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Abstract: Oil price behaviour over the last 10 years has shown to be bimodal in character, dis-
playing a strong tendency to congregate around one range of high oil prices and one range of
low prices, indicating two distinct peaks in its frequency distribution. In this paper, we pro-
pose a new, single nonlinear stochastic process to model the bimodal behaviour, namely, dp =

α(p1 − p)(p2 − p(p3 − p)dt + σpγdZ, γ = 0, 0.5. Further, we find analytic approximations of oil
price futures under this model in the cases where the stable fixed points of the corresponding deter-
ministic model are (a) evenly spaced about the unstable fixed point and (b) are spaced in the ratio 1:2
about the unstable fixed point. The solutions are shown to produce accurate prices when compared
to numerical solutions.
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1. Introduction

Crude oil is one of the world’s most important commodities, not just for consumption
but also as a financial asset. Futures contracts on oil are traded by financial institutions
and investors for investment and risk management purposes. Successful hedging and risk
management techniques, though, depend upon the accurate pricing of the contracts. In
order to value financial contracts on oil, one needs to understand and develop a stochastic
process that describes oil price dynamics. There are many complex factors affecting oil
prices, including net demand in the market, geopolitical events, interest rates, the weather,
the cost of extracting and producing oil and even market sentiment. In recent years, the
corona virus pandemic saw many governments restricting travel, and businesses were
forced to shut down. This led to the fall in demand for oil. In the first three months of 2020,
oil consumption was down 5.6 million barrels per day to 94.4 million barrels per day. This
in turn led to a drop in oil prices. In April 2020, the price for a barrel of oil fell to −USD
37.68 in the US for West Texas Intermediate (WTI) and USD 9 per barrel worldwide for
Brent oil. When Russia attacked Ukraine on 24 February 2022, investors saw the potential
for sanctions on Russian oil exports, which saw oil prices rocket. Large price changes over
short periods are not new—they are an inherent part of the oil market. Observing the data
set of oil prices over the last 10 years, it is obvious that the data are bimodal in nature (other
commodities such as natural gas and food grains may also exhibit the same price pattern
over this period). There is a strong tendency for prices to stay around one range of high
prices and then a range of low prices before going back to the high prices and so on.

In this paper, we model the bimodal nature of oil with a nonlinear one-factor stochastic
model. One-factor models are of the form dp = A(p, t)dt + B(p, t)dZ, where p (= pt) is
the price of oil at time t, A(p, t) is the drift term, B(p, t) is the diffusion term, and where
here and in the rest of this paper, dZ is an increment in a Wiener process Z under a real
probability measure. The main advantages of using one-factor models are simplicity and
tractability—i.e., they can lead to closed formulae for futures prices.
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An early model used to define the behaviour of commodity prices was the GBM
model—i.e., Geometric Brownian Motion, in which A(p, t) = µp and B(p, t) = σp, where
µ and σ are constant. Using this model, Brennan and Schwartz [1] identified a relationship
between spot and futures prices that included known constant convenience yields and
interest rates. Using a GBM model, Gabillon [2] established a closed-form solution for
futures prices of oil that depended only on the spot price of oil and a constant cost of
carry of physical oil. He did, however, observe that with this formula, the term structure
in backwardation could not be explained. So Gabillon extended his formula to include
convenience yield. This formula could now describe both backwardation and contango
states. Unfortunately, however, the formula implies a discontinuity when changing between
the backwardation and contango states. Gabillon noted that use of the GBM model to value
oil futures could lead to unreasonable over- or under-valuations.

Other authors suggested including mean reversion in the oil price model to capture
the effect of net demand of the commodity. Using this property, Bjerksund and Ekern [3]
derived the price of a European call option when the spot price follows the Ornstein–
Uhlenbeck process: A(p, t) = η(µ− p), B(p, t) = σ. This process can, however, generate
negative prices, which, although can happen with oil prices, is very rare. In a well-known
paper on futures pricing of oil, Schwartz [4] derived an analytic solution for futures prices
under the mean-reverting model: dp = ηp(µ− ln(p))dt + σpdZ. Pindyck [5] also added
a mean-reversion term to a deterministic linear trend model. AbaOud and Goard [6]
proposed two one-factor models for oil prices with B(p, t) = σp

3
4 and empirically showed

they outperformed some well-known models in capturing the behaviour of oil prices. They
also derived futures prices based on their mean-reverting models.

A number of extensions have been proposed to the one-factor model for oil prices.
These include two- and three-factor models. In the two-factor models, the convenience
yield and long-run mean seem to be the popular choices for the second factor. Gibson and
Schwartz [7] assumed that the underlying oil price follows the GBM process and the short
convenience yield follows the Ornstein–Uhlenbeck (OU) process. This was later modified
by Schwartz [4], who modelled the spot price using the Geometric Ornstein–Uhlenbeck
process. Some authors who considered the long-term price as a second state variable
include Gabillon [2], Pilipovic [8] and Schwartz and Smith [9].

The addition of factors to the model can add complexity to the model. However,
Schwartz [4] derived a futures prices under a three-factor model for oil that included
the spot price, convenience yield and interest rate. In this model, the spot price follows
the GBM, and the convenience yield and interest rate follow OU processes. Hilliard and
Reis [10] also used the three-factor model proposed by Schwartz [2] but added jumps
into the spot price process. Cortazar and Schwartz [11] proposed a three-factor model
that includes spot price, convenience yield and long-term spot price return. Abadie and
Chamorro [12] use mean-reverting spot price and volatility and a long-term equilibrium
price that follows a GBM.

Various other modifications to the one-factor model can be found in the literature. This
includes the paper by Cortazar and Naranjo [13], who used n-factor Gaussian models, and
Ogbogbo [14], who considers a Levy market and uses a Levy process to model oil prices.

Examination of oil price data sets over a span of 10 years, and even just the past
5 years, shows that they are bimodal in character, showing a strong inclination to aggregate
around one range of high prices and one range of low prices. No system of affine equations
could lead to a finite number of non-unique fixed point solutions. Therefore, to model
bimodal oil price data, we require a nonlinear model. In order to achieve this, we require
only a single nonlinear equation with two stable fixed points at high and low values of
oil prices, respectively. Obviously, we also need the additional external stochastic driving
force, representing the unpredictable effect of many neglected influences that will enable
transitions to occur between the two basins of attraction. The simplest such single-factor
model is

dp = α(p1 − p)(p2 − p)(p3 − p)dt + B(p, t)dZ, (1)
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with α > 0, p1 the stable low fixed point, p3 the stable high fixed point and p2 an unstable
intermediate fixed point. In the neighbourhood of p = p1, oil prices revert to p1 as

p = p1e−α(p2−p1)(p3−p1)t (2)

with time scale 1/[α(p2 − p1)(p3 − p1)]. Similarly, in the neighbourhood of p = p3, oil
prices revert to p3 exponentially with a time scale 1/[α(p3 − p2)(p3 − p1)].

