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Abstract: The objective of this paper is to explore the complete lifts of a quarter-symmetric metric
connection from a Sasakian manifold to its tangent bundle. A relationship between the Riemannian
connection and the quarter-symmetric metric connection from a Sasakian manifold to its tangent
bundle was established. Some theorems on the curvature tensor and the projective curvature tensor
of a Sasakian manifold with respect to the quarter-symmetric metric connection to its tangent bundle
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1. Introduction

The study of the tangent bundle is a powerful method in geometry that allows us
to retrieve effective results while studying various connections and geometric structures,
such as a quarter-symmetric metric connection, a semi-symmetric connection, an almost
complex structure and a contact structure on the manifold M admitting lifts to its tangent
bundle TM. Peyghan et al. [1] studied the members of a golden structure on TM with
a Riemannian metric and established the integrability condition of such a structure on
TM. The complete lifts of connections such as quarter-symmetric metric connection and
quarter-symmetric non-metric connection from the manifold M to TM have been studied
by Akpinar [2], Altunbas et al. ([3,4]), Kazan and Karadag [5], Khan [6]. For the recent
studies on lifts of connections and geometric structures, we refer to ([7–11]) and many more.

The definition and discussion of a quarter-symmetric connection on a Riemannian
manifold, on the other hand, were provided by Golab [12].

A linear connection ∇̃ on a Riemannian manifold M (dim= n) with a Reimannian
metric g is called a quarter-symmetric connection if its torsion tensor T of the connection ∇̃

T(ζ1, ζ2) = ∇̃ζ1 ζ2 − ∇̃ζ2 ζ1 − [ζ1, ζ2] (1)

satisfies
T(ζ1, ζ2) = η(ζ2)φζ1 − η(ζ1)φζ2, (2)

where η is a 1-form and φ is a tensor field of type (1,1).
In addition, if ∇̃ fulfills

(∇̃ζ1 g)(ζ2, ζ3) = 0, (3)
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∀ζ1, ζ2, ζ3 ∈ =1
0(M), then ∇̃ is called a quarter-symmetric metric connection; otherwise,

it is called a quarter-symmetric non-metric connection ([13–15]). The quarter-symmetric
metric connections on different manifolds such as Riemannian, Hermitian, Kaehlerian,
Kenmotsu and Sasakian manifolds have been studied by Mondol and De [16], Mishra and
Pandey [17], Mukhopadhyay et al. [18], Bahadir [19], Sular et al. [20] and many more.

We established certain curvature properties on TM and explored the lifts of a quarter-
symmetric metric connection from a Sasakian manifold to TM. The results of this paper
are given as:

• We established a relationship between the Riemannian connection and the quarter-
symmetric metric connection from a Sasakian manifold to TM.

• We derived the expression of the curvature tensor of a Sasakian manifold equipped
with a quarter-symmetric metric connection to TM.

• We studied a ξ-projectively flat Sasakian manifold endowed with a quarter-symmetric
metric connection to TM.

• We locally characterized a φ-symmetric Sasakian manifold admitting a quarter-symmetric
metric connection to TM.

2. Preliminaries

Let us consider TM to be the tangent bundle of a manifold M. The set of all tensor
fields of type (r, s) that are of contravariant degree r and covariant degree s in M and TM are
denoted by =r

s(M) and =r
s(TM), respectively. Let the function, a 1-form, a vector field and

a tensor field of type (1,1) be symbolized as f , η, ζ1 and φ, respectively. The complete and
vertical lifts of f , η, ζ1, φ are symbolized as f C, ηC, ζC

1 , φC and f V , ηV , ζV
1 , φV , respectively.

The following operations on f , η, ζ1 and φ are defined by [21,22]

( f ζ1)
V = f VζV

1 , ( f ζ1)
C = f CζV

1 + f VζC
1 , (4)

ζV
1 f V = 0, ζV

1 f C = ζC
1 f V = (ζ1 f )V , ζC

1 f C = (ζ1 f )C, (5)

ηV( f V) = 0, ηV(ζC
1 ) = ηC(ζV

1 ) = η(ζ1)
V , ηC(ζC

1 ) = η(ζ1)
C, (6)

φVζC
1 = (φζ1)

V , φCζC
1 = (φζ1)

C, (7)

[ζ1, ζ2]
V = [ζC

1 , ζV
2 ] = [ζV

1 , ζC
2 ], [ζ1, ζ2]

C = [ζC
1 , ζC

2 ]. (8)

∇C
ζC

1
ζC

2 = (∇ζ1 ζ2)
C, ∇C

ζC
1

ζV
2 = (∇ζ1 ζ2)

V , (9)

where ∇ is the Levi–Civita connection.
Let M be a contact metric manifold of dimension n with a contact metric structure

(φ, ξ, η, g) fulfilling the conditions [23]

η(ζ1) = g(ζ1, ξ), φ2 = −ζ1 + η(ζ1)ξ, (10)

