Validity of the Fama-French Three- and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic
Abstract
:1. Introduction
- The Fama-French three- and five-factor models are unable to produce meaningful results in a crisis setting where the traditional setting of an efficient, self-regulating market is deeply disturbed.
2. Literature Review
2.1. Energy Sector and Impact of COVID-19 Pandemic
2.2. Criticism of Multi-Factor Asset Pricing Models
3. Methods
3.1. Model
- Complete Data Period
- Global Financial Crisis Period
- COVID-19 Period
3.2. Test of Model Performance
3.3. Data
3.4. Implementation of Asset-Pricing Model Factors
4. Results
4.1. Analysis Results for the Fama-French Three-Factor Model
4.2. Analysis Results for the Fama-French Five-Factor Model
4.3. Cost-of-Equity Results for Fama-French Three-Factor Model
4.4. Cost-of-Equity Results for Fama-French Five-Factor Model
5. Discussion
- R < 0.3 no or very weak effect
- 0.3 < R < 0.5 weak effect
- 0.5 < R < 0.7 moderate effect
- R > 0.7 strong effect
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kostin, K.; Runge, P.; Adams, R. Investment Strategies in Pandemic Situations: An Analysis and Comparison of Prospective Returns between Developed and Undeveloped Countries. Strateg. Manag. J. 2020, 26, 34–52. [Google Scholar]
- Ghabri, Y.; Ayadi, A.; Guesmi, K. Fossil energy and clean energy stock markets under COVID-19 pandemic. Appl. Econ. 2021, 53, 4962–4974. [Google Scholar] [CrossRef]
- Shaikh, I. Impact of COVID-19 pandemic on the energy markets. Econ. Chang. Restruct. 2022, 55, 433–484. [Google Scholar] [CrossRef]
- Drobot, E.V.; Drobot, E.; Makarov, I.; Petrenko, Y.; Koshebayeva, G. Relationship between Countries’ Energy Indicators and the Indices of GVC Participation: The Case of APEC Member Economies. Energies 2022, 15, 1675. [Google Scholar] [CrossRef]
- Wielechowski, M.; Czech, K. Companies’ Stock Market Performance in the Time of COVID-19: Alternative Energy vs. Main Stock Market Sectors. Energies 2021, 15, 106. [Google Scholar] [CrossRef]
- Kostin, K.B.; Runge, P.; Charifzadeh, M. An Analysis and Comparison of Multi-Factor Asset Pricing Model Performance during Pandemic Situations in Developed and Emerging Markets. Mathematics 2022, 10, 142. [Google Scholar] [CrossRef]
- Maksimtsev, I.A.; Kostin, K.B.; Berezovskaya, A.A. Modern Trends in Global Energy and Assessment of the Ever-Increasing Role of Digitalization. Energies 2022, 15, 8767. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). The COVID-19 Crisis is Causing the Biggest Fall in Global Energy Investment in History. Available online: https://www.iea.org/news/the-COVID-19-crisis-is-causing-the-biggest-fall-in-global-energy-investment-in-history (accessed on 8 October 2022).
- International Energy Agency (IEA). Oil Market Report—April. 2020. Available online: https://www.iea.org/reports/oil-market-report-april-2020 (accessed on 9 October 2022).
- Du, J.; Rakha, H.; Filali, F.; Eldardiry, H. COVID-19 Pandemic Impacts of Traffic System Delay, Fuel Consumption, and Emissions. J. Transp. Sci. Technol. 2021, 10, 184–196. [Google Scholar] [CrossRef]
- Szczygielski, J.J.; Brzeszczynski, J.; Charteris, A.; Bwanya, P.R. The COVID-19 Storm and the Energy Sector: The Impact and Role of Uncertainty. Energy Econ. 2022, 109, 105258. [Google Scholar] [CrossRef]
- Rokicki, T.; Jadczak, R.; Kucharski, A.; Bórawski, P.; Bełdycka-Bórawska, A.; Szeberényi, A.; Perkowska, A. Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy. Energies 2022, 15, 6243. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nizetic, S.; Olcer, A.; Ong, H.; Chen, W.-H.; Chong, W.; Thomas, S.; Bandh, S.; Nguyen, X. Impacts of COVID-19 Pandemic on the Global Energy System and the Shift Progress to Renewable Energy: Opportunities, Challenges, and Policy Implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, W. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. J. Financ. 1964, 19, 436–438. [Google Scholar]
- Lintner, K. The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Rev. Econ. Stat. 1965, 47, 13–37. [Google Scholar] [CrossRef]
- Mossin, J. Equilibrium in a Capital Asset Market. Econometrica 1966, 34, 768–783. [Google Scholar] [CrossRef]
- Roll, R. A Critique of The Asset Pricing Theory’s Tests. J. Financ. Econ. 1977, 4, 129–176. [Google Scholar] [CrossRef]
- Fama, E.; French, K. The Capital Asset Pricing Model: Theory and Evidence. J. Econ. Perspect. 2004, 18, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Fama, E.; French, K. Common Risk Factors in the Returns on Stocks and Bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Belyh, A. The Definitive Guide to Fama French Three-Factor Model; Cleverism: Berlin, Germany, 2019; Available online: https://www.cleverism.com/fama-french-three-factor-model-guide/ (accessed on 10 October 2022).
