
Citation: Li, C.; Shang, Z.; Shi, L.;

Gao, W.; Zhang, S. IC-SNN: Optimal

ANN2SNN Conversion at Low

Latency. Mathematics 2023, 11, 58.

https://doi.org/10.3390/

math11010058

Academic Editor: Jonathan

Blackledge

Received: 14 November 2022

Revised: 11 December 2022

Accepted: 19 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

IC-SNN: Optimal ANN2SNN Conversion at Low Latency
Cuixia Li 1,2, Zhiquan Shang 2, Li Shi 1,3, Wenlong Gao 2 and Shuyan Zhang 2,*

1 School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
2 School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
3 Department of Automation, Tsinghua University, Beijing 100084, China
* Correspondence: syzhang@zzu.edu.cn

Abstract: The spiking neural network (SNN) has attracted the attention of many researchers because
of its low energy consumption and strong bionics. However, when the network conversion method
is used to solve the difficulty of network training caused by its discrete, too-long inference time, it
may hinder the practical application of SNN. This paper proposes a novel model named the SNN
with Initialized Membrane Potential and Coding Compensation (IC-SNN) to solve this problem.
The model focuses on the effect of residual membrane potential and rate encoding on the target
SNN. After analyzing the conversion error and the information loss caused by the encoding method
under the low time step, we propose a new initial membrane potential setting method and coding
compensation scheme. The model can enable the network to still achieve high accuracy under a low
number of time steps by eliminating residual membrane potential and encoding errors in the SNN.
Finally, experimental results based on public datasets CIFAR10 and CIFAR100 also demonstrate that
the model can still achieve competitive classification accuracy in 32 time steps.

Keywords: spiking neural networks; conversion error; initial membrane potential

MSC: 74A40; 74J05

1. Introduction

Artificial neural networks (ANNs) have achieved great success in the past few years,
although they differ structurally from the brain in terms of calculation methods and learn-
ing rules. Although some technologies similar to pruning, quantization, and compression
have been proposed, ANN still faces problems of high power consumption and complex
calculations [1–3]. The spiking neural network (SNN) is a third-generation neural network,
and it has gained widespread attention due to its low power consumption. Benefiting from
its biological inspiration, SNNs use spike-based binary values to pass information between
neurons [4]. Figure 1 represents the overall structure of SNN and the workflow on spiking
neurons. Davd et al. [5] carried out detailed calculations on the energy consumption of a
single neuron, proving that the brain’s energy consumption is low. Maass et al. [6] analyzed
the capabilities of cortical microcircuits for real-time computing and demonstrated that
SNNs have powerful computing capabilities. The binary nature of SNN enables it to use
accumulated operations instead of expensive multiply accumulated operations during
network propagation, thereby reducing the amount of network computation. In the appli-
cation of edge devices, the low calculation load of SNN has a great advantage. In addition,
in some specific neuromorphic chips, SNN can run in an event-driven manner. When
not receiving spikes, neurons will remain dormant, saving a lot of power consumption.
However, SNNs struggle to achieve similar accuracy in traditional machine learning tasks.
On the one hand, there is currently no conclusive understanding about the learning process
in the brain, and it is far from enough to simply simulate brain neurons. On the other hand,
the learning algorithms of SNNs are still in the developmental stage and lack effective
learning algorithms.

Mathematics 2023, 11, 58. https://doi.org/10.3390/math11010058 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010058
https://doi.org/10.3390/math11010058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11010058
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010058?type=check_update&version=2

Mathematics 2023, 11, 58 2 of 19

(a) The network structure of spiking neural network (SNN). (b) Workflow of spiking neurons.

Figure 1. Spike neuron network. (a) represents the structure of the spiking neural network. The image
is input into the network and propagated forward in the form of spike sequences. Then, a set of
spike sequences for classification is obtained through excitatory neurons or inhibitory neurons;
(b) represents the network in the structure of neurons in a certain layer. The spike sequence enters
the neurons and integrates and fires the spikes, which are transmitted to the next layer of neurons
as output.

Research on learning algorithms for SNNs can be roughly divided into three categories:
learning algorithms based on synaptic plasticity, surrogate gradient-based backpropagation,
and ANN-to-SNN conversion. As SNN is biologically credible, some researchers believe
that it should follow biological mechanisms to train SNNs. They tend to apply the neuronal
mechanism in the biological brain to SNNs. The network is trained by using Hebbian,
Spike-Timing-Dependent Plasticity (STDP), Self-backpropagation (SBP), and other neuron
mechanisms [7–9]. Inspired by backpropagation (BP), which excels in ANNs, researchers
try to use BP in the training of SNNs [10]. They convert non-differentiable pulse trains into
differentiable values, and build surrogate gradient functions to achieve backpropagation in
space and time [11,12]. Furthermore, inspired by transfer learning, the researchers trained
a topological and homogeneous non-spiking neural network in advance and transferred
the weights to the spiking neural network to achieve approximate accuracy. There are
differences between different networks and neurons, so it is necessary to weigh thresholds
and weights in the conversion process, as well as eliminate errors such as clipping and
quantization [13–15].

In this paper, we analyze the error of the network in the conversion process and
propose an algorithm to initialize the membrane potential. This algorithm can sufficiently
reduce the error in the conversion process. To cope with neural networks at low time
steps, we use the ANN-SNN transformation as an initialization step and initialize the
membrane potentials of neurons in each layer based on the transformed network and the
training set. In addition, we propose a compensation tactic for the adopted rate coding.
The tactic is based on the time step and combines the compensation part of each layer with
the initialized membrane potential, which reduces the information loss to a certain extent.

The main contributions of this work are as follows:

• We theoretically analyze the error of ANN2SNN, which explains why information
is lost at low time steps to a certain extent. We propose an algorithm to initialize
membrane potential to eliminate the error term at low latency.

• We analyze the coding methods and propose a coding compensation method combined
with the membrane potential. The novel coding compensation method can reduce
information loss.

• Experiments are conducted on datasets based on two traditional network models.
Experimental results demonstrate the validity of the new algorithm. The results

Mathematics 2023, 11, 58 3 of 19

show that our approach can effectively reduce the conversion error and obtain a high
accuracy at low latency.