φξ = 0, η(ξ) = 1, η.φ = 0, (11)

g(φζ1, φζ2) = g(ζ1, ζ2)− η(ζ1)η(ζ2), (12)

where φ is a (1,1) tensor, ξ is a vector field, called the characteristic vector field, and η is a
1-form. If M satisfies

(∇ζ1 φ)ζ2 = g(ζ1, ζ2)ξ − η(ζ2)ζ1, (13)

then M is named a Sasakian manifold. In addition, the following properties hold on a
Sasakian manifold M:
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∇ζ1 ξ = −φζ1, (14)

(∇ζ1 η)ζ2 = g(ζ1, φζ2), (15)

R(ζ1, ζ2)ξ = η(ζ2)ζ1 − η(ζ1)ζ2, (16)

R(ξ, ζ1)ζ2 = (∇ζ1 φ)ζ2), (17)

S(ζ1, ξ) = (n− 1)η(ζ1), (18)

S(φζ1, φζ2) = S(ζ1, ζ2)− (n− 1)η(ζ1)η(ζ2), (19)

where ∀ζ1, ζ2 ∈ =1
0(M), R and S indicate the curvature tensor and the Ricci tensor, respectively.

3. Complete Lifts from a Sasakian Manifold to Its Tangent Bundle

Let us consider TM to be the tangent bundle of a Sasakian manifold M. Taking
complete lifts on both sides of Equations (1), (2) and (10)–(32), we infer that

TC(ζC
1 , ζC

2 ) = ∇̃C
ζC

1
ζC

2 − ∇̃C
ζC

2
ζC

1 − [ζC
1 , ζC

2 ], (20)

TC(ζC
1 , ζC

2 ) = πC(ζC
2 )(φζ1)

V + πV(ζC
2 )(φζ1)

C

− πC(ζC
1 )(φζ2)

V − πV(ζC
1 )(φζ2)

C, (21)

πC(ζC
1 ) = gC(ξC, ζC

1 ), (22)

(dη(ζ1, ζ2)
C = gC((φζ1)

C, ζC
2 ), ηC(ζC

1 ) = gC(ζC
1 , ξC)

(φ2)Cζ1 = −ζC
1 + ηC(ζC

1 )ξ
V + ηV(ζC

1 )ξ
C, (23)

φCξV = φVξC = φVξV = φCξC = 0,

ηCξC = ηVξV = 0, ηCξV = ηVξC = 1

ηV ◦ φC = ηC ◦ φV = ηC ◦ φC = ηV ◦ φV = 0, (24)

g((φζ1)
C, (φζ2)

C) = gC(ζC
1 , ζC

2 )− ηC(ζC
1 )η

V(ζC
2 )

− ηV(ζC
1 )η

C(ζC
2 ), (25)

(∇C
ζC

1
φC)ζC

2 = gC(ζC
1 , ζC

2 )ξ
V + gC(ζV

1 , ζC
2 )ξ

C

− ηC(ζC
2 )ζ

V
1 − ηV(ζC

2 )ζ
C
1 , (26)

∇C
ζC

1
ξC = −(φζ1)

C, (27)

(∇C
ζC

1
ηC)ζC

2 = gC(ζC
1 , (φζ2)

C), (28)

RC(ζC
1 , ζC

2 )ξ
C = ηC(ζC

2 )ζ
V
1 + ηV(ζC

2 )ζ
C
1 − ηC(ζC

1 )ζ
V
2

− ηV(ζC
1 )ζ

C
2 , (29)

RC(ξC, ζC
1 )ζ

C
2 = (∇C

ζC
1

φC)ζC
2 , (30)

SC(ζC
1 , ξC) = (n− 1)ηC(ζC

1 ), (31)

SC((φζ1)
C, (φζ2)

C) = SC(ζC
1 , ζC

2 )− (n− 1){ηC(ζC
1 )η

V(ζC
2 )

+ ηV(ζC
1 )η

C(ζC
2 )}, (32)

where ∀ζC
1 , ζC

2 , ξC ∈ =1
0(TM), φC ∈ =1

1(TM).

4. Relation between the Riemannian Connection and the Quarter-Symmetric Metric
Connection from a Sasakian Manifold to Its Tangent Bundle

Assuming that M is an almost contact metric manifold, let ∇̃ be a linear connection
and ∇ be a Riemannian connection. Then,

∇̃XY = ∇XY + U(ζ1, ζ2), (33)

where ∀ζ1, ζ2 ∈ =1
0(M), U ∈ =1

2(M). Let ∇̃ be a quarter-symmetric metric connection in
M. Then [12],
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U(ζ1, ζ2) =
1
2
[T(ζ1, ζ2) + T′(ζ1, ζ2) + T′(ζ2, ζ1), (34)

where T′ is a (1,2) tensor; that is, T′ ∈ =1
2(M) such that

g(T′(ζ1, ζ2), ζ3) = g(T′(ζ3, ζ1), ζ2). (35)