- Fama, E.; French, K. A Five Factor Asset Pricing Model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Blitz, D.; Hanauer, M.X.; Vidojevic, M.; Van Vliet, P. Five Concerns with the Five-Factor Model. J. Portf. Manag. 2018, 44, 71–78. [Google Scholar] [CrossRef]
- Arnold, G.; Lewis, D. Corporate Financial Management, 6th ed.; Pearson Education: Harlow, UK, 2019; Chapter 3; p. 307. [Google Scholar]
- Racicot, F.E.; Rentz, W.; Tessier, D.; Théoret, R. The Conditional Fama-French Model and Endogenous Illiquidity: A Robust Variables Test. PLoS ONE 2019, 14, e0221599. [Google Scholar] [CrossRef]
- Racicot, F.E. Engineering Robust Instruments for GMM Estimation of Panel Data Regression Models with Errors in Variables: A Note. Appl. Econ. 2015, 47, 981–989. [Google Scholar] [CrossRef]
- Gibbons, M.; Ross, S.; Shanken, J. A Test of the Efficiency of a Given Portfolio. Econometrica 1989, 57, 1121–1152. [Google Scholar] [CrossRef]
- Cakici, N.; Fabozzi, F.; Tan, S. Size, Value, and Momentum in Emerging Market Stock Returns. Emerg. Mark. Rev. 2013, 16, 46–65. [Google Scholar] [CrossRef]
- Affleck-Graves, J.; McDonald, B. Nonnormalities and Tests of Asset Pricing. J. Financ. 1989, 44, 889–908. [Google Scholar] [CrossRef]
- Zikmund, W.; Babin, B.; Carr, J.; Griffin, M. Business Research Methods, 9th ed.; Cengage Learning: Mason, OH, USA, 2013; Chapter 23; p. 51. ISBN 978-1111826925. [Google Scholar]
- Ross, S. The Arbitrage Theory of Capital Asset Pricing. J. Econ. Theory 1976, 13, 341–360. [Google Scholar] [CrossRef]
- Benartzi, S.; Thaler, R.H. Myopic loss-aversion and the equity premium puzzle. Q. J. Econ. 1995, 110, 75–92. [Google Scholar] [CrossRef]
Company | α | t(α) | β | SMB | HML | R2 (Adjusted) |
---|---|---|---|---|---|---|
Lukoil | 0.0001 | 0.02 | 1.1 * | −0.27 | 0.34 | 0.29 |
Rosneft | 0.01 | 0.81 | 0.42 * | 0.28 | 0.20 | 0.03 |
Gazprom | 0.29 | 1.56 | 3.06 | 0.78 | −7.52 | 0.01 |
Saudi Electricity | 0.0031 | 0.63 | 0.19 * | −0.02 | 0.26 | 0.03 |
Sinopec | −0.01 | −1.92 | −0.02 | −0.19 | 0.79 | 0.02 |
Petrochina | −0.004 | −0.66 | −0.15 | 0.51 | 0.23 | 0.02 |
ExxonMobil | 0.0007 | 0.21 | 0.70 * | −0.23 | 0.71 * | 0.34 |
Chevron | 0.0027 | 0.85 | 0.89 * | −0.22 | 0.76 | 0.43 |
Nextera | 0.01 * | 3.47 | 0.43 * | −0.51 * | 0.08 * | 0.14 |
BP | −0.0039 | −1.04 | 1.01 * | −0.17 | 0.78 * | 0.40 |
Shell | −0.0019 | −0.60 | 0.95 * | −0.06 | 0.76 * | 0.44 |
Total Energies | 0.0002 | 0.06 | 0.98 * | −0.10 | 0.66 * | 0.48 |
GRS Developed: 8.72 * | Average R2 Developed: 0.37 (0.11) | |||||
GRS p-value: 2.820 × 10−9 | ||||||
GRS Emerging: 5.47 * | Average R2 Emerging: 0.07 | |||||
GRS p-value: 1.394 × 10−5 | (0.37) |
Company | α | t(α) | β | SMB | HML | RMW | CMA | R2 (Adjusted) |
---|---|---|---|---|---|---|---|---|
Lukoil | 0.003 | 0.46 | 0.98 * | −0.39 | 0.42 | −0.51 | −0.58 | 0.30 |
Rosneft | 0.02 * | 2.15 | −0.12 | −0.06 | 0.79 | −2.35 * | −2.1 * | 0.10 |
Gazprom | 0.26 | 1.25 | 2.78 | 1.31 | −2.05 | 11.03 | −7.80 | 0.01 |
Saudi Electricity | 0.003 | 0.52 | 0.18 | −0.01 | 0.33 | 0.13 | −0.08 | 0.04 |
Sinopec | −0.01 | −1.64 | −0.11 | −0.24 | 0.99 * | −0.15 | −0.50 | 0.01 |
Petrochina | −0.004 | −0.55 | 0.26 * | 0.48 | 0.55 | 0.11 | −0.79 | 0.02 |