2. Related Work

The learning algorithm of SNN is one factor that restricts its network performance
(e.g., accuracy, time step). Current learning algorithms can roughly be divided into three
categories. We mainly introduce the related research work in recent years.

2.1. Learning Algorithms Based on Synaptic Plasticity

Based on the biological credibility of SNNs, it is feasible to transfer the neuron learning
mechanism in biology to the network. Masquelier et al. [16] used STDP rules in feedfor-
ward spiking neural networks, which showed that temporal encoding may be the key
to understanding the fantastic processing speed achieved by the visual system and that
STDP can lead to fast and selective responses. By analyzing the learning effect of STDP,
Legenstein et al. [17] realized that neurons that have learned through STDP can classify the
firing patterns in space and time. Ponulak et al. [18] proposed a remote supervised method
(ReSuMe). They demonstrated that the technique could train neurons to reproduce spike
trains with controllable temporal offsets relative to a target template. Furthermore, they
noted that spiking neurons may predict behavior through firing timing. Wade et al. [19]
combined the Bienenstock Cooper Munro (BCM) learning rule with STDP and proposed the
Synaptic Weight Association Training (SWAT) algorithm. Diehl et al. [20] used excitatory
and inhibitory neurons and opted to use a lateral inhibition mechanism to reduce computa-
tional complexity. Tavanaei et al. [21] trained a biologically plausible convolutional filter
and learned detector. The detector employs probabilistic neurons to extract independent
features. Zhang et al. [22] first trained the network to a balanced membrane potential
state, then maintained the network’s balance based on excitatory and inhibitory neurons.
The neural networks adopted short-term plasticity (STP) to ensure overall balance to speed
up convergence. Influenced by the self-organized propagation mechanism of hippocampal
neurons, Zhang et al. [9] introduced a non-local synaptic modification method termed “self-
BP” (SBP) for synaptic potentiation and depression. However, the various improvements
described above for synaptic plasticity are often applied to shallow networks with five,
four, or even three layers. To a certain extent, this indicates that the improvement based on
synaptic plasticity pays too much attention to local information. It lacks the acquisition of
global information, and is difficult to apply in deeper networks.

2.2. Surrogate Gradient-Based Backpropagation

The BP and the optimization algorithm of gradient descent commonly used in ANN
are a good choice. Bohte et al. [11] tried to apply the BP algorithm to SNNs for the first time
and proposed the Spike Propagation (SpikeProp) algorithm, which is suitable for SNN.
The proposed of SpikeProp has led some researchers to focus on converting discrete, non-
differentiable spike trains into continuous values and using backpropagation to train the
network. Wu et al. [12,23] proposed space-time-based backpropagation. The method em-
ploys gradient approximation to avoid discontinuities in spiking activation functions and
applies backpropagation through time (BPTT) on SNNs. Zhang et al. [24] used Temporal
Spike Sequence Learning via Backpropagation(TSSL-BP) to bypass the non-differentiability
of the spike activation function and improve the temporal learning accuracy. Fang et al. [25]
improved the neuron model and added hyper-parameters to the backpropagation learning
to enhance the expressive power of neurons. Xiao et al. [26] proposed that the average firing
rate of SNN evolves to an equilibrium state over time and follows a fixed point equation.
Equation-based implicit differentiation, computing the parameters’ gradient, avoids the
non-differentiable spike function problem. The current research on such algorithms gener-
ally focuses on adjusting hyperparameters to make the gradient function more suitable for
the spike firing rate. The study focuses on constructing the gradient function rather than

Mathematics 2023, 11, 58 4 of 19

the SNN itself. In addition, the gradient function also accumulates approximation errors.
Thus, it is difficult to obtain a high-performance SNN.

2.3. ANN-to-SNN Conversion

Transfer learning can not only achieve higher initial performance, but it can also
reduce training time significantly. Inspired by transfer learning, the researchers share the
weight parameters of the source neural network to the target the neural network, thus
saving the training time on the target neural network. Cao et al. [13] proposed an indirect
training approach, which trained a homogeneous topological neural network and trans-
ferred trained neural network parameters to the spiking neuron network. Diehl et al. [27]
explained that the conversion principle is a correlation between the value of the activation
function of traditional neurons and the firing rate of spiking neurons, and proposed weight
normalization for the difference in the output range of ANN and SNN. Rueckauer et al. [28]
proposed a weight standardization based on the P quantile considering the influence of the
singular point in the weight normalization process. Sengupta et al. [29] further analyzed
the conversion principle. They pointed out that threshold balance and weight normal-
ization can be regarded as the same operation, that is, to adjust the relationship between
threshold and weight. Then, the existing standardization is improved by the standardiza-
tion technology Spike Normalization based on SNN. For the linear regression problem,
Kim et al. [30] proposed a more fine-grained channel normalization and neurons with
negative thresholds. Park et al. [31,32] proposed time-based coding of Time-To-First-Spike
(TTFS) and Temporal-Switch-Coding (TSC). Stöckl et al. [33] adopted dynamic neurons to
fit the activation function used by the ANN network, which relieved the constraints of the
activation function. Han et al. [34] analyzed the reset mechanism of neurons and refined
the threshold balance. Deng et al. [35] analyzed the transformation error by recursively
reducing it to a hierarchical sum. Ding et al. [36] proposed a best-fit curve to quantify the
error of the conversion process. Rathi et al. [37] combined ANN2SNN with spike-based
backpropagation and used the spike time for secondary training based on the transformed
SNN to reduce inference time. Bu et al. [14] realized that the transformed SNN suffers from
severe performance degradation with shorter time steps. By analyzing and deriving the
estimated SNN activation function, a quantization clip-floor-shift activation function is
proposed to replace the ReLU activation function in the source ANN. Bu et al. [38] set a
trainable clipping upper bound in the ANN and obtained the optimal initial membrane
potential based on the derivation results and clipping upper-bound. Wang et al. [15] em-
ployed quantization noise to train thresholds in networks with quantized clipping functions
and employed BPTT in SNNs to calibrate weights, biases, and initial membrane potential
to minimize residual potential. Early switching research focused on how to switch two
different types of neurons, and each proposed a switching strategy. As this area of research
progresses, most researchers are focusing on how to reduce the conversion loss and achieve
accuracy as close to the ANN as possible. At present, researchers are gradually realizing
that the long inference time brings a huge obstacle to the application of SNN. They have
begun to analyze the error term at low latency and proposed various strategies to eliminate
the error, thereby improving the network accuracy of SNN at low latency.