Taking complete lifts on both sides of Equations (34)–(36), we infer that

∇̃C
ζC

1
ζC

2 = ∇C
ζC

1
ζC

2 + UC(ζC
1 , ζC

2 ), (36)

UC(ζC
1 , ζC

2 ) =
1
2
[TC(ζC

1 , ζC
2 ) + T′C(ζC

1 , ζC
2 )

+ T′C(ζC
2 , ζC

1 )], (37)

gC(T′C(ζC
1 , ζC

2 ), ζC
3 ) = gC(T′C(ζC

3 , ζC
1 ), ζC

2 ), (38)

where UC,∇C, TC and T′C are complete lifts of U,∇, T and T′, respectively.
From (21) and (38), we infer that

T′C(ζC
1 , ζC

2 ) = gC((φζ2)
C, ζC

1 )ξ
V + gC((φζ2)

V , ζC
1 )ξ

C

− ηC(ζC
1 )(φζ2)

V − ηV(ζC
1 )(φζ2)

C. (39)

Using (21) and (39) in (37), we provide

UC(ζC
1 , ζC

2 ) = −ηC(ζC
1 )(φζ2)

V − ηV(ζC
1 )(φζ2)

C.

Hence, a quarter-symmetric metric connection ∇̃C on a Sasakian manifold on TM is
defined by

∇̃C
ζC

1
ζC

2 = ∇C
ζC

1
ζC

2 − ηC(ζC
1 )(φζ2)

V − ηV(ζC
1 )(φζ2)

C. (40)

In contrast, we demonstrate that a linear connection ∇̃ on a Sasakian manifold de-
fined by

∇̃C
ζC

1
ζC

2 = ∇C
ζC

1
ζC

2 − ηC(ζC
1 )(φζ2)

V − ηV(ζC
1 )(φζ2)

C. (41)

denotes a quarter-symmetric metric connection on TM.
In view of (41), the torsion tensor of the connection ∇̃C on TM is defined by

TC(ζC
1 , ζC

2 ) = ηC(ζC
2 )(φζ1)

V + ηV(ζC
2 )(φζ1)

C

− ηC(ζC
1 )(φζ2)

V − ηV(ζC
1 )(φζ2)

C. (42)

The Equation (42) implies that ∇̃C is a quarter-symmetric connection on TM . Further,
we infer that

(∇̃C
ζC

1
gC)(ζC

2 , ζC
3 ) = ζC

1 gC(ζV
2 , ζC

3 ) + ζV
1 gC(ζC

2 , ζC
3 )

− gC(∇̃C
ζC

1
ζC

2 , ζC
3 ). (43)

In view of (42) and (43), ∇̃C is a quarter-symmetric metric connection on TM. The rela-
tionship between the Riemannian connection and the quarter-symmetric metric connection
on a Sasakian manifold on TM is given by (41).

5. Expression of the Curvature Tensor of a Sasakian Manifold to Its Tangent Bundle

The two curvature tensors R and R̃ corresponding to the connections ∇̃ and∇, respec-
tively, are related by the formula [24]

R̃(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 − 2dη(ζ1, ζ2)φζ3 + η(ζ1)g(ζ2, ζ3)ξ

− η(ζ2)g(ζ1, ζ3)ξ + {η(ζ2)ζ1 − η(ζ1)ζ2}η(ζ3), (44)
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where R(ζ1, ζ2)ζ3 indicates the Riemannian curvature of M.
Taking complete lifts on both sides of (44), we infer that

R̃C(ζC
1 , ζC

2 )ζ
C
3 = RC(ζC

1 , ζC
2 )ζ

C
3 − 2dηC(ζC

1 , ζC
2 )(φζ3)

V

− 2dηV(ζC
1 , ζC

2 )(φζ3)
C + ηC(ζC

1 )gC(ζC
2 , ζC

3 )ξ
V

+ ηC(ζC
1 )gC(ζV

2 , ζC
3 )ξ

C + ηV(ζC
1 )gC(ζC

2 , ζC
3 )ξ

C

− ηC(ζC
2 )gC(ζC

1 , ζC
3 )ξ

V − ηC(ζC
2 )gC(ζV

1 , ζC
3 )ξ

C

− ηV(ζC
2 )gC(ζC

1 , ζC
3 )ξ

C + ηC(ζC
2 )η

C(ζC
3 )ζ

V
1

+ ηC(ζC
2 )η

V(ζC
3 )ζ

C
1 + ηV(ζC

2 )η
C(ζC

3 )ζ
C
1

− {ηC(ζC
1 )η

C(ζC
3 )ζ

V
2 + ηC(ζC

1 )η
V(ζC

3 )ζ
C
2

+ ηV(ζC
1 )η

C(ζC
3 )ζ

C
2 }, (45)

where RC(ζC
1 , ζC

2 )ζ
C
3 is the complete lift of R(ζ1, ζ2)ζ3.