For an initial value p0 strictly between p1 and p2, the full solution to the nonlinear
deterministic model (i.e., (1) with B(p, t) = 0) is

t = − 1
α

ln
(
[

p− p1

p0 − p1
]a1 [

p− p3

p0 − p3
]a3 [

p− p2

p0 − p2
]−a2

)
,

where

a1 =
p3 − p2

(p2 − p1)p2
3 − (p3 − p1)p2

2 + (p3 − p2)p2
1

,

a2 =
p1 − p3

(p2 − p1)p2
3 − (p3 − p1)p2

2 + (p3 − p2)p2
1

,

a3 =
p2 − p1

(p2 − p1)p2
3 − (p3 − p1)p2

2 + (p3 − p2)p2
1

.

Similar solutions can be found for other initial conditions simply by separation of variables
and integration by partial fractions.

The occasional switching between the zone of low oil price, with interval of attraction
[0, p2), and the zone of high oil price, with interval of attraction (p2, ∞), occurs because
of the random excursion B(p, t)dZ. This simple device for modelling bimodal oil price
dynamics is to be compared with the device of deterministic chaos, which requires at least
three coupled autonomous differential equations, two coupled non-autonomous equations
or two coupled difference equations.

The goal of this paper is two-fold:

1. To model oil prices, we want to demonstrate the significance of the cubic term in
Equation (1) with B(P, t) = σpγ (which we call our unrestricted model). To do this,
in Section 2, we compare the ability to capture oil price behaviour of several existing
one-factor stochastic models for oil prices that are subsets of the unrestricted model.
The estimation technique that we use to compare these models is the statistical method
of the Generalized Method of Moments (GMM). This method combines the observed
data with the information in population moment conditions to generate estimates of
the unknown parameters in the given model. Using 10 years of data, we empirically
test the nested models and explain the results.

2. Having justified the need for a cubic drift term, in Section 3, we formulate analytic

approximate solutions to futures prices under (1) with B(p, t) = σ and B(p, t) = σp
1
2 .

We present our conclusion in Section 4.

2. Motivation for the Bimodal Model—An Empirical Study

In this section, we empirically test ten oil price models that are nested within our
unrestricted model for their ability to capture the dynamics of oil price movements. The
estimation technique that we use to compare these models is the Generalized Method
of Moments (GMM), which is a method used to find efficient estimates of parameters
when the number of moment conditions is larger than the number of parameters being
estimated. The method is summarised in Appendix A, but for a more detailed explanation,
the reader is referred to Hayashi [15], Mackinlay and Richardson [16] and also Ferson and
Foerster [17].
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2.1. The Models to Be Tested

Table 1 lists the ten stochastic models of the form dp = A(p, t)dt + B(p, t)dZ that
were examined for their capability of fitting oil prices. They can each be nested within the
unrestricted model

dp = (k1 + k2 p + k3 p2 + k4 p3)dt + σpγdZ, (3)

where k1, k2, k3, k4, M and γ are constants, by placing restrictions on certain parameters as
given in Table 2.

Table 1. Models to be tested in the form dp = A(p, t)dt + B(p, t)dZ.

Model A(p, t) B(p, t)

1 (k1 + k2 p + k3 p2 + k4 p3) σp1/2

2 (k1 + k2 p) σp1/2

3 (k2 p + k3 p2) σp1/2

4 k2 p σp
5 k2 p σp1/2

6 (k1 + k2 p + k3 p2 + k4 p3) σ
7 (k1 + k2 p) σ
8 (k2 p + k3 p2) σ
9 k2 p σ

10 (k2 p + k3 p2) σp3/2

Table 2. Parameter restrictions on unrestricted models (3).

Model k1 k2 k3 k4 γ

1 0.5
2 0 0 0.5
3 0 0 0.5
4 0 0 0 1
5 0 0 0 0.5
6 0
7 0 0 0
8 0 0 0
9 0 0 0 0

10 0 0 1.5

In Models 1–3 and 5, the diffusion term follows the square-root process, which is
the type used by Heston [18] to model volatility. This implies that the volatility of the
percentage change in price is a decreasing function of p. The diffusion term in Models 6–9
means that the volatility of p is constant in absolute terms.

Model 4 is the Geometric Brownian Motion used by Black and Scholes [19] to value
European options. It infers an instantaneous growth rate of k2 and presumes that the
volatility of percentage changes and the expected percentage change in prices are constant.
It was also used to value oil by Brennan and Schwarz [1], McDonald and Siegel [20] and
Gabillon [2].

The drift term in Models 2 and 7 can be written as −k2(
−k1
k2
− p). With k1 > 0, k2 < 0,

the models are mean-reverting in nature, where the price reverts to the constant −k1
k2

with
reversion rate −k2. Larger values of |k2| mean faster reversion to the long-run mean
−k1
k2

. These models are then referred to as the Heston model and the Mean-Reverting
Gaussian, respectively.

In Models 3, 8 and 10, we can write the nonlinear drift term as −k3 p(−k2
k3
− p). If

k2 > 0, k3 < 0, then these models are also mean-reverting in nature, where the price reverts
to the constant −k2

k3
with a reversion rate that depends on p. Model 10 was used by Goard to
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model interest rates [21] and volatility [22,23]. The 3/2 power in the diffusion term proved
useful to reduce the heteroskedasticity (heteroskedasticity means that the variance of the
errors varies widely across the observations) of interest rates and volatility.

2.2. The Data

For our GMM analysis, Brent crude oil spot prices (sampled both weekly and monthly)
between January 2013 and December 2022 were collected from the U.S. Energy Information
Administration. The prices are plotted in Figure 1. From this figure, it can be seen that in
the period 2013–2016 (from 0 to 37 in (a) and 0 to 159 in (c)) prices decreased and reached
about USD 28 per barrel. In this time, the demand for oil was low, but at the same time
there was overproduction of oil. As a result, the Organization of the Petroleum Exporting
Countries (OPEC) aimed to support oil prices by agreeing to reduce crude supply. This
decision can be considered to be the most important factor that caused the increase in oil
prices over the period 2016–2020 (from 38–86 in (a) and from 160–374 in (c)). However, the
global pandemic (COVID-19) had a detrimental impact on the oil market as most countries
enforced strict social distancing and lockdowns to control virus expansion. This caused a
dive in oil demand and a historical low spot price was recorded (below USD 20 per barrel).
Since then (from mid 2020 to 2022), oil prices have seen an increasing trend due to many
factors, but most importantly, OPEC’s reduction of crude supply and the Russian invasion
of Ukraine in February 2022.

Table 3 shows the standard statistics for Brent crude oil (weekly and monthly) spot
prices 2013–2022. We see that the mean price in our period of study is about USD 70 and
the standard deviation is about USD 25. The minimum and maximum are very close to
the same distance from the mean, while the mean is close to the median. Both of these
observations are consistent with low skewness. Further, both the minimum and maximum
are just over two standard deviations from the mean, which is consistent with slightly
negative kurtosis.

From Figure 1, we can see the bimodal nature of the data with the stable low fixed point
in the interval [44, 50] and the stable high point in the interval [104, 110]. The histograms
confirm the bimodality of the data.

Table 3. Standard statistics for Brent crude oil (weekly and monthly) spot prices 2013–2022.

Standard Statistics Weekly Data Monthly Data

Mean 70.61 70.64
Median 64.82 64.56

Standard Deviation 24.95 24.87
Sample Variance 622.44 618.30

Kurtosis −0.86 −0.88
Skewness 0.40 0.41

Range 113.16 104.33
Minimum 14.24 18.38
Maximum 127.40 122.71

number of observation 520 120
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(a) Monthly data. (b) Histogram of the monthly data.