3. Method

In this section, we introduce the activation function and network output of the source
ANN, as well as the neuron working mechanism and network output of the target SNN.
After analyzing the network output of the target SNN, we obtain the error term produced
during the transformation. For this conversion error, an algorithm for initializing the mem-
brane potential is proposed. Furthermore, coding compensation is proposed to eliminate
the errors caused by the coding method. Combining coding compensation with initial
membrane potential, a neuron with initial membrane potential is obtained.

Mathematics 2023, 11, 58 5 of 19

3.1. Neuron Model

This paper uses ReLU as the activation function in the source neural network. Dur-
ing the conversion, the threshold balancing technique is used to solve the problem of
inconsistent input and output ranges of different neurons [27,28]. The meanings of symbols
that are used in the following paper are provided in Table 1.

Table 1. The definition of the symbols in this paper.

Symbol Definition

l Layer index
al Input in ANN

W l Weight in ANN and SNN
bl Bias in ANN and SNN

max(a, 0) Activation function in ANN
t Time step
T Simulation time step

xl(t) The spike sequence, consisting of 0 and 1
vl

temp(t) Temporary membrane potential at time t
vl(t) Membrane potential at time t
Vl

th Threshold
θl(t) The spiking state of neurons at time t

rl Spike fire rate

The output of ReLU at l-th layer can be described by:

al+1 = max
(

W lal + bl , 0
)

(1)

where max(x, 0) refers to the ReLU activation function. The symbols al and al+1 denote the
input of the l-th layer and (l + 1)-th layer, respectively.

SNN employs Integrate-And-Fire (IF) neurons, which integrate stimuli from presynap-
tic neurons and fire spikes at postsynaptic neurons [39]. The IF model has a better fit for
the output value of the activation function of the ANN than the Leaky Integrate-And-Fire
(LIF) model [27]. This neuron can be described as

Vtemp(t) = V(t− 1) + X(t) (2)

V(t) =
{

Vtemp(t)−Vth, if V(t) > Vth
Vtemp(t), otherwise

(3)

where V(t− 1) is the temporary membrane potential at the previous moment, X(t) is the
input at the current moment, and Vtemp(t) is the temporary membrane potential at time
t. The neuron fires and produces a spike when Vtemp(t) exceeds its threshold Vth. Then,
V(t) is obtained by performing “soft reset” operations on Vtemp(t). Otherwise, no spike is
fired, and V(t) is equal to Vtemp(t). Here, “soft reset” can reduce the loss in the conversion
process [28,34].

Figure 2 depicts the differences between ANN and SNN concerning neuron models.
Unlike the direct input of actual values in ANN, SNN takes spikes as input. After integra-
tion, SNN makes the membrane potential change and emits spikes. Then, the emitted spike
sequence is used as the output of this layer. The values in the spike sequence are only 0
and 1, where 0 indicates no spikes are fired, and 1 indicates spikes are fired.

Mathematics 2023, 11, 58 6 of 19

Figure 2. Source artificial neural networks (ANN) and target SNN.

3.2. Error Analysis

From Equations (1) and (2), the change of membrane potential in SNN can be obtained
as follows:

vl
temp(t) = vl(t− 1) + W l xl(t) + bl (4)

where vl
temp(t) is the temporary membrane potential at time t of the l-th layer, which is the

sum of the membrane potential at time t− 1 and the membrane potential received at time t.
Based on the spike fire mechanism in Equation (3), the final membrane potential change is
described as:

vl(t) = vl(t− 1) + W l xl(t) + bl − θl(t)V l
th (5)

The temporary membrane potential needs to be judged to determine whether it emits
a spike, and then the membrane potential is reset by a “soft reset”. The θl(t) is used to
determine whether to emit spikes and is described as:

θl(t) =
{

1, if vl
temp (t) > V l

th
0, otherwise

(6)

where θ(t) is a piece-wise function, such that if the value of vl
temp(t) is greater than the

threshold V l
th, it is regarded as a spike and has a value of 1, and otherwise the value is 0.

θl(t) indicates whether a spike is sent at time t. Therefore, θl can be regarded as the output
spike sequence of the l-th layer and the input of the (l + 1)− th layer.

Based on the explicit iterative Equation (5), the values are given by integrating the
input sequence and the spike fire sequence during t ∈ (0, T). The equation of membrane
potential change at time T can be described as follows:

vl(T) = vl(0) + W l
T

∑
t=1

xl(t) + Tbl −
T

∑
t=1

θl(t)V l
th (7)

Mathematics 2023, 11, 58 7 of 19

where vl(0) is the membrane potential of the l-th layer at time t = 0, and vl(T) is the
membrane potential at time t = T. Of course, θl is the output of the l-th layer and also the
input of the (l + 1)-th layer. Here, the spike fire rate rl be led into:

rl =
∑T

t=1 θl(t)
T

(8)

Since we use the threshold balance mechanism in the conversion process, here is the
equation: xl+1(t) = θl(t)V l

th. Therefore, the new spike fire rate rl−1 can be described as:

rl−1 =
∑T

t=1 xl(t)
TV l−1

th

(9)

Substituting (8) and Equation (9) into Equation (7), we obtain:

vl(T) = vl(0) + W lTrl−1V l−1
th + Tbl − TrlV l

th (10)

Arranging Equation (10) and extracting TV l
th, we can obtain the following equation:

rl =
W lrl−1V l−1

th + bl

V l
th

+
vl(0)− vl(T)

TV l
th

(11)

The right-hand side of Equation (11) has two subterms. The first sub-item W lrl−1Vl−1
th +bl

Vl
th

is the correspondence between the spike firing rate rl at the l-th layer and the spike firing

rate rl−1 at the (l − 1)-th layer. The second sub-term vl(0)−vl(T)
TVl

th
is the error term obtained

during the derivation process.