On contracting (45), we infer that

S̃C(ζC
2 , ζC

3 ) = SC(ζC
2 , ζC

3 )− 2dηC((φζ3)
C, ζC

2 ) + gC(ζC
2 , ζC

3 )

+ (n− 2){ηC(ζC
2 )η

V(ζC
3 ) + ηV(ζC

2 )η
C(ζC

3 )}, (46)

where S̃C and SC are the complete lifts of the Ricci tensors S̃ and S of the connections ∇̃ and
∇, respectively. From (46), we infer that the Ricci tensor with regard to ∇̃C on a Sasakian
manifold on TM is symmetric.

Again contracting (46), we infer that

r̃C = rC + 2(n− 1),

where r̃C and rC on TM are the complete lifts of the scalar curvatures r̃ and r of the
connections ∇̃ and ∇, respectively.

6. Expression of the Projective Curvature Tensor of a Sasakian Manifold to Its
Tangent Bundle

The projective curvature tensor of a Sasakian manifold with regard to ∇̃ is given
by [17]

P̃(ζ1, ζ2)ζ3 = R̃(ζ1, ζ2)ζ3 +
1

n + 1
[S̃(ζ1, ζ2)ζ3 − S̃(ζ2, ζ1)ζ3]

+
1

n2 − 1
[{nS̃(ζ1, ζ3) + S̃(ζ3, ζ1)}ζ2

− {nS̃(ζ2, ζ3) + S̃(ζ3, ζ2)}ζ1]. (47)

Due to the symmetric property of the Ricci tensor S̃ of M with regard to ∇̃, the projec-
tive curvature tensor P̃ becomes

P̃(ζ1, ζ2)ζ3 = R̃(ζ1, ζ2)ζ3 +
1

n + 1
[S̃(ζ1, ζ2)ζ3 − S̃(ζ2, ζ1)ζ3]. (48)

Taking complete lifts on both sides of (48), we acquire

P̃C(ζC
1 , ζC

2 )ζ
C
3 = R̃C(ζC

1 , ζC
2 )ζ

C
3

+
1

n + 1
[S̃C(ζC

1 , ζC
2 )ζ

V
3 + S̃V(ζC

1 , ζC
2 )ζ

C
3

− S̃C(ζC
2 , ζC

1 )ζ
V
3 − S̃V(ζC

2 , ζC
1 )ζ

C
3 ]. (49)

Using (45) and (46), (49) reduces to
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P̃C(ζC
1 , ζC

2 )ζ
C
3 = PC(ζC

1 , ζC
2 )ζ

C
3 − 2dηC(ζC

1 , ζC
2 )(φζ3)

V

− 2dηV(ζC
1 , ζC

2 )(φζ3)
C + ηC(ζC

1 )gC(ζC
2 , ζC

3 )ξ
V

+ ηC(ζC
1 )gC(ζV

2 , ζC
3 )ξ

C + ηV(ζC
1 )gC(ζC

2 , ζC
3 )ξ

C

− ηC(ζC
2 )gC(ζC

1 , ζC
3 )ξ

V − ηC(ζC
2 )gC(ζV

1 , ζC
3 )ξ

C

− ηV(ζC
2 )gC(ζC

1 , ζC
3 )ξ

C +
2

n− 1
[dηC((φζ3)

C, ζC
2 )ζ

V
1

+ dηV((φζ3)
C, ζC

2 )ζ
C
1 ]− dηC((φζ3)

C, ζC
1 )ζ

V
2

+ dηV((φζ3)
C, ζC

1 )ζ
C
2 +

1
n− 1

{ηC(ζC
2 )η

C(ζC
3 )ζ

V
1

+ ηC(ζC
2 )η

V(ζC
3 )ζ

C
1 + ηV(ζC

2 )η
C(ζC

3 )ζ
C
1

− ηC(ζC
1 )η

C(ζC
3 )ζ

V
2 − ηC(ζC

1 )η
V(ζC

3 )ζ
C
2

− ηV(ζC
1 )η

C(ζC
3 )ζ

C
2 − gC(ζC

2 , ζC
3 )ζ

V
1

− gC(ζV
2 , ζC

3 )ζ
C
1 + gC(ζC

1 , ζC
3 )ζ

V
2

+ gC(ζV
1 , ζC

3 )ζ
C
2 }, (50)

where PC is the complete lift of the projective curvature tensor P defined by

P(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 −
1

n− 1
{S(ζ2, ζ3)ζ1 − S(ζ1, ζ3)ζ2}. (51)

Mondol and De [16] defined that “A Sasakian manifold M is called ξ-projectively flat
if the condition P(ζ1, ζ2)ξ = 0 holds on M”.