(c) Weekly data. (d) Histogram of the weekly data.

Figure 1. Brent crude oil prices 2011–2022.

2.3. Performance of Nested Models

We now compare Models 1–10, which are listed in Table 1, for their ability to capture
the behaviour of Brent crude oil prices in the 10 years between 2012 and 2022. As mentioned
in Section 2.1, each model can be nested within the unrestricted model (3), which we use as
a benchmark to compare the performances of each of the nested models.

In particular, GMM was used to estimate the parameters of the continuous-time model
for η = p

100 , whereby Itô’s Lemma, η follows

dη = (c1 + c2η + c3η2 + c4η3)dt + MηγdZ (4)

where

c1 = k1/100,

c2 = k2,

c3 = 100k3,

c4 = 1002k4,

M = σ100γ−1.

Tables A1 and A2 in Appendix B present the results from the GMM analysis using 10
years of monthly and 10 years of weekly data, respectively. In the tables, ‘DF’ stands for
degrees of freedom.

Table A1 presents the results from the 10 years of monthly data. The tables provide
very strong evidence of the importance of the cubic drift term when explaining variation
in oil prices. Every coefficient in the cubic drift term is statistically significantly different
from zero at the 1% level of significance. The χ2 p-values indicate that only Models 1 and 6,
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which include all the cubic terms, are acceptable at the 5% level of significance, with Model
6 (which has γ = 0) not being able to be rejected even at the 50% level of significance. All
the other models are rejected or misspecified in terms of their overidentifying restrictions.
In other words, the restrictions on these models are unreasonable.

Table A2 has the results from the 10 years of weekly data. Every coefficient in the cubic
drift term is statistically significantly different from zero at the 10% level of significance.
However, it is clear that the value of γ is also an important parameter differentiating the
models. The χ2 p-values of models with γ = 1, 1.5 (Models 4 and 10) indicate that these
models are rejected at the 1% level of significance. It is interesting that in Models 2, 3, 5, 7, 8
and 9, the coefficients in the drift term are individually not statistically significantly different
from zero, but jointly they are statistically significantly different from zero. Model 1, with
all nonzero coefficients in the cubic drift term and with γ = 0.5, has the highest p-values of
the overidentification tests and cannot be rejected even at the 25% level of significance.

We note that we also did a similar analysis with the 5 years of data from 2017 and 2022
and found very similar results. As a further note, from the GMM results, the data infer
that the pi values are generally such that |p3 − p2| = 2|p2 − p1|. However, when γ = 0,
we could also use the approximation |p3 − p2| = |p2 − p1|. We simulated the oil price
data over 10 years, both monthly and weekly, with the parameter values provided by the
GMM results. See Figures A1 and A2, where in Figure A1 we have monthly simulations
and in Figure A2 we have weekly simulations. Comparing these with the plots of the
true data in Figure 1, we see that they can mimic the essential features of the true oil price
movement. For example, they have values congregating around p1 and p3, and the prices
switch between these two regions. The range of values are also the same, staying in the
interval [18, 125]. Note that in Figure A1a,c we have |p1 − p2| = |p2 − p3| with γ = 0
and 1.5, respectively, and in Figure A1b,d we have |p1 − p2| = 2|p2 − p3| with γ = 0
and 1.5, respectively. Similarly, in Figure A2a,c we have |p1 − p2| = |p2 − p3| with γ = 0
and 1.5, respectively, and in Figure A2b,d we have |p1 − p2| = 2|p2 − p3| with γ = 0 and
1.5, respectively.

3. Analytic Futures Prices Under Model (3)

Given that the real process for p(= pt) is of the form

dp = α(p1 − p)(p2 − p)(p3 − p)dt + σpγdZ, (5)

then allowing for the possibility of a nonzero market price of risk, λ(p, t), associated with
oil prices, the risk-neutral process will be

dp = [α(p1 − p)(p2 − p)(p3 − p)− λ(p, t)σpγ]dt + σpγdZ̄, (6)

where Z̄ is a Wiener process under an equivalent risk-neutral probability measure under
which p becomes a martingale. One way λ(p, t) can be found is by implying it from market
futures prices, i.e., choosing a λ∗ that minimises the error between market and model prices.
This usually involves assuming a form for the market price of risk (see, e.g., Egloff et al. [24]).
Here, like many other authors (e.g., Stein and Stein [25] and Grünbichler and Longstaff [26]),
we assume that the market price of risk λ(p, t) is such that the forms of the real and risk-
neutral processes are alike. This means that when γ = 0, then λ(p, t) = d0 + d1 p +
d2 p2 + d3 p3, and when γ = 0.5, then λ(p, t) = f0 p−0.5 + f1 p0.5 + f2 p3/2 + f3 p5/2, where
di, fi, i = 0, 1, 2, 3 are constants. Without loss of generality, for convenience we will still use
the same notation for the constants.

The partial differential equation (PDE) that governs futures prices under the risk-
neutral process

dp = α(p1 − p)(p2 − p)(p3 − p)dt + σpγdZ̄, (7)

is given by (see [27])
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Fτ =
σ2 p2γ

2
Fpp + α(p1 − p)(p2 − p)(p3 − p)Fp, (8)

where F(p, 0) = p. From the GMM analysis of Section 2.3, we choose to consider only the
cases γ = 0 and γ = 1/2. We start by non-dimensionalising the problem. This ensures that
the relative sizes of different variables are obvious and signifies the important variables
and constants in the equation. Hence, we let z = F

p1
, y = p

p1
and τb = ταp2

1. This reduces
the problem to

zτb = εy2γzyy + (1− y)(q2 − y)(q3 − y)zy, where ε =
σ2 p2γ−4

1
2α

, (9)

and q2 = p2
p1

, q3 = p3
p1

, to be solved subject to z(y, 0) = y. Hence, once z(y, τb) is calculated,

we then have F = p1z
(

p
p1

, ταp2
1

)
. However, to the best of the authors’ knowledge, PDE (9)

has no analytic solution, and so we look for a good analytic approximation.
Given that p1 is large and we are considering γ = 0, 0.5, then ε is assumed small (�1).

Hence, we seek a perturbation solution of the form

z = z0 + εz1 + ε2z2 + . . . (10)

where z0(y, 0) = y, zi(y, 0) = 0 for i = 1, 2, 3 . . . Substituting (10) into (9) and collecting the
coefficients of ε0, we get that z0 needs to satisfy

(z0)τb = (1− y)(q2 − y)(q3 − y)(z0)y (11)

subject to z0(y, 0) = y. Note, this equation is independent of γ.
Solving (11) by the method of characteristics gives

z0 = φ̄

 e−τb(1− y)
1

(q2−1)(q3−1) (q3 − y)
1

(q3−1)(q3−q2)

(q2 − y)
1

(q2−1)(q3−q2)

, (12)

where we need z0 = y when τb = 0. This is hard to solve for the function φ̄ for arbi-
trary q1, q2, q3. However, we recall from the GMM analysis that if we let q2 = 1 + ε2,
q3 = 1 + ε2 + ε3, then we can well approximate ε3 by ε2 or 2ε2. Hence, we will study these
two cases and will get solutions for futures prices of the form

F = p1z
(

p
p1

, ταp2
1

)
where z = z0 + εz1 with

1. ε3 = ε2 when (a) γ = 0 and (b) γ = 0.5 and
2. ε3 = 2ε2 when (a) γ = 0 and (b) γ = 0.5.
As explained further in the paper, if higher-order approximations z2, z3, . . . are needed,

then they can be found in a similar way to z1.