3.3. Initialize Membrane Potential

From Equation (11), it can be determined that there will be a error term in the pro-

cess of conversion: vl(0)−vl(T)
TVl

th
. The error term vl(0)−vl(T)

TVl
th

can be seen as vl(0)−vl(T)
Vl

th

1
T , where

vl(0)−vl(T)
Vl

th
is strictly limited to (-1, 0), and 1

T is used as a scaling factor of vl(0)−vl(T)
Vl

th
. The com-

mon processing method is to set the initial membrane potential vl(0) to 0 and discard the
other part of vl(T). Traditional conversion scenarios generally use a larger simulation
duration T, such as 1024, 2048, or even 4096. In this case, the scaling factor 1

T becomes so
small that the entire error term shrinks to be negligible. Therefore, setting vl(0) to 0 and
discarding vl(T) brings almost no loss of information. Although long simulation time can
bring the accuracy closer to the original network, it also leads to the problem of too-long
inference time.

Large time steps could become a huge obstacle to the practical application of SNN.
When considering small time steps, as T gradually decreases, the scaling factor gradually
increases, so that the error term can no longer be ignored. At this time, the common
processing method is no longer applicable. The analysis of Equation (11) helps explain why
the accuracy of the SNN obtained by the conversion is low in the case of low latency.

In the process of analyzing the conversion error, Bu et al. [38] regarded vl(T) in it as
being caused by the uneven distribution of the output pulse, and pointed out that assuming
the potential vl(t) falls into [0, V l

th] will be able to estimate the activation function of SNNs,
ignoring the effect of unevenness error. Unlike Bu, who abandons vl(T), in this paper, we
regard vl(T) as a non-negligible error, which is the residual membrane potential because
the membrane potential does not reach the neuron threshold at t = T. Wang et al. [15]
also considers the residual membrane potential, which cannot be ignored, but the overall
training steps use secondary training, more training steps may have a certain impact on the
training time and training volume. Here, we propose a strategy that only requires forward

Mathematics 2023, 11, 58 8 of 19

propagation on the transformed SNNs to obtain the initial membrane potential, thereby
eliminating this part of the error. Unlike the first two, which require various changes and
adaptations on ANN, this strategy only relies on SNN. In the face of other types of ANNs,
this strategy does not need to consider the adaptability of ANN to the strategy and only
focuses on the target SNN.

This paper, the values vl(0) and vl(T) are processed together. If the value can be
given of vl(T) and used as the initial membrane potential, these two terms can be canceled
simultaneously. From Equation (7), vl(T) is the membrane potential remaining at the
last moment. If all membrane potentials from t = 0 to t = T are accumulated and
regarded as the dividend, then the threshold of the trigger spike can be regarded as the
divisor. Therefore, vl(T) is equivalent to the remainder obtained by dividing the two.
Therefore, a method is proposed to obtain the residual membrane potential vl(0) based on
the trained ANN.

In Algorithm 1, the fire distribution of the spike sequence is more extreme. That is,
neurons emit spikes at every moment. In this case, the sum of the membrane potentials
of the t = 1 to t = T time steps in each neural network layer are approximately the accu-
mulation of the weights for the entire T period. Then, the sum of the obtained membrane
potentials is taken as the dividend; the threshold after equilibrium is taken as the divisor.
Finally, the remainder is given to obtain the approximate residual membrane potential.
This algorithm reduces the conversion loss in the ANN2SNN process and improves the
network’s accuracy.

Algorithm 1 Initialized membrane potential based on a trained ANN.

Input: ANN that has been trained; Simulation duration T; threshold V l
th that has been

threshold-balanced;
Output: Initialized membrane potential init_mem;

1: The threshold is modulated based on the weights in the trained ANN;
2: init_mem = []
3: for l in layers do
4: sum_mem = ANN.weight[l] ∗ T + ANN.bias[l]
5: mem = sum_mem%V l

th
6: init_mem[l] = mem.mean()
7: end for
8: return init_mem;

Data often play an essential role in the training process of neural networks. There-
fore, the training set is introduced in the algorithm. The initial membrane potential of
neurons is obtained through the training set, and the extreme firing of neurons is discarded.
Dataset-based initialized membrane potentials are not only not limited by spiked discharge
conditions and more versatile, but also perform better in practical applications, allowing
the network to achieve higher accuracy.

Algorithm 2 firstly transfers the weight parameters of the trained ANN to the SNN
and adopts the threshold balancing operation. Then, the training set is used for training
on the SNN. The forwarding propagation process and the record of remaining membrane
potential at time t = T in each neural network layer must be paid attention to in the training
process. Then, based on the record, the initial membrane potential is approximately given.
While this is not a strong guarantee that the network can maintain performance on the
test set, the training set should represent the test set. Results show this approach to be
highly effective.

Mathematics 2023, 11, 58 9 of 19

Algorithm 2 Initialized membrane potential based on training set.

Input: ANN that has been trained; SNN ready for transformation; Simulation duration T;
training datasets;

Output: Initialized membrane potential init_mem;
1: The weights of the trained ANN are converted into the SNN; then the SNN is used

to train on the training set, and the value of the remaining membrane potential is
recorded.

2: init_mem = []
3: mem_sum = []
4: for l in layers do
5: SNN.weight[l] = ANN.weight[l]
6: SNN.bias[l] = ANN.bias[l]
7: end for
8: for dataset in datasets do
9: for t in T do

10: for l in Layer do
11: if t = T then
12: mem = l.mem.mean()
13: mem_sum[l] = mem_sum[l] + mem
14: end if
15: end for
16: end for
17: end for
18: for l in Layer do
19: init_mem[l] = mem_sum[l]/len(datasets)
20: end for
21: return init_mem;

3.4. Coding Compensation

A very important point in brain research at the moment is how the brain encodes
incoming information. SNN can simulate the use of spikes to transmit information between
neurons in the brain. However, encoding the original information into a spike sequence is
still an ongoing research problem. This is one of the reasons why an SNN is challenging
to train.

In the choice of encoding, most researchers will choose rate encoding, which is also the
most commonly used encoding method. The rate at which spikes are fired over time can be
used to replace the actual values passed into the neural network. In the case of a relatively
large time step, the network can achieve almost lossless conversion. If the time step is
shortened, the information loss during the conversion process will be greatly increased.
In Figure 3, rate-encoded pictures at different time steps are shown. Among them, 2.a is
the original image from the dataset CIFAR10, and the image size is 32 × 32. Furthermore,
2.b, 2.c, and 2.d are pictures encoded with 32-time steps, 128 time steps, and 1024 time
steps, respectively. Although the difference between the image obtained under the 1024
time steps encoding and the source image is minimal, there is still a visible difference at
low latency.