According to the above definition, from (50), we acquire P̃(ζ1, ζ2)ξ = P(ζ1, ζ2)ξ.
Hence, we conclude the following:

Theorem 1. Let TM be the tangent bundle of a Sasakian manifold M with the Riemannian
connection ∇. The Riemannian connection ∇C on TM is ξC-projectively flat if and only if ∇̃C

is so.

Özgür [25] defined that “a Sasakian manifold fulfilling

φ2P(φζ1, φζ2)φζ3 = 0 (52)

is called φ-projectively flat”.
In the case of the quarter-symmetric metric connection ∇̃, we see that φ2P̃(φζ1, φζ2)φζ3 = 0

remain invariant if and only if

g(P̃(φζ1, φζ2)φζ3, φζ4) = 0, (53)

for ζ1, ζ2, ζ3, ζ4 ∈ =1
0(M).

In view of (49) and (53), φ-projectively flat means

gC(R̃C((φζ1)
C, (φζ2)

C)(φζ3)
C, (φζ4)

C)

=
1

n− 1
{S̃C((φζ2)

C, (φζ3)
C)gV((φζ1)

C, (φζ4)
C)

+ S̃V((φζ2)
C, (φζ3)

C)gC((φζ1)
C, (φζ4)

C)

− −S̃C((φζ1)
C, (φζ3)

C)gV((φζ2)
C, (φζ4)

C)

− S̃V((φζ1)
C, (φζ3)

C)gC((φζ2)
C, (φζ4)

C)}. (54)

If (eC
1 , eC

2 , ......, eC
n−1, ξC) ∈ TM, then

((φe1)
C, (φe2)

C, ......, (φen−1)
C, ξC) ∈ TM.

Substituting ζ1 = ζ4 = ei into (54) and summing up with regard to i = 1, 2, ....., n− 1,
we acquire
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gC(R̃C((φei)
C, (φζ2)

C)(φζ3)
C, (φei)

C)

=
1

n− 1
{S̃C((φζ2)

C, (φζ3)
C)gV((φei)

C, (φei)
C)

+ S̃V((φζ2)
C, (φζ3)

C)gC((φei)
C, (φei)

C)

− S̃C((φei)
C, (φζ3)

C)gV((φζ2)
C, (φei)

C)

− S̃V((φei)
C, (φζ3)

C)gC((φζ2)
C, (φei)

C)}. (55)

Using (23), (24), (28) and (46), the following equations are obtained:

gC(R̃C((φei)
C, (φζ2)

C)(φζ3)
C, (φei)

C) (56)

= gC(R̃C((φei)
C, (φζ2)

C)(φζ3)
C, (φei)

C)

− 2gC((φζ2)
C, (φζ3)

C)

= SC(ζC
2 , ζC

3 )− RC(ξC, ζC
2 , ζC

3 , ξC)

− (n− 1){ηC(ζC
2 )η

V(ζC
3 ) + ηV(ζC

2 )η
C(ζC

3 )}
− 2gC((φζ2)

C, (φζ3)
C)

= S̃C(ζC
2 , ζC

3 )− 6gC(ζC
2 , ζC

3 )

− 2(n− 4){ηC(ζC
2 )η

V(ζC
3 ) + ηV(ζC

2 )η
C(ζC

3 )}, (57)

n−1

∑
i=1

gC((φei)
C, (φei)

C) = n− 1, (58)

n−1

∑
i=1

(S̃(φei, φζ3)g(φζ2, φei))
C = S̃C((φζ2)

C, (φζ3)
C). (59)

In view of (56), (58) and (59), Equation (55) becomes

S̃C(ζC
2 , ζC

3 )− 6gC(ζC
2 , ζC

3 ) − 2(n− 4){ηC(ζC
2 )η

V(ζC
3 ) + ηV(ζC

2 )η
C(ζC

3 )}

=
n− 2
n− 1

S̃C((φζ2)
C, (φζ3)

C). (60)

In view of (31) and (46), (60) becomes

S̃C(ζC
2 , ζC

3 ) = 6gC(ζC
2 , ζC

3 )− 4(n− 1){ηC(ζC
2 )η

V(ζC
3 ) + ηV(ζC

2 )η
C(ζC

3 )}. (61)

Hence, we conclude the following:

Theorem 2. Let TM be the tangent bundle of a Sasakian manifold M with regard to ∇̃. If a
Sasakian manifold M on TM is φC-projectively flat with regard to ∇̃C, then the manifold is an
ηC-Einstein manifold with regard to ∇̃C on TM.