3.1. Case ε3 = ε2

Here we assume ε3 = ε2, so we have q2 = 1 + ε2 and q3 = 1 + 2ε2. We now
approximate z under this assumption by finding z0 and z1 as in (10).

3.1.1. The O(1) Term z0

With ε3 = ε2, without loss of generality, from (12) we may write

z0 = φ

[
e−2ε2

2τb(1− y)(q3 − y)
(q2 − y)2

]
,
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for some function φ so that z0(y, 0) = y.
By letting Y = 1− y at τb = 0, we need to find φ so that

1−Y = φ

[
Y(Y + 2ε2)

(Y + ε2)2

]
.

We let

ξ̄ =
Y(Y + 2ε2)

(Y + ε2)2 (13)

and solve for Y (and hence y) in terms of ξ̄. This gives us

Y = −ε2 ± ε2

√
1− ξ̄

1− ξ̄
. (14)

Hence, φ(ξ̄) = 1 + ε2

(
1∓ 1√

1−ξ̄

)
. However, to satisfy the initial condition, we must use

the positive sign when y > q2, and when y < q2 we must use the negative sign. This then
leads to the solution for all y:

z0 = 1 + ε2

(
1 +

y− q2√
(q2 − y)2 − eR(1− y)(q3 − y)

)
, where R = −2ε2

2τb. (15)

[Note that in terms of the original variables we get F = p1z
(

p
p1

, ταp2
1

)
, and, hence,

F(p, τ) = p2 +
(p2 − p1)(p− p2)√

(p2 − p)2 − eR̄(p1 − p)(p3 − p)
, where R̄ = −2ταε2

2 p2
1.

We also note that we can simplify p2 − p1 = p1ε2.]
Figure 2 illustrates the solution z0, in which q2 and q3 are approximately 1.52 and

2.04, respectively. We see that when y < 1, the solution increases with τb (contango). When
1 < y < q2, the solution decreases with τb (backwardation), and then, when q2 < y < q3,
the solution again increases with τb. This is to be expected, as p1 and p3 are the stable
fixed points.

(a) (b)

Figure 2. Plot of z0 when ε3 = ε2 = 25/48.

3.1.2. The O(ε) Term z1

We now consider two cases for the approximation z1: when γ = 0, so ε = σ2

2αp4
1

, and

when γ = 0.5, so ε = σ2

2αp3
1
, in (9).
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Subcase γ = 0 in (9)
Substituting (10) into (9) and collecting the coefficients of ε1, we get that with γ = 0,

z1 needs to satisfy

(z1)τb = (z0)yy + (1− y)(q2 − y)(q3 − y)(z1)y (16)

subject to z1(y, 0) = 0. Solving (16) by the method of characteristics (see [28]), we get

z1 = ψ(ξ)− Q, where ξ = e−2ε2
2τb

(1− y)(q3 − y)
(q2 − y)2 , and Q =

∫ f (y)
(1− y)(q2 − y)(q3 − y)

dy,

where f (y) = (z0)yy with e−2ε2
2τb replaced by

A(1 + ε2 − y)2

(1− y)(1 + 2ε2 − y)
with A constant.

After integration, we then replace A with
e−2ε2

2τb(1− y)(1 + 2ε2 − y)
(1 + ε2 − y)2 .

This gives

Q =
X(q2 − y)

ε2[(q2 − y)2 − X(1− y)(q3 − y)]
5
2
∗{

−3X
16

((1− y)2 + (q3 − y)2) +
3
2
(1− y)(q3 − y)

+
15X

8
(1− y)(q3 − y) +

3
2
(q2 − y)2

+
3
ε2

2
(1− y)(q3 − y)(q2 − y)2 ln

(
(1− y)(q3 − y)

(q2 − y)2

)
+

3X
2ε2

2
(1− y)2(q3 − y)2 ln

(
(1− y)(q3 − y)

(q2 − y)2

)}
, (17)

where X = exp(−2ε2
2τb). To find ψ(ξ), we use the initial condition at τ = 0 that z1 = 0, so

we need

ψ(ξ̄) = Q(ξ̄) where ξ̄ =
(1− y)(q3 − y)

(q2 − y)2 (i.e ξ at τb = 0).

Hence, to find ψ(ξ), we need to first write Q as a function of ξ̄ when τb = 0. This can be
done easily by using (14) and considering the cases y > q2, y < q2 separately. This gives
ψ(ξ̄). Replacing ξ̄ by ξ, we get ψ(ξ).

After much simplification, we get ψ(ξ) in terms of y and τb for all y as:

ψ(ξ) =
(q2 − y)

ε3
2((q2 − y)2 − X(1− y)(q3 − y))

5
2

∗
[

ln
(

X(1− y)(q3 − y)
(q2 − y)2

)
(3X(1− y)(q3 − y)(q2 − y)2 +

3
2

X2(1− y)2(q3 − y)2)

+(27/8)X(1− y)(q3 − y)[(q2 − y)2 − X(1− y)(q3 − y)]

+3/2[(q2 − y)4 − X(1− y)(q3 − y)(q2 − y)2]

−3
8
[(q2 − y)2 − X(1− y)(q3− y)][2(q2 − y)2 − X(1− y)(q3 − y)]

]
. (18)

Then z1 = ψ(ξ)−Q. The above reasoning serves to prove the following proposition:

Proposition 1. An analytic approximation of (9) with ε2 = ε3 and γ = 0 is z = z0 + εz1, where
z0 is given in (15) and z1 is given by ψ(ξ)−Q using (17) and (18). Then the futures price is given
by F = p1z

(
p
p1

, ταp2
1

)
.
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The O(ε) term z1 when γ = 0 is plotted in Figure 3. When y < q2, z1 is increasing in
τb, and it is decreasing in τb when q2 < y < q3. This is the opposite behaviour to that of z0
when y > 1. The difference between the curves in z1 are also larger than those for z0.

In Table 4 we compare the approximate O(1) and O(ε) results for z0 and z = z0 +
εz1 with those obtained numerically using an implicit finite difference (FD) scheme in
Maple [29] with increments of y and τb, respectively, of δy = 10−3 and δτb = 10−3. We use
the numerical results as the proxy for the true solution. The table also lists the root mean

square error (RMSE)
√

∑(xi−x̂i)2

N and the mean absolute error (MAE) ∑|xi−x̂i |
N , where xi are

the FD values, x̂i are our estimated values and N is the number of data points.

(a) (b)

Figure 3. Plot of z1 when ε3 = ε2 and γ = 0.