In Section 3.3, an algorithm is given about the initial membrane potential for SNN.
So here, the second half of Equation (11) can be approximately zero. Then, simplify
Equation (11), which can be described as:

rl =
W lrl−1V l−1

th + bl

V l
th

(12)

Moving the threshold of the l-th layer to the left side of the equation, we can obtain

rlV l
th = W lrl−1V l−1

th + bl (13)

Mathematics 2023, 11, 58 10 of 19

where xl = rlV l
th is introduced, representing the average membrane potential of the post-

synaptic and also the decoding of the spike train. Substituting this into Equation (13), we
can obtain:

xl = W l xl−1 + bl (14)

Figure 3. Differences between encoded pictures at different time steps.

In addition, with Equation (1), we can obtain the error of the output of the two neural
networks:

∆al = al − xl

= W lal−1 + bl −
(

W l xl−1 + bl
)

= W l
(

al−1 − xl−1
) (15)

From Equation (15), it is known that, from the first layer’s encoding, each layer accumu-
lates the information loss generated during the encoding process. Consider the following

equation when using rate coding: al ≈ Vl
th
T ∑T

t=1 x(t) = xl . Some information is discarded
during this coding process. Furthermore, unlike traditional networks, SNNs acquire less
information about each layer. After multiple layers of accumulation, the information loss
caused by encoding will accumulate rapidly.

Mathematics 2023, 11, 58 11 of 19

From the equation al ≈ Vl
th
T ∑T

t=1 x(t) = xl , it is clear that there are potential informa-

tion loss items in the process of encoding: ∆al ∈ (0, Vl
th
T). Of course, the distribution of this

part of the coding error is unknown; if we assume that its distribution is uniform, then

the expectation of ∆al is Vl
th

2T . Bu et al. [14] also assumes that the distribution of the input
zl is uniform, and the expectation of the conversion error is minimum, and zero when ϕ

is 0.5. The final result is also Vl
th

2T , which is called a shift operation. The traditional way of
processing can be regarded as a lack of firing of a spike. Then, the activation of a spike
is increased by adjusting the bias of each layer of the network. Here, combined with the
content of Section 3.3, a method for handling this situation is proposed.

The Algorithm 3 uses SNN as the source network, and the SNN does not perform
the initializing membrane potential operation. First, the compensation value is used as
the initial membrane potential in each layer of the network, and then the network uses
the algorithm of Section 3.3 to initialize the membrane potential. Finally, the obtained
initialized membrane potential is combined with the compensation value to obtain the final
membrane potential. Compared with directly combining the compensation value with
the initialized membrane potential, this algorithm can improve the effect of the algorithm
in Section 3.3 while performing the compensation operation, thereby improving the overall
accuracy of the network.

Algorithm 3 Coding compensation.

Input: SNN before initializing membrane potential; Simulation duration T; Initializing
membrane potential function init_mem();

Output: Initialized membrane potential f inal_mem;
1: A compensation value is added to each layer of the SNN, and then the initial membrane

potential is obtained by training on the SNN after coding compensation, and finally,
the initial membrane potential is added to the coding compensation to obtain the final
membrane potential:

2: init_mem = []
3: f inal_mem = []
4: for l in layers do
5: SNN.init_mem[l] = V l

th/2T
6: end for
7: init_mem = init_mem(SNN)
8: for l in layers do
9: f inal_mem = init_mem[l] + V l

th/2T
10: end for
11: return f inal_mem;

To sum up, the overall architecture of the network is shown in Figure 4. First, the ini-
tially trained network is an ANN, and then the weights after training are transferred to the
SNN, and the threshold-balancing operation is used in this process. Subsequently, the suit-
able initial membrane potential is obtained based on the remaining membrane potential
training at time T. Considering the error of the data brought about by the encoding process,
the encoding compensation is combined with the initial membrane potential to complete
the training. A neuron with a suitable initial membrane potential is finally obtained.

Mathematics 2023, 11, 58 12 of 19

Figure 4. Network structure diagram of the SNN with Initialized Membrane Potential and Coding
Compensation (IC-SNN).

4. Experiments

In this section, we use different datasets to conduct multiple experiments and analyze
the improved network type in detail from various point of views. We also compare the
experimental results with other networks to demonstrate the characteristics of our model
and verify the accuracy of the model.

4.1. Experiment Preparation

Before conducting experiments, we must preprocess the dataset and initialize the
hyperparameters using related techniques to ensure the best experimental results.

4.1.1. Experiment Environment

Two public image classification datasets, CIFAR10 and CIFAR100, were used in our
experiments. For the source ANN for training, VGG16 and ResNet20, which are more
common in ANNs, were chosen to be used, with a slight modification [40,41]. Batch
normalization and dropout in neural networks were discarded, AvgPool replaced MaxPool,
and the ReLU function was used as an activation function. The experiment was run using
Pytorch as the deep learning framework, which runs on RTX2060 (12 GB). During the
whole conversion process, only the threshold balancing technique was used [27,28].

4.1.2. Pre-Processing

The dataset used for training needed to be preprocessed. CIFAR10 and CIFAR100 were
flipped horizontally and randomly cropped to prevent overfitting. The image size was set
to 32 × 32 to fit the input size of the neural network. The final image was normalized to
ensure a mean of 0 and a variance of 1.

4.1.3. Hyper-Parameters

The ANN training method generally does not affect the error term of the network
conversion, so in our experiments, we adopted a common method to train ANN. During the
training of the ANN, the initial learning rate was set to 0.1, the momentum was set to 0.9,
the weight decay was set to 5 × 10−4, and the optimizer we chose was SGD. The batch size
was set to 128, and the epoch was set to 300. At epochs 70, 130, 190, and 240, the learning
rate decayed by 5. In the ANN-to-SNN conversion threshold balance, the p-quantile was
set to [0.9–0.99].

Mathematics 2023, 11, 58 13 of 19

4.2. Validity Verification

We will verify the effectiveness of our improvements from multiple perspectives and
analyze the specific reasons for the improvement.

