥∥∥
≤ 1

2

∥∥∥|M|4αs + |M∗|4αt
∥∥∥, (25)

for all α ≥ 1 and λ ∈ [0, 1].

Proof. By using (24) and the technique employed in Corollary 1, we complete the proof.

Corollary 6. Let M ∈ O(H ) and s, t ≥ 0, with s + t ≥ 1. Then, we have

ω2α
(

M|M|s+t−1
)
≤ 1

12

∥∥∥|M|2αs + |M∗|2αt
∥∥∥2

+
1
3

ωα
(

M|M|s+t−1
)∥∥∥|M|2αs + |M∗|2αt

∥∥∥
≤ 1

6

∥∥∥|M|4αs + |M∗|4αt
∥∥∥+ 1

3
ωα
(

M|M|s+t−1
)∥∥∥|M|2αs + |M∗|2αt

∥∥∥
≤ 1

2

∥∥∥|M|4αs + |M∗|4αt
∥∥∥, (26)

for all α ≥ 1.

Proof. The result follows by setting λ = 1/3 in (25).

Remark 4. As a special case, assume s, t ∈ [0, 1], with s + t = 1 in Corollary 6. Then, the first
inequality given in (26) refines the inequality stated in (17).

The following example shows that the first inequality given in (26) refines the inequal-
ity stated in (17).
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Example 2. Let

M =

[
0 2
0 0

]
.

Then, it is clear that ω(M) = 1. By employing the inequalities presented in Corollary 6, with
s = t = 1/2 and α = 1, we arrive at ‖|M|2 + |M∗|2‖ = 4, ‖|M|+ |M∗|‖ = 2. Thus, we have

ω2(M) = 1

≤ 1
12
‖|M|+ |M∗|‖2 +

1
3

ω(M)‖|M|+ |M∗|‖

= 1

� 1
6

∥∥∥|M|2 + |M∗|2∥∥∥+ 1
3

ω(M)‖|M|+ |M∗|‖

= 1.33

≤ 1
2

∥∥∥|M|2 + |M∗|2∥∥∥
= 2.

This is equivalent to write ω(M) = 1 � 1.1547 � 1.41421. Note that the first inequality gives the
exact value of ω(M).

4. Concluding Remarks

In this work, we have improved Furuta’s inequality. From this improvement, we have
been able to obtain new radius inequalities. We have used some known inequalities to prove
our results. Two numerical examples have illustrated our findings. We believe that the new
inequalities obtained in this article can serve as the basis for further applications [26].
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