
Citation: Li, W.; Wang, H.; Xue, Q. A

Survey on the Study of Generalized

Schrödinger Operators along Curves.

Mathematics 2023, 11, 8. https://

doi.org/10.3390/math11010008

Academic Editor: Alexander

Felshtyn

Received: 24 October 2022

Revised: 11 December 2022

Accepted: 14 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

A Survey on the Study of Generalized Schrödinger Operators
along Curves
Wenjuan Li 1, Huiju Wang 2 and Qingying Xue 3,*

1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, China
2 School of Mathematics and Statistics, Henan University, Kaifeng 475001, China
3 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
* Correspondence: qyxue@bnu.edu.cn

Abstract: In this survey, we review the historical development for the Carleson problem about the a.e.
pointwise convergence in five aspects: the a.e. convergence for generalized Schrödinger operators
along vertical lines; a.e. convergence for Schrödinger operators along arbitrary single curves; a.e.
convergence for Schrödinger operators along a family of restricted curves; upper bounds of p for the
Lp-Schrödinger maximal estimates; and a.e. convergence rate for generalized Schrödinger operators
along curves. Finally, we list some open problems which need to be addressed.
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1. Overview of History

The Shrödinger equation is one of the pillars of non-relativistic quantum mechanics,
which models the evolution of the quantum state of a quantum system. It was initially
proposed by Schrödinger [1] in 1926. On the one hand, a lot of mathematicians are attracted
to the theoretical research on it and the related nonlinear variants; see the comprehensive
monograph in [2,3]. On the other hand, there are many traditional computational methods
for solving the linear and nonlinear Shrödinger equations, including the finite difference
methods, finite element methods, split-step methods, and pseudo-spectral methods, etc.,
for which one can see a more detailed description in [4–6].

In this survey, we focus on investigating the pointwise convergence of the solution
of the free Schrödinger equation, which describes the continuity of the solutions for the
free Schrödinger equations to the initial data. This convergence problem was first raised
by Carleson [7] in 1980 and has been highly considered by many experts in the field of
harmonic analysis and partial differential equations, such as Bourgain, Tao, Guth, Sjölin,
Vega, etc. With the help of the tools produced in the development of the well-known
restriction estimates in the harmonic analysis, recently such a convergence problem can
be completely solved except the endpoints. So, now we are more concerned about several
variants of such a pointwise convergence problem because they also play an important role
in the study of the pointwise convergence for the solutions of some important equations,
such as the Schrödinger equation for the quantum harmonic oscillator, see [8]. In fact, there
are still many open problems to be solved. This survey will sort out some existing results
and methods for the convergence of generalized Schrödinger operators along curves and
list some open problems in this field.
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Let P(ξ) be a continuous real-valued function defined on Rn. The solution of general-
ized Schrödinger equation with initial datum{

∂tu(x, t)− iP(D)u(x, t) = 0 x ∈ Rn, t ∈ R+,
u(x, 0) = f (x)

(1)

can be formally written as

eitP(D) f (x) :=
∫
Rn

eix·ξ+itP(ξ) f̂ (ξ)dξ, (2)

where f̂ (ξ) denotes the Fourier transform of f .
It is well known that the related pointwise convergence problem is to determine

the optimal exponent s for which the following statements (A)–(C) are true whenever
f ∈ Hs(Rn):
(A) The a.e. convergence for generalized Schrödinger operators along vertical lines, i.e.,

lim
t→0+

eitP(D) f (x) = f (x), a.e. x ∈ Rn. (3)