ExxonMobil | −0.0009 | 0.28 | 0.79 * | −0.18 | 0.41 * | 0.05 | 0.59 * | 0.35 |
Chevron | 0.0002 | 0.05 | 0.98 * | −0.11 | 0.60 * | 0.41 | 0.30 | 0.44 |
Nextera | 0.01 * | 2.12 | 0.56 * | −0.33 | −0.10 | 0.77 * | 0.31 | 0.18 |
BP | −0.004 | −1.14 | 1.04 * | −0.16 | 0.68 * | 0.03 | 0.19 | 0.41 |
Shell | −0.002 | −0.75 | 0.99 * | −0.05 | 0.61 * | −0.02 | 0.30 | 0.46 |
Total Energies | −0.0004 | −0.13 | 1.0 * | −0.07 | 0.62 * | 0.10 | 0.06 | 0.48 |
GRS Developed: 3.73 * | Average R2 Dev: 0.39 (0.11) | |||||||
GRS p-value: 1.11 × 10−3 | ||||||||
GRS Emerging: 7.88 * | Average R2 Em: 0.09 (0.03) | |||||||
GRS p-value: 2.55 × 10−8 |
Company | Full Data Period | COVID-19 | GFC |
---|---|---|---|
Lukoil | 8.80 (2.35) | 11.30 (2.36) | 1.93 (0.33) |
Rosneft | 5.03 (1.7) | 2.24 (0.29) | −4.01 (0.33) |
Gazprom | −43.51 (12.25) | 394.10 (39.29) | 6.13 (2.38) |
Saudi Electricity | 5.10 (2.77) | 7.17 (1.21) | 0.35 (0.13) |
Sinopec | 9.53 (1.2) | 5.37 (0.99) | 1.09 (0.28) |
Petrochina | 5.53 (1.33) | −1.75 (0.22) | 8.53 (2.43) |
ExxonMobil | 7.77 (2.19) | 10.46 (0.83) | 0.33 (0.32) |
Chevron | 9.00 (1.63) | 14.96 (3.39) | −0.16 (0.02) |
Nextera | 3.20 (2.43) | 8.31 (1.25) | 0.58 (0.2) |
Shell | 9.60 (1.16) | 9.17 (2.49) | 0.68 (0.15) |
BP | 9.77 (1.23) | 11.14 (1.44) | −1.14 (0.39) |
Total Energies | 9.27 (1.11) | 14.29 (2.39) | −0.05 (0.01) |
Average Developed | 8.10% | 11.39% | 0.11% |
Average Emerging | 6.30% | 83.54% | 5.61% |
Company | Full Data Period | COVID-19 | GFC |
---|---|---|---|
Lukoil | 12.62 (2.27) | 8.80 (0.31) | 11.93 (0.54) |
Rosneft | −9.87 (1.2) | −15.23 (3.32) | −24.71 (6.34) |
Gazprom | 8.80 (2.28) | 178.69 (19.31) | 15.19 (5.29) |
Saudi Electricity | 5.54 (1.34) | 6.00 (0.34) | 6.64 (0.21) |
Sinopec | 7.07 (2.31) | 4.65 (0.39) | 0.47 0.35) |
Petrochina | 4.28 (0.8) | 2.66 (0.31) | −11.47 (0.34) |
ExxonMobil | 9.67 (1.12) | 10.46 (2.38) | 11.64 (2.28) |
Chevron | 12.02 (3.25) | 14.65 (3.33) | 15.54 (4.27) |
Nextera | 8.17 (2.15) | 8.10 (1.37) | −6.07 (1.42) |
Shell | 10.36 (3.13) | 6.12 (0.52) | 17.57 (4.62) |
BP | 10.49 (2.11) | 7.26 (0.46) | 21.41 (6.34) |
Total Energies | 9.98 (1.13) | 12.92 (3.39) | 10.78 (1.2) |
Average Developed | 10.12 | 9.92 | 11.81 |
Average Emerging | 4.10 | 31.35 | −1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostin, K.B.; Runge, P.; Mamedova, L.E. Validity of the Fama-French Three- and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic. Mathematics 2023, 11, 49. https://doi.org/10.3390/math11010049
Kostin KB, Runge P, Mamedova LE. Validity of the Fama-French Three- and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic. Mathematics. 2023; 11(1):49. https://doi.org/10.3390/math11010049
Chicago/Turabian StyleKostin, Konstantin B., Philippe Runge, and Leyla E. Mamedova. 2023. "Validity of the Fama-French Three- and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic" Mathematics 11, no. 1: 49. https://doi.org/10.3390/math11010049
APA StyleKostin, K. B., Runge, P., & Mamedova, L. E. (2023). Validity of the Fama-French Three- and Five-Factor Models in Crisis Settings at the Example of Select Energy-Sector Companies during the COVID-19 Pandemic. Mathematics, 11(1), 49. https://doi.org/10.3390/math11010049