Table 4. ε2 = ε3, γ = 0, ε2 = 25
48 .

y (τb, ε) = (0.05523, 0.25) (τb, ε) = (0.07732, 0.247)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8511 0.8574 0.8589 0.8589 0.8599 0.8626 0.8626
1.0638 1.0623 1.0633 1.0633 1.0617 1.0636 1.0636
1.2766 1.2737 1.2743 1.2743 1.2726 1.2737 1.2737
1.4894 1.4889 1.4890 1.4890 1.4887 1.4888 1.4888
1.7021 1.7045 1.7041 1.7041 1.7055 1.7047 1.7047
1.9149 1.9174 1.9165 1.9165 1.9184 1.9167 1.9167

RMSE 8.75× 10−4 0 1.62× 10−3 0
MAE 7.5× 10−4 0 1.38× 10−3 0

y (τb, ε) = (0.1105, 0.25) (τb, ε) = (0.1546, 0.2474)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8511 0.8634 0.8688 0.8688 0.8680 0.8780 0.8778
1.0638 1.0607 1.0648 1.0647 1.0595 1.0673 1.0670
1.2766 1.2709 1.2731 1.2731 1.2685 1.2730 1.2729
1.4894 1.4884 1.4887 1.4887 1.4880 1.4886 1.4886
1.7021 1.7069 1.7052 1.7053 1.7089 1.7055 1.7056
1.9149 1.9199 1.9163 1.9163 1.9219 1.9150 1.9152

RMSE 3.31× 10−3 5.77× 10−5 6.16× 10−3 1.78× 10−4

MAE 2.85× 10−3 3.33× 10−5 5.38× 10−3 1.5× 10−4

y (τb, ε) = (0.2209, 0.25) (τb, ε) = (0.9941, 0.0385)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8511 0.8745 0.8937 0.8929 0.9271 0.9584 0.9575
1.0638 1.0577 1.0734 1.0725 1.0402 1.0771 1.0742
1.2766 1.2651 1.2745 1.2739 1.2235 1.2568 1.2519
1.4894 1.4874 1.4887 1.4886 1.4797 1.4853 1.4842
1.7021 1.7118 1.7047 1.7052 1.7486 1.7207 1.7253
1.9149 1.9248 1.9108 1.9110 1.9555 1.9180 1.9216

RMSE 1.20× 10−2 5.93× 10−4 2.41× 10−2 3.38× 10−3

MAE 1.06× 10−2 5.17× 10−4 2.12× 10−2 3.00× 10−3
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The tables clearly show the excellent results from using z0 and z0 + εz1 as compared to
the numerical FD method. The results are displayed to four decimal places in terms of the
dimensionless parameters τb and ε. The first-order approximation z0 results on their own
yield relatively good results. However, it is obvious that the results from using z0 + εz1 are
an improvement on the z0 alone. We have excellent results, especially for smaller values of
τb and ε, with the RMSE ranging from 0 (when τb = 0.0552) to 0.0034 (when τb is almost
one). Similarly, the MAEs are of comparable order.

If higher degrees of accuracy are ever needed, then the next approximation z2 can be
found using the same technique we used here to find z1.

Subcase γ = 0.5 in (9)
We now look to approximate z1 when ε3 = ε2 and γ = 1

2 . The PDE in this case is

(z1)τb = y(z0)yy + (1− y)(q2 − y)(q3 − y)(z1)y (19)

to be solved subject to z1(y, 0) = 0 and where q2 = 1 + ε2, q3 = 1 + 2ε2. Solving (19) by

the method of characteristics, we get z1 = ψ(ξ)− Q, where ξ = e−2ε2
2τb

(1− y)(q3 − y)
(q2 − y)2 ,

and Q =
∫ f (y)

(1− y)(q2 − y)(q3 − y)
dy, where f (y) = y(z0)yy with e−2ε2

2τb replaced by

K(q2−y)2

(1−y)(q3−y) with K constant.

After integration, we then replace K with ξ =
e−2ε2

2τb(1− y)(q3 − y)
(q2 − y)2 .

We thus find

Q =
(y− 1− ε2)

[(1 + ε2 − y)− X(1− y)(1 + 2ε2 − y)]
5
2

∗
[
−3

2
X(1− y)(1 + 2ε2 − y)(1 +

1
ε2
)

+
3
8

X2(1− y)2

+
3

2ε2
X(1− y)(1 + ε2 − y)2

− 3
ε2

X(1− y)(1 + 2ε2 − y)(y− 1− ε2)

+
3X2

16ε2
[(1 + 2ε2 − y)2 + (1− y)2]

− 3
2ε2

X(1 + ε2 − y)2

− 15
8ε2

X2(y− 1)(y− 1− 2ε2)

+
3

8ε2
X2(y− 1)(1 + 2ε2 − y)2

− 3
2ε2

X2(1− y)2(y− 1− 2ε2)

− 3
ε3

2
X(1− y)(1 + 2ε2 − y)(1 + ε2 − y)2 ln

(
(1− y)(1 + 2ε2 − y)

(1 + ε2 − y)2

)
− 3

4ε2
2

X(1− y)(1 + 2ε2 − y)(1 + ε2 − y)2 ln
(
(1− y)(1 + 2ε2 − y)7

(1 + ε2 − y)8

)
− 3

2ε3
2

X2(1− y)2(1 + 2ε2 − y)2 ln
(
(1− y)(1 + 2ε2 − y)

(1 + ε2 − y)2

)
− 1

16ε2
2

X2(1− y)2(1 + 2ε2 − y)2 ln
(
(1− y)15(1 + 2ε2 − y)33

(1 + ε2 − y)48

)]
. (20)
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To find ψ(ξ), we use the initial condition at τ = 0, i.e., z1(y, 0) = 0. Hence, we need

ψ(ξ̄) = Q where ξ̄ =
(1− y)(q3 − y)

(q2 − y)2 .

So to find ψ(ξ), we need to first write Q as a function of ξ̄ when τb = 0. This gives ψ(ξ̄).
Replacing ξ̄ by ξ, we get ψ(ξ).

After much simplification, we get:

• for y > q2

ψ(ξ) =
1

(1− ξ)5/2

[
−15

4
ξ(1− ξ)(

1
ε2

2
+

1
ε3

2
)− 3

√
1− ξ

4ε2
2

−
(

39
8ε2

2

)
ξ
√

1− ξ + (1− ξ)

(
−3(1 + ε2)

4ε3
2

)

−3ξ ln(ξ)
ε3

2
− 3ξ2 ln(ξ)

2ε3
2

− 3ξ

4ε2
2

ln
[
ξ(
√

1− ξ − 1)6
]
− ξ2

16ε2
2

ln
[
ξ15(

√
1− ξ − 1)18

]]
(21a)

• for y < q2

ψ(ξ) =
−1

(1− ξ)5/2

[
−15

4
ξ(1− ξ)(

1
ε2

2
+

1
ε3

2
) +

3
√

1− ξ

4ε2
2

+

(
39
8ε2

2

)
ξ
√

1− ξ − 3
4ε3

2
(1− ξ)(ε2 + 1)

−3ξ ln(ξ)
ε3

2
− 3ξ2 ln(ξ)

2ε3
2

− 3ξ

4ε2
2

ln
[
ξ(
√

1− ξ + 1)6
]
− ξ2

16ε2
2

ln
[
ξ15(

√
1− ξ + 1)18

]]
(21b)

• for y = q2
z1 = 0 and Q = ψ(ξ) = 0. (21c)

Then z1 = ψ(ξ)−Q. The work in the current section and in Section 3.1.1 provides the
proof for the following proposition:

Proposition 2. An analytic approximation of (9) with ε2 = ε3 and γ = 0.5 is z = z0 + εz1,
where z0 is given in (15) and z1 is given by ψ(ξ)−Q using (20) and (21a)–(21c). Then the futures
price is given by F = p1z

(
p
p1

, ταp2
1

)
.