(B) The a.e. convergence for Schrödinger operators along arbitrary single curves instead of
the above vertical lines, i.e.,

lim
t→0+

eitP(D) f (γ(x, t)) = f (x), a.e. x ∈ Rn, (4)

where γ : Rn × [−1, 1]→ Rn, with γ(x, 0) = x.
(C) The a.e. convergence for Schrödinger operator along a family of restricted curves
in Rn ×R: precisely, suppose that Θ is a given compact set in Rn, and γ is a map from
Rn × [0, 1]×Θ to Rn, we consider the relationship between the fractal dimension of Θ and
the optimal exponent s for which

lim
(y,t)→(x,0)

y∈Γx,t

eitP(D) f (y) = f (x) a.e. x ∈ Rn, (5)

where Γx,t = {γ(x, t, θ) : θ ∈ Θ}.
According to the celebrated Stein’s maximal principle, all of the above pointwise

convergence problems can be deduced to establish the corresponding Lp-maximal estimates.
Hence,
(D) It is interesting to look for the optimal p and s so that the Lp-Schrödinger maximal
estimate holds.

The problems on the a.e. convergence rate of some important operators (such as
Fourier multipliers, certain integral means, and summability means Fourier integrals) were
investigated in a lot of works [9–14], etc. Therefore,
(E) It is also attractive to consider the relationship between the smoothness of the functions
f and a.e. convergence rate for generalized Schrödinger operators along curves in Rn ×R.

Concretely, assume that |P(ξ)| ≤ C|ξ|m (ξ is large enough) and the curve γ(x, t)
satisfies bi-Lipschitz in x and Hölder condition of order α in t. If the corresponding Lp-
maximal estimates for generalized Schrödinger operators along curves hold when s > s0,
one can look for an optimal convergence rate I(α, δ, m) for all f ∈ Hs+δ(Rn), 0 ≤ δ < m,
such that

eitP(D)( f )(γ(x, t))− f (x) = o(tI(α,δ,m)), a.e. x ∈ B(x0, r) as t→ 0+. (6)

It is worthy to study all of the above problems in depth. Next, we will overview their
history separately and list some of the open problems related to this subject later.
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1.1. Case (A): a.e. Convergence along Vertical Lines

This case will refer to a very long history; here, we only list the latest developments as
far as we know. A more complete description can be found in [13]. We clarify the existing
results according to P(ξ) so that the readers may notice the influence of the phase function
on the convergence results of the generalized Schrödinger operators eitP(D) f .

(1) Elliptic case: P(ξ) = |ξ|2. It was Carleson [7] who first proved the convergence
for s ≥ 1/4 when n = 1. Later on, Dahlberg–Kenig [15] constructed a counterexample
which shows that Carleson’s result is indeed sharp. For n ≥ 2, Bourgain [16] gave a
counterexample showing that it is false if s < n

2(n+1) . An alternative counterexample was
proposed by Lucà–Rogers in [17]. Recently, using decoupling and polynomial decomposi-
tion, Du–Guth–Li [18] and Du–Zhang [19] obtained the sharp pointwise convergence up
to the endpoint for n = 2 and n ≥ 3, respectively. Therefore, in this case, the pointwise
convergence problem raised by Carleson was completely solved.

(2) Non-elliptic case: P(ξ) = ξ2
1 − ξ2

2 ± ξ2
3 ± · · · ± ξ2

n. When n = 2, it corresponds to
the pointwise convergence of the solution to the non-elliptic Schrödinger equation, i.e.,
i∂tu + (∂2

x − ∂2
y)u = 0. Rogers–Vargas–Vega [20] proved that the pointwise convergence

holds if and only if s ≥ 1/2 when f ∈ Hs(R2). Obviously, in the non-elliptic case, the
convergence results are worse than that in the elliptic case. When n ≥ 3, similar results
were also established except the endpoint, see [20].

(3) Fractional case:

(I) P(ξ) = |ξ|α. When α > 1, Sjölin [21] showed that the convergence of eit4
α
2 f for

s ≥ 1/4 if n = 1, and Cho–Ko [22,23] obtained an almost everywhere convergence for
s > n

2(n+1) , n ≥ 2. When 0 < α < 1, Walther [24] proved that the corresponding pointwise
convergence holds for s > α/4 when n = 1, and s > α/4 in a higher dimension assuming
that the initial value f is radial. Zhang [25] demonstrated the convergence for f ∈ Hs(Rn)
when s > nα/4.