4.2.1. Accuracy

We experimentally verified the two improvement strategies mentioned in Sections 3.3 and 3.4.
We used VGG16 as the source neural network and CIFAR10 as the dataset and divided
the experiments into five groups: the source neural network (ANN), the non-improved
SNN (SNN), the SNN with initialized membrane potential (I-SNN), the SNN with coding
compensation(C-SNN), and the SNN with initialized membrane potential and coding
compensation(IC-SNN). The results are shown in Figure 5.

Figure 5. VGG16 on CIFAR10 accuracy.

Compared with the conventional ANN2SNN, the proposed two improved strategies
improve the accuracy. The SNN can achieve higher accuracy at lower time steps with both
improvements. It can be seen in the figure that the conventional ANN2SNN has inferior
performance at low latency, with an accuracy rate of only 20% to 30%. Adopting the
improved strategy can easily achieve an accuracy rate of more than 70%. As the time step
increases gradually, although the magnitude of the improvement will become progressively
smaller, the overall progress will still be ongoing.

4.2.2. Fire Time

The spiking neuron needs to accept the previous layer’s output for a long time and
accumulates until it reaches the threshold, and then the spike is fired. We analyzed the
timing of spiking neurons firing and explored the impact of our improvements on the firing
timing. At low time steps, neurons often do not receive enough output from the previous
layer to fire spikes and remain inactive, which seriously hinders the firing of spiking
neurons. A large amount of information is lost in the transmission process, resulting in
a significant drop in the accuracy of the neural network. The two improved strategies in
this paper essentially give the neuron an initial membrane potential, which enables the
neuron to activate faster and fire spikes to transmit information to the next layer. Then, to a
certain extent, this avoids situations where neurons are not activated or under-activated for
a sustained period.

Figure 6 shows the time of the first burst of each layer of the IC-SNN after introducing
the improved strategy compared to the traditional transformation network SNN. The ab-
scissa is the corresponding network layer number, and the ordinate is the average first firing
time of neurons. It can find that after the introduction of the initial membrane potential,
the average firing time of neurons in each layer of the IC-SNN is earlier than that in the
SNN. Especially in deeper networks, IC-SNN can significantly speed up the time of firing

Mathematics 2023, 11, 58 14 of 19

spikes, which is conducive to transmitting more information and improving the accuracy
of the network.

Figure 6. Spike firing time of SNN.

4.2.3. Output

Figure 7 shows the output of the intermediate process of the neural network, which
explains to a certain extent why the improved strategy leads to an increase in accuracy.
The images on the left are the output of the first layer of the neural network. From top
to bottom, the network output is under eight time steps, 16-time steps, and 32-time steps.
The images on the right are the output of the third layer network.

From Figure 7, at 32 time steps, the IC-SNN with the improved strategy almost coin-
cides with the ANN, while there are still some large differences between the conventional
SNN and the ANN. This situation is more pronounced at 16 time steps and especially at
eight time steps. As the network deepens, conversion errors begin to accumulate. At this
point, IC-SNN and ANN begin to separate gradually, but are still closer to the original
value than SNN. Therefore, adopting the initialization membrane potential and coding
compensation (IC) strategy can effectively reduce the conversion error and make the out-
put of each layer in the SNN closer to the source neural network, thereby improving the
accuracy of the SNN.

4.3. Contrast Experiment

We compare the proposed improvements with other networks, and the specific com-
parison results are shown in Tables 2–5. This paper only compares the experimental results
using the same network model and dataset in the original literature. The first column
lists previous research and improvements; ANNACC in the second column represents the
accuracy of the source neural network. Each subsequent column represents the accuracy
loss of ANN and the converted SNN in different time steps. We define accuracy loss as
Tt_L = ANNACC − SNNACC, where t represents the time step. For example, the column
of T8_L represents the value of the accuracy loss when converting ANN to SNN at eight
time steps. The smaller value indicates a more effective algorithm. In the comparison
item, the table sets the SNN that only uses the initialized membrane potential (I-SNN),
the SNN that only uses the coding compensation (C-SNN), and the SNN that uses both the
initialized membrane potential and the coding compensation (IC-SNN).

Mathematics 2023, 11, 58 15 of 19

(a) 8 time steps at first layer. (b) 8 time steps at third layer.

(c) 16 time steps at first layer. (d) 16 time steps at third layer.

(e) 32 time steps at first layer. (f) 32 time steps at third layer.

Figure 7. The output of the neural network at different time steps. Among them, (a,c,e) are the
outputs of the first-layer network using 8, 16, and 32 time steps, respectively; (b,d,f) are the outputs
of the third-layer network using 8, 16, and 32 time steps, respectively.

Table 2. Results of the test on the CIFAR10 dataset using VGG16.

Method ANNACC T8_L T16_L T32_L T64_L T128_L T256+_L
Robust Norm [28] 92.82 − 82.71 49.79 11.30 2.02 0.07
Spike Norm [29] 91.70 − − − − − 0.15
Hybrid Train [37] 92.81 − − − − 1.68 0.33

RMP [34] 93.63 − − 33.33 3.28 1.22 0.01
TSC [32] 93.63 − − − 0.84 0.36 0.01
Opt. [35] 95.72 − − 19.48 5.08 1.61 0.01
RNL [36] 92.86 − 34.96 7.46 1.71 0.35 0.01

I − SNN(Our work) 92.09 22.28 8.14 1.72 0.91 0.75 0.08
C− SNN(Our work) 92.09 28.52 12.06 5.25 2.84 1.37 0.13

IC− SNN(Our work) 92.09 9.95 2.97 1.03 0.61 0.29 0.05

Mathematics 2023, 11, 58 16 of 19

Table 3. Results of the test on the CIFAR100 dataset using VGG16.

Method ANNACC T8_L T16_L T32_L T64_L T128_L T256+_L
Spike Norm [29] 71.22 − − − − − 0.45

RMP [34] 71.22 − − − − 7.46 0.29
TSC [32] 71.22 − − − − 1.36 0.25
Opt. [35] 77.89 − − 70.25 50.05 16.85 0.18

I − SNN(Our work) 70.59 33.79 10.22 4.03 1.37 0.83 0.31
C− SNN(Our work) 70.59 47.38 20.42 8.31 2.85 1.89 0.41

IC− SNN(Our work) 70.59 15.72 7.11 3.74 1.24 0.77 0.20

As shown in Tables 2 and 3, we used the VGG16 model and the CIFAR10 and CIFAR100
datasets to compare with other researchers’ experiments. In the CIFAR10 dataset, IC-SNN
achieved more than 80% accuracy at eight time steps, whereas other networks require
about 32 time steps to achieve similar accuracy. At 16 time steps, the network achieves
close to 90% accuracy, but other networks require at least 64 time steps. The results of
VGG16 running on the CIFAR100 dataset further demonstrate the effectiveness of our
improvements. The accuracy rate has exceeded 60% at 16-time steps, reaching the mark
that other networks require 64 time steps. The conversion error loss is reduced to 1.24% at
64-time steps and to within 1% at 128-time steps.