In Figure 4, we plot z1 when γ = 0.5. Compared with Figure 5 when γ = 0, we see
that although the figures have the same shape, the magnitudes of the values with γ = 0.5
tend to be larger, especially as τb increases.

In Table 5 we list the values obtained for z = z0, z = z0 + εz1 and those obtained
using an implicit finite difference method in Maple [29], with the dimensionless parameters
as given in the table. We see that the O(1) solutions z0 are by themselves fairly accurate,
but the O(ε) approximations z = z0 + εz1 are clearly better, with RMSE ranging from
4.08× 10−5 and five-significant-figure accuracy (with τb = 0.0506) to RMSE of 0.00169 and
three-significant-figure accuracy (with τb = 0.663).
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(a) (b)

Figure 4. Plot of z1 when ε3 = ε2 = 25/48 and γ = 0.5.

Table 5. ε2 = ε3, γ = 0.5, ε2 = 25
48 .

y (τb, ε) = (0.05063, 0.2469) y (τb, ε) = (0.07732, 0.1548)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8 0.8929 0.8939 0.8939 0.8511 0.8599 0.8613 0.8613
1.1 1.1090 1.1098 1.1098 1.0638 1.0617 1.0630 1.0629
1.3 1.3311 1.3316 1.3315 1.2766 1.2726 1.2735 1.2734
1.5 1.5560 1.5559 1.5559 1.4894 1.4887 1.4888 1.4888
1.7 1.7805 1.7796 1.7796 1.7021 1.7055 1.7046 1.7046
2 2.0010 1.9992 1.9992 1.9149 1.9184 1.9163 1.9163

RMSE 9.88× 10−4 4.08× 10−5 RMSE 1.24× 10−3 5.77× 10−5

MAE 8.33× 10−4 1.67× 10−5 MAE 1.08× 10−3 3.33× 10−5

y (τb, ε) = (0.1013, 0.2469) y (τb, ε) = (0.1546, 0.1548)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8 0.8967 0.9006 0.9005 0.8511 0.8680 0.8734 0.8732
1.1 1.1069 1.1103 1.1101 1.0638 1.0595 1.0647 1.0644
1.3 1.3288 1.3307 1.3306 1.2766 1.2685 1.2721 1.2718
1.5 1.5565 1.5561 1.5559 1.4894 1.4880 1.4886 1.4883
1.7 1.7831 1.7796 1.7796 1.7021 1.7089 1.7053 1.7051
2 2.0020 1.9950 1.9950 1.9149 1.9219 1.9136 1.9136

RMSE 3.86× 10−3 1.29× 10−4 RMSE 4.92× 10−3 2.42× 10−4

MAE 3.32× 10−3 1.0× 10−4 MAE 4.3× 10−3 2.17× 10−4

y (τb, ε) = (0.2025, 0.2469) y (τb, ε) = (0.6627, 0.3612)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

0.8 0.9039 0.9180 0.9171 0.8511 0.9088 0.9234 0.9231
1.1 1.1027 1.1160 1.1145 1.0638 1.0471 1.0654 1.0644
1.3 1.3242 1.3323 1.3305 1.2766 1.2415 1.2583 1.2560
1.5 1.5575 1.5557 1.5544 1.4894 1.4832 1.4862 1.4847
1.7 1.7885 1.7741 1.7738 1.7021 1.7324 1.7142 1.7155
2 2.0039 1.9770 1.9780 1.9149 1.9431 1.9107 1.9133

RMSE 1.44× 10−2 1.23× 10−3 RMSE 1.77× 10−2 1.69× 10−3

MAE 1.25× 10−2 1.13× 10−3 MAE 1.57× 10−2 1.5× 10−3
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(a) (b)

Figure 5. Plot of z0 when ε2 = 25/48 and ε3 = 2ε2.

3.2. Case ε3 = 2ε2

We now assume ε3 = 2ε2 so that q2 = 1 + ε2 and q3 = 1 + 3ε2. We approximate z
under this assumption by finding z0 and z1 as in Equation (10).

3.2.1. The O(1) Term z0

The PDE for z0 is given in (11), but we now have q3 = 1 + 3ε2 as well as q2 = 1 + ε2.
By the method of characteristics, the solution to this is

z0 = φ(ξ) where ξ = e−6ε2
2τb

(1− y)2(q3 − y)
(q2 − y)3 . (22)

To find the function φ, we use the initial condition z0(y, 0) = y.
Letting Y = 1− y, we need to solve the cubic equation

Y3(ξ̄ − 1) + Y(3ε2ξ̄ − 3ε2) + Y(3ε2ξ̄) + ξ̄ε3
2 = 0, (23)

where

ξ̄ =
(1− y)2(q3 − y)

(q2 − y)3 , (24)

i.e., ξ when τb = 0.
We let X = e−6ε2

2τb and consider three cases:

(a) ξ = Xξ̄ < 0;
(b) ξ = Xξ̄ > 1;
(c) 0 < Xξ̄ < 1.

In Cases (a) and (b), (23) has only one real solution for Y, namely

Y = ε2


[(

1 +
√

ξ̄
ξ̄−1

)
(ξ̄ − 1)2

]1/3

ξ̄ − 1
− 1[(

1 +
√

ξ̄
ξ̄−1

)
(ξ̄ − 1)2

]1/3 − 1

. (25)

Hence, for Case (a) ξ = Xξ̄ < 0⇒ q2 < y < q3, we can find

z0 = 1 + ε2 + ε2

[
Q

1
3

(1− Xξ)
+

1

Q
1
3

]
, (26)

where Q = (1− Xξ)2 +
√
−Xξ(1− Xξ)3/2.
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This leads to

z0 = 1 + ε2 + ε2

[
(Y + ε2)R̃2/3 − R(Y + ε2)

2

−RR̃1/3

]
, (27)

where

R = XY2(Y + 3ε2)− (Y + ε2)
3 > 0,

R̃ = R
3
2 [R

1
2 −
√

XY(Y + 3ε2)
1
2 ].

For Case (b) ξ = Xξ̄ > 1⇒ 1− k∗0ε2 < y < q2

where k∗0 = −1 + X1/3
{(

1
1−X + 1

(1−X)3/2

) 1
3
+
(

1
1−X −

1
(1−X)3/2

) 1
3
}

, we find

z0 = 1 + ε2 − ε2

 Q
1
3
1

(Xξ − 1)
− 1

Q
1
3
1

, (28)

where Q1 = (Xξ − 1)2 +
√

Xξ(Xξ − 1)3/2.
However, upon simplification, this leads to the same solution for z0 as in (27).
For Case (c) 0 < ξ = Xξ̄ < 1

Equation (23) has three real solutions, which we can write as

Y = kiε2, i = 0, 1, 2 where

k0 = −1 + 2r1/3 cos
(

π − θ

3

)
,

k1 = −1− r1/3 cos
(

π − θ

3

)
+
√

3r1/3 sin
(

π − θ

3

)
,

k2 = −1− r1/3 cos
(

π − θ

3

)
−
√

3r1/3 sin
(

π − θ

3

)
,

where r =
1

(1− ξ̄)3/2 , θ = tan−1

√
ξ̄

1− ξ̄
.