(II) P(ξ) = ∑n
k=1±|ξk|α and α 6= 2. When α > 1, the pointwise convergence of

eit ∑n
k=1 ±Dα

k was proved in [20] if f ∈ Hs(Rn), s > 1/2, and n ≥ 2. The convergence
property fails for s < 1/4 by the result of Sjölin in [26]. This left the convergence problem
open in the range 1/4 ≤ s ≤ 1/2 for n ≥ 2. Recently, An–Chu–Pierce [27] developed
a flexible new method to approach such problems and proved that if the Schrödinger
maximal operator with the phase function P(ξ) = ∑n

k=1 |ξk|α(α ≥ 3, α ∈ Z) is bounded
from Hs(Rn) to L1(B(0, 1)), then s ≥ 1

4 + n−1
4((α−1)n+1) , which is the first result that exceeds

a long-standing barrier at 1/4. When 0 < α < 1, Zhang [25] proved that convergence for
f ∈ Hs(Rn) holds if s > nα/4.

(4) More general case:
(I) A class of very important operators with a physical background, such as Boussinesq

operators P(ξ) = |ξ|
√

1 + |ξ|2 and Beam operators P(ξ) =
√

1 + |ξ|4. We observed that
from the phase function point of view, this class of operators can be seen as a perturba-
tion of elliptic Schrödinger operators from case(A)-(1). In [28], Li–Li obtained the sharp
convergence for Boussinesq operators when n = 1. However, when n ≥ 2, limited to
decoupling techniques, we could not expect to deal with Boussinesq operators or Beam
operators by the method that obtains the maximal estimates for elliptic Schrödinger opera-
tors. Li–Wang [29] established the transference principle, i.e., if the absolute value of the
difference in phase functions P(ξ) and Q(ξ) is a bound constant when |ξ| is large enough,
the Lp-maximal estimate for one of the corresponding Schrödinger operators will imply
the other. Therefore, they employed the maximal estimates for phase function P(ξ) from
the results of case(A)-(1) and obtained the convergence results for Boussinesq operators
and Beam operators, which are also sharp when n = 2 by the counterexample in [29].

(II) When P(ξ) = ξ1ξ2 + ξm
1 , m ∈ N+, the corresponding equations are higher-order

dispersive equations. When P(ξ) = ξ1ξ2 + |ξ1|m, m ∈ R+ with 1 < m < 2, the correspond-
ing equations are non-elliptic Schrödinger equations with fractional-order perturbations.
With the help of Theorem 4.1 in [30], Li–Wang [29] proved that the corresponding maximal
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estimates hold for s > 1/2 and also gave a counterexample to show that it is sharp for the
case 1 < m < 2.

1.2. Case (B): a.e. Convergence for Schrödinger Operator along Arbitrary Single Curves

Now, we will consider two cases: smooth curves and tangential curves. While for
smooth curves the considered problem can often be reduced to Case (A), for tangential
curves the situation is much more complicated, especially in multidimensional spaces.

(1) Smooth curves: In the study of the pointwise convergence problem of the Schrödinger
equation for the harmonic oscillator, Lee–Rogers [8] turned to prove (4) for P(ξ) = |ξ|2
and any γ ∈ C1(Rd × [−1, 1] → Rd) (such as γ(x, t) = x − (tκ , 0, · · · , 0) with κ ≥ 1).
Furthermore, they showed that this pointwise convergence is essentially equivalent to the
vertical results in Case(A)-(1).

(2) Tangential curves: The curves (γ(x, t), t) are called tangential curves because as
t→ 0, (γ(x, t), t) approaches (x, 0) tangentially to the hyperplane {(y, t) ∈ Rn ×R : t = 0}.