Thanks to the proposed initializing membrane potential strategy and coding compen-
sation strategy, our network has fewer conversion errors than other networks at low time
steps, especially at eight time steps and 16 time steps. From the error analysis in Section 3.2,
it can be found that the error equation we want to eliminate is negatively related to the
time step. Therefore, the lower the time step, the more noticeable our improvements. In the
process of gradually increasing the time step, the performance improvement of our network
starts to decrease slowly. However, it can still achieve relatively high accuracy at the time
step of 128.

We also used the ResNet20 model to conduct experiments on CIFAR10 and CIFAR20.
The structure of ResNet is more complicated than that of VGG. Here, we adopt the con-
ventional processing for the residual block, regarding the residual block as a whole layer,
and provide a corresponding balance threshold for one residual block. Similarly, when
initializing membrane potential and coding compensation, we adopt a similar method and
only introduce the related improvement strategy for the first layer in the residual block.

Tables 4 and 5 show the comparative results of our networks. Even on the more
complex ResNet, our improvements still lead to huge improvements. IC-SNN achieves
80% accuracy on CIFAR10 at 16 time steps, and the error of the network transformation
shrank to 1% at 128 time steps. The performance on CIFAR100 is also excellent. At 32 time
steps, the accuracy error with the source network was reduced to less than 10%, and the
error was only 1.77% at 128 time steps.

Table 4. Results of the test on the CIFAR10 dataset using ResNet20.

Method ANNACC T8_L T16_L T32_L T64_L T128_L T256+_L
Spike Norm [29] 89.10 − − − − − 1.64
Hybrid Train [37] 93.15 − − − − − 0.21

RMP [34] 91.47 − − − − 3.87 0.11
TSC [32] 91.47 − − − 22.09 2.90 0.05

I − SNN(Our work) 91.46 43.21 21.75 4.72 3.87 1.06 0.21
C− SNN(Our work) 91.46 57.18 30.39 8.25 5.34 2.39 0.27

IC− SNN(Our work) 91.46 37.31 10.23 3.64 2.14 0.81 0.09

Mathematics 2023, 11, 58 17 of 19

Table 5. Results of the test on the CIFAR100 dataset using ResNet20.

Method ANNACC T8_L T16_L T32_L T64_L T128_L T256+_L
Spike Norm [29] 69.72 − − − − − 5.63

RMP [34] 68.72 − − 41.08 21.89 11.03 0.90
TSC [32] 71.22 − − − − 10.30 0.54

I − SNN(Our work) 66.05 39.68 22.41 15.77 4.62 2.03 0.59
C− SNN(Our work) 66.05 46.71 27.19 21.03 7.93 3.31 0.63

IC− SNN(Our work) 66.05 35.59 17.70 9.28 3.13 1.61 0.45

During the experiment, we tried 16 time steps and even eight time steps, which hardly
anyone other than us has used. This is because, in such a short time step, the firing of
spikes is seriously affected, which will cause a large amount of information loss, resulting
in a significant drop in the accuracy of the neural network. After the improved strategy
was introduced, our network still showed excellent performance at such a low time step. It
also confirms that our improvement can effectively speed up the firing of spikes, thereby
reducing inference time.

5. Conclusions

This paper analyzes errors in the conversion process to help explain the loss of in-
formation at low latency. For the case of low delay, a method to initialize the membrane
potential was proposed to eliminate the error. Weight-based initialization takes into account
more intense spike sequences; data-based initialization is more general and better improves
the accuracy of the network. In further analysis after removing errors, a rate-coding-based
compensation method was proposed, which, combined with the initialized membrane
potential, enabled the network to perform better. This paper conducts experiments on the
IC-SNN on different network models and datasets. The results show higher accuracy and
minor transformation error at low latency.

In future work, we will focus on the source neural network to improve its performance
using batch normalization and dropout techniques. In addition, we will also try to combine
biological mechanisms, which further enhance the accuracy at low time steps.

Author Contributions: Conceptualization, C.L. and Z.S.; formal analysis, Z.S., L.S. and W.G.; method-
ology, Z.S.; project administration, C.L. and S.Z.; validation, Z.S. and W.G.; visualization, L.S. and
W.G.; writing—original draft, C.L.; writing—review and editing, Z.S., L.S., W.G. and S.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key Technologies R&D Program
(2020YFB1712401, 2018YFB1701400, 2018*****4402), the 2020 Key Project of Public Benefit in Henan
Province of China (201300210500), and the Nature Science Foundation of China (62006210, 62206252),
Key scientific research projects of colleges and universities in Henan Province (23A520015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. arXiv 2016, arXiv:1608.04493
2. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
3. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding. arXiv 2015, arXiv:1510.00149.
4. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,

UK, 2002. [CrossRef]

http://doi.org/10.1017/CBO9780511815706

Mathematics 2023, 11, 58 18 of 19

5. Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001,
21, 1133–1145. [CrossRef]

6. Maass, W.; Markram, H. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 2004, 69, 593–616.
[CrossRef]

7. Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat.
Neurosci. 2000, 3, 919–926. [CrossRef]

8. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Psychology Press: New York, NY, USA, 2005. [CrossRef]
9. Zhang, T.; Cheng, X.; Jia, S.; Poo, M.m.; Zeng, Y.; Xu, B. Self-backpropagation of synaptic modifications elevates the efficiency of

spiking and artificial neural networks. Sci. Adv. 2021, 7, eabh0146. [CrossRef]
10. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
11. Bohte, S.M.; Kok, J.N.; La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing

2002, 48, 17–37. [CrossRef]
12. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 2018, 12, 331. [CrossRef]
13. Cao, Y.; Chen, Y.; Khosla, D. Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput.