From this, we get z0 in the intervals 0 ≤ y < 1, 1 ≤ y < 1− k∗0ε2 and y ≥ q3.
Putting all the solutions together, we have

z0 =



1 + (1− 2r̃
1
3 cos(π−θ̃

3 ))ε2 if 0 ≤ y < 1,

1 + (1 + r̃
1
3 cos(π−θ̃

3 )−
√

3r̃
1
3 sin(π−θ̃

3 ))ε2 if 1 ≤ y ≤ 1− k∗0ε2,

1 + ε2 − ε2(
(Y+ε2)R̃

2
3−(Y+ε2)

2R

RR̃
1
3

) if 1− k∗0ε2 < y < q2,

1 + ε2 − ε2(
(Y+ε2)R̃

2
3−(Y+ε2)

2R

RR̃
1
3

) if q2 ≤ y < q3,

1 + (1 + r̃
1
3 cos(π−θ̃

3 ) +
√

3r̃
1
3 sin(π−θ̃

3 ))ε2 if y ≥ q3.

(29)

where

Y = 1− y (30)

r̃ =
1

(1− ξ)
3
2

, (31)

θ̃ = tan−1

(√
ξ

1− ξ

)
, (32)
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k∗0 = −1 + X
1
3

{
(

1
1− X

+
1

(1− X)
3
2
)

1
3 + (

1
1− X

− 1

(1− X)
3
2
)

1
3

}
, (33)

R̃ = R2 −
√

XY(Y + 3ε2)
1
3 R

3
2 (34)

R = XY2(Y + 3ε2)− (Y + ε2)
3 > 0, (35)

X = exp(−6ε2
2τb). (36)

Note that the solutions match at the endpoints of their intervals, and we have that
when y = 1, z0 = 1; when y = q2, z0 = q2; and when y = q3, z0 = q3.

The solution is plotted in Figure 5. Compared with Figure 2 where ε3 = ε2, the shapes
of the figures are very similar. However, the magnitudes of the values here when ε3 = 2ε2
are larger, especially when y > q2 ≈ 1.52.

3.2.2. The O(ε) Term z1

We now find the O(ε) approximation z1 for two cases: when γ = 0 and when γ = 0.5.
Subcase: γ = 0
We now approximate z1 when ε3 = 2ε2 and γ = 0.
By substituting (10) into (9) and collecting the coefficients of ε1, we get

(z1)τb = (z0)yy + (1− y)(q2 − y)(q3 − y)(z1)y. (37)

Solving (37) by the method of characteristics, we have

dy
dτb

= −(1− y)(q2 − y)(q3 − y)⇒ e−6ε2
2τb

(1− y)2(q3 − y)
(q2 − y)3 = A,

where A is constant. Further, we have

dz1

dy
= −

(z0)yy

(1− y)(q2 − y)(q3 − y)
⇒ z1 = −

∫ f (y, τb)

(1− y)(q2 − y)(q3 − y)
dy + ψ(ξ) (38)

where f (y, τb) = (z0)yy with X = e−6ε2
2τb replaced by A(q2−y)3

(1−y)2(q3−y) , and where

ξ = e−6ε2
2τb (1−y)2(q3−y)

(q2−y)3 .
First, we simplify the integrand in (38) before integrating, and then after the integration

we replace A with X(1−y)2(q3−y)
(q2−y)3 . We write the solution to (38) as −Q(y, τb) + ψ(ξ).

For (z0)yy, we use z0 in Equation (29).
To find ψ(ξ), we use the initial condition z1(y, 0) = 0. So at τ = 0 (i.e., X = 1),

we write

z1(y, 0) = −Q(y, 0) + ψ(ξ̄) = 0, where ξ̄ = ξ|τ=0

Hence, ψ(ξ̄) = Q(y, 0). So we write Q(y, 0) as a function of ξ̄ using Equation (38) to get
Q(ξ̄). Then ψ(ξ) = Q(ξ). The above reasoning serves to prove the following proposition:

Proposition 3. An analytic approximation of (9) with ε2 = 2ε3 and γ = 0 is z = z0 + εz1, where
z0 is given in (29) and z1 is given by ψ(ξ)−Q as explained above in this section. Then the futures
price is given by F = p1z

(
p
p1

, ταp2
1

)
.

Unfortunately, the integral Q cannot be obtained explicitly. However, excellent ap-
proximations of the integral can be found using series representations of the integrand.
Here, we obtain results using Maple [29] for the most relevant interval, namely

lowb < y < q3, where lowb = 1− k∗0ε2.
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We first split the integral into two, namely

(a) lowb < y < q2 where ξ > 1;
(b) q2 < y < q3 where ξ < 0.

In (a), we write the integrand as a series in q2 − y. In (b), we write the integrand for
y < 1 + 2ε2 as a series in y− q2 and otherwise as a series in q3 − y. The results obtained are
listed in Table 6.

As in the previous section, we tabulate in Table 6 the values obtained for z = z0 and
z = z0 + εz1 and those obtained using an implicit finite difference method in Maple [29]
using the dimensionless parameters as stated in the table. Again, the O(1) solutions
z0 are relatively accurate, but the O(ε) approximations z = z0 + εz1 are certainly an
improvement, with RMSE ranging from 8× 10−5 and mostly five-significant-figure accuracy
(with τb = 0.0552) to RMSE of 2.33× 10−3 and mostly three-significant-figure accuracy
(with τb = 0.3093).

Table 6. ε3 = 2ε2, γ = 0, ε2 = 25
48 .

y (τb, ε) = (0.0552, 0.25) (τb, ε) = (0.0773, 0.2474)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4994 1.4998 1.4998 1.4991 1.5000 1.5000
1.6 1.6026 1.6028 1.6028 1.6036 1.6040 1.6040
1.7 1.7061 1.7061 1.7061 1.7086 1.7085 1.7085
1.8 1.8096 1.8093 1.8093 1.8135 1.8129 1.8129
2.1 2.1163 2.1152 2.1154 2.1229 2.1215 2.1210
2.2 2.2162 2.2151 2.2151 2.2227 2.2204 2.2204

RMSE 6.2× 10−4 8.0× 10−5 1.31× 10−3 2.0× 10−4

MAE 4.8× 10−4 3.0× 10−5 1.03× 10−3 8.0× 10−5

y (τb, ε) = (0.1105, 0.25) (τb, ε) = (0.1546, 0.2474)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4987 1.5006 1.5006 1.4982 1.5020 1.5019
1.6 1.6052 1.6061 1.6061 1.6074 1.6092 1.6091
1.7 1.7124 1.7122 1.7122 1.7176 1.7172 1.7172
1.8 1.8194 1.8182 1.8183 1.8267 1.8250 1.8253
2.1 2.1327 2.1292 2.1289 2.1459 2.1382 2.1383
2.2 2.2323 2.2276 2.2277 2.2451 2.2359 2.2361