Let P(ξ) satisfy |Dβ
ξ P(ξ)| . |ξ|m−|β|, |∇P(ξ)| ∼ |ξ|m−1 for |ξ| � 1, and m ≥ 2.

Assume that γ(x, t) is bi-Lipschitz in x and Hölder with order 1
m−1 in t. By [31] [Proposi-

tion 4.3], the pointwise convergence (4) follows from the corresponding maximal estimates
along the vertical line (x, t). Obviously, some convergence results along tangential curves
for generalized Schrödinger operators can be obtained when m > 2.

For the elliptical case m = 2 and n = 1, Cho–Lee–Vargas [31] proved the pointwise
convergence along the curve (γ(x, t), t) holds for s > max{1/2− α, 1/4} if the function γ
satisfies Hölder condition of order α, 0 < α ≤ 1 in t and bi-Lipschitz in x. Ding–Niu [32]
used the linearization method and improved to s ≥ 1/4, if 1/2 ≤ α ≤ 1.

For the fractional case P(ξ) = |ξ|m, m > 1, Cho–Schiraki [33] proved that the pointwise
convergence along tangential curves holds for s > max{1/4, (1− mα)/2}. Meanwhile,
they also estimated the capacitary dimension of the divergence set. Later, Yuan–Zhao [34]
extended the result for m > 1 to the case 0 < m < 1, which is sharp up to the endpoint.

Comparing with the case in R×R, much less is known about the convergence problem
for Schrödinger operators along tangential curves in a higher-dimensional case (Rn ×
R, n ≥ 2). Let Γα := {γ : [0, 1] → R2 : for each t, t′ ∈ [0, 1], |γ(t) − γ(t′)| ≤ Cα|t −
t′|α}, Cα ≥ 1. For example, γ(t) = tαµ, α ∈ [1/2, 1) and µ is a bounded vector in R2. For
s > 3/8, Li–Wang [13] employed the broad–narrow argument and polynomial partitioning,
then obtained the pointwise convergence of the Schrödinger operators along the curves
(x + γ(t), t) ∈ R2 ×R with γ ∈ Γα for some α ∈ [1/2, 1).

Unlike the one-dimensional case, the TT∗-method adopted in Cho–Lee–Vargas [31]
fails in a higher-dimensional case. One might expect to solve the convergence problem
along tangential curves using the argument in [18,19]. However, there are several technical
challenges to overcome.

First of all, the maximal estimates for Schrödinger operators along curves are no longer
translation invariant in the t-direction, which makes it difficult to apply the induction-
on-scale method in the physical space. In order to solve this problem, Li–Wang [13] used
induction on both the physical radius R and curves γ, where R� 1.

What is more, after parabolic rescaling, it can be found that the support for the Fourier
transform of eit∆ f (x + Rγ( t

R2 )) is not clear, then many nice properties do not work well
any more, which plays a fundamental role in the study of Case(A)-(1) when n = 2. In
order to overcome such difficulties, Li–Wang [13] gave a substitution for the local constant
property. They also constructed the counterexample to show that this convergence result
may not be sharp. However, one still does not know whether the decoupling method can
improve the exponent s > 3/8 to s > 1/3 or not.

1.3. Case (C): a.e. Convergence for Schrödinger Operator along a Family of Restricted Curves

Similar with Section 1.2, we will consider a family of restricted smooth curves and
tangential curves, respectively. This is attributed to the fact that the convergence results
along a family of restricted curves depend heavily on the results along a single curve.
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(1) A family of smooth curves and P(ξ) = |ξ|2.
(I) (x, t) ∈ R×R: If Γx,t = {x + tθ : θ ∈ Θ}, where t ∈ [−1, 1], Θ is a given compact set

in R. In [31], Cho–Lee–Vargas proved that the corresponding non-tangential convergence
result holds for s > β(Θ)+1

4 ; here, β(Θ) denotes the upper Minkowski dimension of Θ.
Recently, Shiraki [35] generalized this result to the fractional Schrödinger equation with
P(ξ) = |ξ|m, m > 1.