Vis. 2015, 113, 54–66. [CrossRef]
14. Bu, T.; Fang, W.; Ding, J.; Dai, P.; Yu, Z.; Huang, T. Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency

Spiking Neural Networks. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 30
April–3 May 2021.

15. Wang, Z.; Lian, S.; Zhang, Y.; Cui, X.; Yan, R.; Tang, H. Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with
Dual-Phase Optimization. arXiv 2022, arXiv:2205.07473.

16. Masquelier, T.; Thorpe, S.J. Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput.
Biol. 2007, 3, e31. [CrossRef] [PubMed]

17. Legenstein, R.; Pecevski, D.; Maass, W. A learning theory for reward-modulated spike-timing-dependent plasticity with
application to biofeedback. PLoS Comput. Biol. 2008, 4, e1000180. [CrossRef]

18. Ruf, B.; Schmitt, M. Learning temporally encoded patterns in networks of spiking neurons. Neural Process. Lett. 1997, 5, 9–18.
[CrossRef]

19. Wade, J.J.; McDaid, L.J.; Santos, J.A.; Sayers, H.M. SWAT: An unsupervised SNN training algorithm for classification problems.
In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), Hong Kong, China, 1–6 June 2008; pp. 2648–2655. [CrossRef]

20. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef]

21. Tavanaei, A.; Maida, A.S. Bio-inspired spiking convolutional neural network using layer-wise sparse coding and STDP learning.
arXiv 2016, arXiv:1611.03000.

22. Zhang, T.; Zeng, Y.; Zhao, D.; Xu, B. Brain-inspired Balanced Tuning for Spiking Neural Networks. In Proceedings of the IJCAI,
Stockholm, Swede, 13–19 July 2018; pp. 1653–1659.

23. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; Shi, L. Direct training for spiking neural networks: Faster, larger, better. In Proceedings of
the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 8–12 October 2019; Volume 33, pp. 1311–1318. [CrossRef]

24. Zhang, W.; Li, P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. Adv. Neural Inf.
Process. Syst. 2020, 33, 12022–12033. [CrossRef]

25. Fang, W.; Yu, Z.; Chen, Y.; Masquelier, T.; Huang, T.; Tian, Y. Incorporating learnable membrane time constant to enhance learning
of spiking neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 10–17 October 2021; pp. 2661–2671. [CrossRef]

26. Xiao, M.; Meng, Q.; Zhang, Z.; Wang, Y.; Lin, Z. Training feedback spiking neural networks by implicit differentiation on the
equilibrium state. Adv. Neural Inf. Process. Syst. 2021, 34, 14516–14528.

27. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015; pp. 1–8. [CrossRef]

28. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef]

29. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

30. Kim, S.; Park, S.; Na, B.; Yoon, S. Spiking-yolo: Spiking neural network for energy-efficient object detection. In Proceedings of the
AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11270–11277. [CrossRef]

31. Park, S.; Kim, S.; Na, B.; Yoon, S. T2FSNN: Deep spiking neural networks with time-to-first-spike coding. In Proceedings of the
2020 57th ACM/IEEE Design Automation Conference (DAC), Virtual Event, 20–24 July 2020; pp. 1–6. [CrossRef]

32. Han, B.; Roy, K. Deep spiking neural network: Energy efficiency through time based coding. In Proceedings of the European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 388–404. [CrossRef]

http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1016/j.jcss.2004.04.001
http://dx.doi.org/10.1038/78829
http://dx.doi.org/10.4324/ 9781410612403
http://dx.doi.org/10.1126/sciadv.abh0146
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/S0925-2312(01)00658-0
http://dx.doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.1007/s11263-014-0788-3
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://www.ncbi.nlm.nih.gov/pubmed/17305422
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1023/A:1009697008681
http://dx.doi.org/10.1109/IJCNN.2008.4634169
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.1609/aaai.v33i01.33011311
http://dx.doi.org/10.48550/arXiv.2002.10085
http://dx.doi.org/10.1109/ICCV48922.2021.00266
http://dx.doi.org/10.1109/IJCNN.2015.7280696
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212
http://dx.doi.org/10.1609/aaai.v34i07.6787
http://dx.doi.org/10.1109/DAC18072.2020.9218689
http://dx.doi.org/10.1007/978-3-030-58607-2_23

Mathematics 2023, 11, 58 19 of 19

33. Stöckl, C.; Maass, W. Optimized spiking neurons can classify images with high accuracy through temporal coding with two
spikes. Nat. Mach. Intell. 2021, 3, 230–238. [CrossRef]

34. Han, B.; Srinivasan, G.; Roy, K. Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-
latency spiking neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 13558–13567.

35. Deng, S.; Gu, S. Optimal conversion of conventional artificial neural networks to spiking neural networks. arXiv 2021,
arXiv:2103.00476.

36. Ding, J.; Yu, Z.; Tian, Y.; Huang, T. Optimal ann-snn conversion for fast and accurate inference in deep spiking neural networks.
arXiv 2021, arXiv:2105.11654.

37. Rathi, N.; Srinivasan, G.; Panda, P.; Roy, K. Enabling deep spiking neural networks with hybrid conversion and spike timing
dependent backpropagation. arXiv 2020, arXiv:2005.01807.

38. Bu, T.; Ding, J.; Yu, Z.; Huang, T. Optimized Potential Initialization for Low-latency Spiking Neural Networks. arXiv 2022,
arXiv:2202.01440.

39. Delorme, A.; Gautrais, J.; Van Rullen, R.; Thorpe, S. SpikeNET: A simulator for modeling large networks of integrate and fire
neurons. Neurocomputing 1999, 26, 989–996. [CrossRef]

40. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s42256-021-00311-4
http://dx.doi.org/10.1016/S0925-2312(99)00095-8
http://dx.doi.org/10.1109/CVPR.2016.90

	Introduction
	Related Work
	Learning Algorithms Based on Synaptic Plasticity
	Surrogate Gradient-Based Backpropagation
	ANN-to-SNN Conversion

	Method
	Neuron Model
	Error Analysis
	Initialize Membrane Potential
	Coding Compensation

	Experiments
	Experiment Preparation
	Experiment Environment
	Pre-Processing
	Hyper-Parameters

	Validity Verification
	Accuracy
	Fire Time
	Output

	Contrast Experiment

	Conclusions
	References