7. Locally φ-Symmetric Sasakian Manifold with regard to the Quarter-Symmetric
Metric Connection to its Tangent Bundle

Takahashi [26] defined that “A Sasakian manifold is said to be locally φ-symmetric if

φ2(∇ζ4 R)(ζ1, ζ2)ζ3 = 0, (62)

for all vector fields ζ4, ζ1, ζ2, ζ3 orthogonal to ξ, where ξ is the characteristic vector field
of the Sasakian manifold M.” Further, Mondal and De [16] defined locally φ-symmetric
Sasakian manifold with regard to ∇̃ as

φ2(∇̃ζ4 R̃)(ζ1, ζ2)ζ3 = 0, (63)

where ζ4, ζ1, ζ2, ζ3 are orthogonal to ξ. In view of (40), we infer that
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((∇̃ζ4 R̃)(ζ1, ζ2)ζ3)
C = ((∇ζ4 R̃)(ζ1, ζ2)ζ3)

C − ηC(ζC
4 )(φR̃(ζ1, ζ2)ζ3)

V

− ηV(ζC
4 )(φR̃(ζ1, ζ2)ζ3)

C. (64)

Now, differentiating (44) with regard to ζ4, we infer that

((∇̃ζ4 R̃)(ζ1, ζ2)ζ3)
C = ((∇ζ4 R̃)(ζ1, ζ2)ζ3)

C − 2dηC(ζC
1 , ζC

2 )((∇ζ4 φ)ζ3)
V

− 2dηV(ζC
1 , ζC

2 )((∇ζ4 φ)ζ3)
C + (∇ζ4 η)C(ζC

1 )gC(ζC
2 , ζC

3 )ξ
V

+ (∇ζ4 η)C(ζC
1 )gC(ζV

2 , ζC
3 )ξ

C + (∇ζ4 η)V(ζC
1 )gC(ζC

2 , ζC
3 )ξ

C

− (∇ζ4 η)C(ζC
2 )gC(ζC

1 , ζC
3 )ξ

V − (∇ζ4 η)C(ζC
2 )gC(ζV

1 , ζC
3 )ξ

C

− (∇ζ4 η)V(ζC
2 )gC(ζC

1 , ζC
3 )ξ

C − ηC(ζC
2 )gC(ζC

1 , ζC
3 )(∇ζ4 ξ)V

− ηC(ζC
2 )gC(ζV

1 , ζC
3 )(∇ζ4 ξ)C − ηV(ζC

2 )gC(ζC
1 , ζC

3 )(∇ζ4 ξ)C

− ηC(ζC
1 )gC(ζC

2 , ζC
3 )(∇ζ4 ξ)V − ηC(ζC

1 )gC(ζV
2 , ζC

3 )(∇ζ4 ξ)C

− ηV(ζC
1 )gC(ζC

2 , ζC
3 )(∇ζ4 ξ)C + (∇ζ4 η)C(ζC

2 )η
C(ζC

3 )ζ
V
1

+ (∇ζ4 η)C(ζC
2 )η

V(ζC
3 )ζ

V
1 + (∇ζ4 η)V(ζC

2 )η
C(ζC

3 )ζ
C
1

+ (∇ζ4 η)C(ζC
3 )η

C(ζC
2 )ζ

V
1 + (∇ζ4 η)C(ζC

3 )η
V(ζC

2 )ζ
V
1

+ (∇ζ4 η)V(ζC
3 )η

C(ζC
2 )ζ

C
1 − (∇ζ4 η)C(ζC

1 )η
C(ζC

3 )ζ
V
2

− (∇ζ4 η)C(ζC
1 )η

V(ζC
3 )ζ

V
2 − (∇ζ4 η)V(ζC

1 )η
C(ζC

3 )ζ
C
2

− (∇ζ4 η)C(ζC
3 )η

C(ζC
1 )ζ

V
2 + (∇ζ4 η)C(ζC

3 )η
V(ζC

1 )ζ
V
2

+ (∇ζ4 η)V(ζC
3 )η

C(ζC
1 )ζ

C
2 . (65)

Using (25), (26) and (27), we infer that

((∇̃C
ζC

4
R̃)(ζ1, ζ2)ζ3)

C = ((∇ζ4 R̃)(ζ1, ζ2)ζ3)
C − 2dηC(ζC

1 , ζC
2 )gC(ζC

3 , ζC
4 )ξ

V

− 2dηC(ζC
1 , ζC

2 )gC(ζV
3 , ζC

4 )ξ
C

− 2dηC(ζC
1 , ζC

2 )gC(ζC
3 , ζC

4 )ξ
C

+ 4dηC(ζC
1 , ζC

2 )gC((φζ1)
C, ζC

2 )η
C(ζC

3 )ζ
V
4

+ 4dηC(ζC
1 , ζC

2 )gC((φζ1)
C, ζC

2 )η
V(ζC

3 )ζ
C
4

+ 4dηC(ζC
1 , ζC

2 )gC((φζ1)
V , ζC

2 )η
C(ζC

3 )ζ
C
4

+ 4dηV(ζC
1 , ζC

2 )gC((φζ1)
C, ζC

2 )η
C(ζC

3 )ζ
C
4

+ gC((φζ4)
C, ζC

2 )gC(ζC
1 , ζC

3 )ξ
V
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+ gC((φζ4)
C, ζC

2 )gC(ζV
1 , ζC

3 )ξ
C

+ gC((φζ4)
V , ζC

2 )gC(ζC
1 , ζC

3 )ξ
C

− gC((φζ4)
C, ζC

1 )gC(ζC
2 , ζC

3 )ξ
V

− gC((φζ4)
C, ζC

1 )gC(ζV
2 , ζC

3 )ξ
C

− gC((φζ4)
V , ζC

1 )gC(ζC
2 , ζC

3 )ξ
C

+ ηC(ζC
2 )gC(ζC

1 , ζC
3 )(φζ4)