(II) (x, t) ∈ R2 ×R: If the function γ(x, t, θ) satisfies bi-Lipschitz in x, and Lipschitz in
t and θ, Li–Wang–Yan [36] employed the sharp Lp-maximal estimates from [18] and proved
that (5) holds whenever f ∈ Hs(R2) for each s > β(Θ)+1

3 . Furthermore, they showed that
this convergence result is sharp up to the endpoint.

(III) (x, t) ∈ Rn ×R, n ≥ 3: Combining the maximal estimate from [19], Li–Wang–
Yan [36] showed that if s > β(Θ)

2 + n
2(n+1) , then (5) holds whenever f ∈ Hs(Rn). However,

this result is not sharp because the upper bound of p in Lp-maximal estimates in [19]
is still open. Hence, in [36], they combined with the counterexample given by Sjölin–
Sjögren [37] and obtained an upper bound for p ≤ 2(n+1)

n . If one can establish the Lp-

maximal estimate for p ≤ 2(n+1)
n , then the convergence (5) holds whenever f ∈ Hs(Rn) for

each s > β(Θ)
p + n

2(n+1) .
(2) A family of tangential curves.
(x, t) ∈ R×R: If the function γ(x, t, θ) satisfies bi-Lipschitz in x, and Lipschitz in θ,

but Hölder with order α in t (0 < α < 1), Li–Wang [13] obtained the convergence results
along such a family of tangential curves, which is sharp when β(Θ) = 0 (see [31]) and
β(Θ) = 1 (see [37]). The necessity for the case 0 < β(Θ) < 1 is still open. Moreover,
Fan–Li–Wang [38] extended these convergence results to the fractional case, P(ξ) = |ξ|m,
m 6= 1.

In the one-dimensional case, Cho–Lee–Vargas [31] adopted the TT∗ method and
time localizing lemma to prove the non-tangential convergence result for the Schrödinger
operators stated in Case(C)-(1)-(I). Noting that the time localizing lemma is invalid for the
fractional Schrödinger operator with P(ξ) = |ξ|m as m → 1, Shiraki [35] improved the
method in [31] so that the time localizing lemma is no longer necessary, then generalized
the result in [31] to the fractional Schrödinger operator.

In a higher-dimensional case, the TT∗-method can no longer be applied to obtain the
corresponding results described in Case(C)-(1)-(II) and Case(C)-(1)-(III). Using the time
localizing lemma and Fourier expansion, Li–Wang–Yan [36] discovered the relationship
between the maximal estimates for Schrödinger operators along a family of smooth curves
and the maximal estimates for Schrödinger operators along a single vertical line. Then, the
convergence results in Case(C)-(1)-(II) and Case(C)-(1)-(III) follow from the Lp-maximal
estimates for the Schrödinger operators by [18,19].

1.4. Case (D): The Upper Bounds of p for Lp-Schrödinger Maximal Estimate

Next, we will observe two cases: free Schrödinger operators and Schrödinger operators
along curves. For the Lp-maximal estimates of free Schrödinger operators, the upper
bound of p depends on the spatial dimension. However, for the Lp-maximal estimates of
Schrödinger operators along curves, the smoothness of the (tangential) curves will also
affect the upper bound of p.

(1) γ(x, t) = x: When the spatial dimension n = 1 and P(ξ) = |ξ|m (m > 1), Sjölin [39]
studied the upper bound for Lp Schrödinger maximal estimates. When the spatial dimen-
sion n = 2 and p(ξ) = |ξ|2, Du–Guth–Li [18] proved the sharp Lp-estimates for all p ≤ 3
and s > 1/3. When the spatial dimension n ≥ 3, Du–Zhang [19] proved the sharp L2-
estimate with s > n/2(n + 1), but the sharp Lp-estimate of the Schrödinger maximal
operator is still unknown for p > 2. The partial results on this problem were obtained by
using polynomial partitioning and refined Strichartz estimates in [40–42]. In [36], Li–Wang–
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Yan showed that if there exists p ≥ 2 such that for any s > n
2(n+1) , Lp-maximal estimates

for Schrödinger operators hold whenever f ∈ Hs(Rn), then p ≤ 2(n+1)
n .

(2) General curve γ(x, t) and (x, t) ∈ R×R: Li–Wang [13] considered the sharp upper
bounds for Lp-Schrödinger maximal estimates when γ(x, t) satisfies bi-Lipschitz in x and
Hölder with order α in t. Recently, Fan–Li–Wang [38] extended this result to fractional
Schrödinger maximal estimates along tangential curves.

In addition to its own interests, the optimal upper bound for p in the Lp-Schrödinger
maximal estimate is closely related to the non-tangential convergence results as described
in case(C). Therefore, new developments in this area have been expected.

1.5. Case (E): a.e. Convergence Rate for Generalized Schrödinger Operators along
Tangential Curves

In [29], Li–Wang proved that if Lp-maximal estimates hold for celebrated Schrödinger
operators for each f ∈ Hs(Rn) (s > s0), the corresponding convergence rate is I(α, δ, m) =
αδ/m. Recently, Li–Wang [13] improved it to sharp results: if 1/m ≤ α < 1, (δ, I) ∈ {(x, y) : x ≥
0, y ≥ 0, y ≤ x/m, y < α}; if 0 < α < 1/m, (δ, I) ∈ {(x, y) : x ≥ 0, y ≥ 0, y ≤ αx, y < α}.

In [29], Li–Wang improved the previous convergence rate result established by Cao–
Fan–Wang [9]. Compared with the method in [9], Li–Wang [29] adopted a more effective
time–frequency decomposition. Moreover, some discussion of necessity can also be found
in [29].

2. Open Problems

Based on the results on this topic mentioned above, we list the following open prob-
lems which are well worth considering.

(1) There is no positive or negative convergence results for Case(A)-(1) when
s = n

2(n+1) .
(2) The optimal exponent s of the pointwise convergence is still open for fractional

Schrödinger operator Case(A)-(3)-(II).
(3) The convergence problem is still open for Schrödinger operators (or fractional

Schrödinger operators P(ξ) = |ξ|m, 0 < m < 1 and m = 2) along tangential curves in
the higher-dimensional case Rn ×R, n ≥ 2. Specially, for R2 ×R, there are still two open
problems that need to be solved:

(I) Is it possible to improve the regularity index s > 3/8 to 1/3?
(II) For the tangential curve γ(x, t) which satisfies bi-Lipschitz in x and Hölder with

order α in t, α ∈ (0, 1/2), the corresponding convergence problem is still completely open.
(4) How to estimate the capacitary dimension of the divergence set for Schrödinger

operators (or fractional Schrödinger operators P(ξ) = |ξ|m, 0 < m < 1 and m > 1) along
tangential curves in the higher-dimensional case Rn ×R, n ≥ 2 is still an open question.

(5) In Case(C), the necessity for all the convergence results when 0 < β(Θ) < n is still
open.

(6) In Case(C)-(2), the a.e. convergence problem remains open for Schrödinger oper-
ators (or fractional Schrödinger operators P(ξ) = |ξ|m, 0 < m < 1, and m > 1) along a
family of restricted tangential curves in Rn ×R, n ≥ 2.

(7) In Case(D), for n ≥ 3, there is no sharp Lp-estimates for Schrödinger maximal
operators for 2 < p ≤ 2(n+1)

n .
(8) In Case(D), for n ≥ 2, it is still unknown for the upper bound of p for Lp-

Schrödinger (or fractional Schrödinger) maximal estimates along tangential curves.
(9) In Case(E), it is still unknown about the a.e. convergence rate for fractional

Schrödinger operators (P(ξ) = |ξ|m, 0 < m < 1) along curves.
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