V

+ ηC(ζC
2 )gC(ζV

1 , ζC
3 )(φζ4)

C + ηV(ζC
2 )gC(ζC

1 , ζC
3 )(φζ4)

C

− ηC(ζC
1 )gC(ζC

2 , ζC
3 )(φζ4)

V − ηC(ζC
1 )gC(ζV

2 , ζC
3 )(φζ4)

C

− ηV(ζC
1 )gC(ζC

2 , ζC
3 )(φζ4)

C − gC((φζ4)
C, ζC

2 )η
C(ζC

3 )ζ
V
1

− gC((φζ4)
C, ζC

2 )η
V(ζC

3 )ζ
C
1 − gC((φζ4)

V , ζC
2 )η

C(ζC
3 )ζ

C
1

− gC((φζ4)
C, ζC

3 )η
C(ζC

2 )ζ
V
1 − gC((φζ4)

C, ζC
3 )η

V(ζC
2 )ζ

C
1

− gC((φζ4)
V , ζC

3 )η
C(ζC

1 )ζ
C
1

+ gC((φζ4)
C, ζC

1 )η
C(ζC

3 )ζ
V
2 + gC((φζ4)

C, ζC
1 )η

V(ζC
3 )ζ

C
2

+ gC((φζ4)
V , ζC

1 )η
C(ζC

3 )ζ
C
2

+ gC((φζ4)
C, ζC

3 )η
C(ζC

1 )ζ
V
2 + gC((φζ4)

C, ζC
3 )η

V(ζC
1 )ζ

C
2

+ gC((φζ4)
V , ζC

3 )η
C(ζC

1 )ζ
C
2 . (66)

Using (66) and (24) in (64), we infer that

(φ2(∇̃ζ4 R̃)(ζ1, ζ2)ζ3)
C = (φ2(∇W R)(ζ1, ζ2)ζ3)

C − 2dηC(ζC
1 , ζC

2 )η
C(ζC

3 )ζ
V
4

− 2dηC(ζC
1 , ζC

2 )η
V(ζC

3 )ζ
−
4 2dηV(ζC

1 , ζC
2 )η

C(ζC
3 )ζ

C
4

+ 2dηC(ζC
1 , ζC

2 )η
C(ζC

3 )η
C(ζC

4 )ξ
V

+ 2dηC(ζC
1 , ζC

2 )η
C(ζC

3 )η
V(ζC

4 )ξ
C

+ 2dηC(ζC
1 , ζC

2 )η
V(ζC

3 )η
C(ζC

4 )ξ
C

+ 2dηV(ζC
1 , ζC

2 )η
C(ζC

3 )η
C(ζC

4 )ξ
C

− ηC(ζC
2 )gC(ζC

1 , ζC
3 )(φζ4)

V

− ηC(ζC
2 )gC(ζV

1 , ζC
3 )(φζ4)

C − ηV(ζC
2 )gC(ζC

1 , ζC
3 )(φζ4)

C

+ ηC(ζC
1 )gC(ζC

2 , ζC
3 )(φζ4)

V + ηC(ζC
1 )gC(ζV

2 , ζC
3 )(φζ4)

C

+ ηV(ζC
1 )gC(ζC

2 , ζC
3 )(φζ4)

C + gC((φζ4)
C, ζC

2 )η
C(ζC

3 )ζ
V
1

+ gC((φζ4)
C, ζC

2 )η
V(ζC

3 )ζ
C
1 + gC((φζ4)

V , ζC
2 )η

C(ζC
3 )ζ

C
1

− gC((φζ4)
C, ζC

2 )η
C(ζC

3 )η
C(ζC

1 )ξ
V

− gC((φζ4)
C, ζC

2 )η
C(ζC

3 )η
V(ζC

1 )ξ
C

− gC((φζ4)
C, ζC

2 )η
V(ζC

3 )η
C(ζC

1 )ξ
C

− gC((φζ4)
V , ζC

2 )η
C(ζC

3 )η
C(ζC

1 )ξ
C

+ gC((φζ4)
C, ζC

3 )η
C(ζC

2 )ζ
V
1 + gC((φζ4)

C, ζC
3 )η

V(ζC
2 )ζ

C
1

+ gC((φζ4)
V , ζC

3 )η
C(ζC

2 )ζ
C
1 − gC((φζ4)

C, ζC
1 )η

C(ζC
3 )ζ

V
2

− gC((φζ4)
C, ζC

1 )η
V(ζC

3 )ζ
C
2 − gC((φζ4)

V , ζC
1 )η

C(ζC
3 )ζ

C
2

+ gC((φζ4)
C, ζC

1 )η
C(ζC

3 )η
C(ζC

2 )ξ
V

+ gC((φζ4)
C, ζC

1 )η
C(ζC

3 )η
V(ζC

2 )ξ
C

+ gC((φζ4)
C, ζC

1 )η
V(ζC

3 )η
C(ζC

2 )ξ
C

+ gC((φζ4)
V , ζC

1 )η
C(ζC

3 )η
C(ζC

2 )ξ
C

− gC((φζ4)
C, ζC

3 )η
C(ζC

1 )ζ
V
2 − gC((φζ4)

C, ζC
3 )η

V(ζC
1 )ζ

C
2

− gC((φζ4)
V , ζC

3 )η
C(ζC

1 )ζ
C
2 − ηC(ζC

4 )(φ
2(φR̃)(ζ1, ζ2)ζ3)

V

− ηV(ζC
4 )(φ

2(φR̃)(ζ1, ζ2)ζ3)
C. (67)
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If we take ζ4, ζ1, ζ2, ζ3 orthogonal to ξ, (67) reduces to

(φ2(∇̃ζ4 R̃)(ζ1, ζ2)ζ3)
C = (φ2(∇W R)(ζ1, ζ2)ζ3)

C.

Hence, the following theorem can be stated as:

Theorem 3. Let TM be the tangent bundle of a Sasakian manifold M. Then, ∇C is locally
φC-symmetric on TM if and only if ∇̃C on TM is so.

8. Example

Let us consider a three-dimensional differentiable manifold M = {(u, v, w) : u, v, w ∈
<3, z 6= 0}, where < is a set of real numbers and TM its tangent bundle. Let e1, e2, e3 be
linearly independent vector fields on M given by

e1 = −u
∂

∂u
, e2 = u

∂

∂v
, e3 = u

∂

∂w
.

Let g be the Riemannian metric and η be a 1-form on M given by

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1

and
η(ζ3) = g(ζ3, e1), ζ3 ∈ =1

0(M).

Let φ be the (1,1) tensor field defined by φe1 = 0, φe2 = e2, φe3 = e3.. Using the
linearity of φ and g, we acquire η(e1) = 1, φ2ζ3 = −ζ3 + η(ζ3)e1 and g(φζ1, φζ2) =
g(ζ1, ζ2)− η(ζ1)η(ζ2).

Thus, for e1 = ξ, the (φ, ξ, η, g) is a contact metric structure on M and M is called a
contact metric manifold. In addition, M satisfies

(∇ζ1 φ)ζ2 = g(ζ1, ζ2)e1 − η(ζ2)ζ1.

Hence, for e1 = ξ, M is a Sasakian manifold.
Let eC

1 , eC
2 , eC

3 and eV
1 , eV

2 , eV
3 be the complete and vertical lifts on TM of e1, e2, e3 on M.

Let gC be the complete lift of a Riemannian metric g on TM such that

gC(ζV
1 , eC

1 ) = (gC(ζ1, e1))
V = (η(ζ1))

V , (68)

gC(ζC
1 , eC

1 ) = (gC(ζ1, e1))
C = (η(ζ1))

C, (69)

gC(eC
1 , eC

1 ) = 1, gV(ζV
1 , eC

1 ) = 0, gV(eV
1 , eV

1 ) = 0

and so on. Let φC and φV be the complete and vertical lifts of the (1,1) tensor field φ defined
by

φV(eV
1 ) = φC(eC

1 ) = 0,

φV(eV
2 ) = eV

2 , φC(eC
2 ) = eC

2 ,

φV(eV
3 ) = eV

3 , φC(eC
3 ) = eC

3 .

By using the linearity of φ and g, we infer that

(φ2ζ1)
C = −ζC

1 + ηV(ζ1)eC
1 + ηC(ζ1)eV

1 , (70)

gC((φe1)
C, (φe2)

C) = gC(eC
1 , eC

2 )− (η(e1))
C(η(e2))

V

− (η(e1))
V(η(e2))

C.
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Thus, for e1 = ξ in (68)–(70), the structure (φC, ξC, ηC, gC) is a contact metric structure
on TM and satisfies the relation

(∇C
eC

1
φC)eC

2 = gC(eC
1 , eC

2 )ξ
V + gC(eV

1 , eC
2 )ξ

C

− ηC(eC
2 )e

V
1 − eV(eC

2 )e
C
1 ,

Then, (φC, ξC, ηC, gC, TM) is a Sasakian manifold.
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