RMSE 2.62× 10−3 1.4× 10−4 5.12× 10−3 1.6× 10−4

MAE 2.08× 10−3 8.0× 10−5 3.97× 10−3 1.3× 10−4

y (τb, ε) = (0.2209, 0.25) (τb, ε) = (0.3093, 0.2474)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4974 1.5055 1.5049 1.4963 1.5127 1.5107
1.6 1.6108 1.6145 1.6142 1.6156 1.6228 1.6219
1.7 1.7256 1.7247 1.7248 1.7344 1.7344 1.7347
1.8 1.8402 1.8342 1.8350 1.8577 1.8443 1.8471
2.1 2.1657 2.1493 2.1500 2.1920 2.1589 2.1621
2.2 2.2638 2.2449 2.2458 2.2882 2.2517 2.2548

RMSE 1.05× 10−2 6.3× 10−4 1.99× 10−2 2.33× 10−3

MAE 8.43× 10−3 5.7× 10−4 1.58× 10−2 2.05× 10−3

In Figure 6, z1 is plotted as a function of τb in [0,2] for various values of y with
ε2 = 25/48. We see that when y ≤ 1.55, z1 increases as a function of τb; when y = 1.6, z1
initially slowly increases before turning to decrease; then, for 1 ≤ τb ≤ 2 when y ≥ 1.65, z1
decreases before turning. The larger y is in this last range, the smaller the magnitude of the
turning point. Compared with z1 when ε3 = ε2 and γ = 0, z1 generally increases/decreases
more quickly but mostly maintains the same shape.
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(a) (b)

(c)

Figure 6. Plot of z1 when ε3 = 2ε2 and γ = 0.

Subcase γ = 0.5
For z1 when ε3 = 2ε2 and γ = 1

2 , we solve

(z1)τb = y(z0)yy + (1− y)(q2 − y)(q3 − y)(z1)y, (39)

where q2 = 1 + ε2 and q3 = 1 + 3ε2.
Hence,

z1 = −
∫ f (y, τb)

(1− y)(q2 − y)(q3 − y)
dy + ψ(ξ),

where f (y, τb) = y(z0)yy with X = e−6ε2
2τb replaced by A(q2−y)3

(1−y)2(q3−y) (after (z0)yy has been
determined). The solution process is then the same as in the previous section. Hence, the
above work provides the proof for the following proposition:

Proposition 4. An analytic approximation of (9) with ε2 = 2ε3 and γ = 0.5 is z = z0 + εz1,
where z0 is given in (29) and z1 is as given above. Then the futures price is given by F = F =

p1z
(

p
p1

, ταp2
1

)
.

In Figure 7, z1 when γ = 0.5 is plotted as a function of τb in [0,2] for various values of
y with ε2 = 25/48. Compared to the case when γ = 0, z1 displays the same behaviour but
the magnitude of the values is greater.

In Table 7 we present the results obtained for z = z0 and z = z0 + εz1 and those
obtained using an implicit finite difference method in Maple [29]. The dimensionless
parameters used are given in the table. The results are very similar to those of Tables 4–6,
with the O(ε) approximations z = z0 + εz1 outperforming the O(1) solutions z0. The RMSE
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from the O(ε) approximations ranges from 6.0× 10−5 with mostly five-significant-figure
accuracy (with τb = 0.0773) to RMSE of 5.57× 10−3 and mostly three-significant-figure
accuracy with (τb = 0.6627).

(a) (b)

(c)

Figure 7. Plot of z1 when ε3 = 2ε2 and γ = 0.5.

Table 7. ε3 = 2ε2, γ = 0.5, ε2 = 25
48 .

y (τb, ε) = (0.0506, 0.2469) (τb, ε) = (0.0773, 0.1548)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4994 1.5000 1.5000 1.4991 1.5000 1.4999
1.6 1.6024 1.6026 1.6026 1.6036 1.6040 1.6040
1.7 1.7056 1.7055 1.7055 1.7086 1.7085 1.7085
1.8 1.8088 1.8083 1.8083 1.8135 1.8128 1.8128
2.1 2.1150 2.1130 2.1133 2.1229 2.1205 2.1204
2.2 2.2149 2.2127 2.2127 2.2227 2.2195 2.2195

RMSE 1.18× 10−3 1.2× 10−4 1.72× 10−3 6.0× 10−5

MAE 8.8× 10−4 5.0× 10−5 1.28× 10−3 3.0× 10−5

y (τb, ε) = (0.1013, 0.2469) (τb, ε) = (0.1546, 0.1548)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4988 1.5012 1.5009 1.4982 1.5017 1.5014
1.6 1.6048 1.6059 1.6057 1.6074 1.6092 1.6088
1.7 1.7113 1.7111 1.7109 1.7176 1.7172 1.7169
1.8 1.8178 1.8160 1.8159 1.8276 1.8247 1.8246
2.1 2.1300 2.1231 2.1231 2.1459 2.1356 2.1357
2.2 2.2297 2.2210 2.2210 2.2451 2.2323 2.2325
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Table 7. Cont.

RMSE 4.70× 10−3 1.7× 10−4 6.89× 10−3 2.6× 10−4

MAE 3.48× 10−3 1.3× 10−4 5.18× 10−3 2.3× 10−4

y (τb, ε) = (0.2025, 0.2469) (τb, ε) = (0.6627, 0.0361)
z0 z = z0 + εz1 FD z0 z = z0 + εz1 FD

1.5 1.4976 1.5076 1.5053 1.4913 1.5115 1.5074
1.6 1.6100 1.6147 1.6126 1.6374 1.6456 1.6427
1.7 1.7234 1.7221 1.7205 1.7889 1.7811 1.7807
1.8 1.8366 1.8282 1.8276 1.9368 1.9034 1.9149
2.1 2.1602 2.1313 2.1325 2.2928 2.2440 2.2482
2.2 2.2587 2.2237 2.2255 2.3755 2.3267 2.3300

RMSE 1.84× 10−2 1.70× 10−3 2.86× 10−2 5.57× 10−3

MAE 1.39× 10−2 1.60× 10−3 2.36× 10−2 4.40× 10−3

4. Conclusions

There are many stochastic models that can be found in the literature that aim to
model oil prices. Most have mean-reverting drifts that imply reversion to one mean value.
However, examination of historical oil prices points to two basins of attraction. In this paper,
we have addressed this fact and modelled the oil price process with a single one-factor
nonlinear model that can capture this property. GMM analysis comprehensively indicated
that a cubic term was necessary in the drift term in the oil price process, as in our bimodal
model. Pricing futures contracts under our model requires solving a partial differential
equation for which an exact analytic solution is not available. However, we were able to
find analytic approximations for the futures prices that provide fast and accurate solutions.
We first non-dimensionalised the governing PDE and found perturbation expansions for the
new non-dimensional dependent variable z. The results showed that—while the leading-
order approximation z = z0 yielded good results—using the next-order approximation
z = z0 + εz1 provided even better approximations. Higher-order approximations can be
found routinely if necessary, as indicated in Section 3.1.2. There are definite advantages to
having an analytic approximation over a numerical answer as it gives faster answers and
insight into the general properties of the solution, but, more importantly here, we would be
able to calibrate it to oil price data to find the best parameter values to fit the model to price
and forecast futures prices. This will be the subject of our next paper: calibration of oil
price models to real data and comparing their performance in valuing and forecasting oil
price futures. Given that crude oil is, at the moment, the main source of energy production
in the world, and given the reliance many investors around the world have on oil futures
for the purposes of speculation and management of their portfolios’ risk, we feel that the
current paper could provide a better understanding and guidance to investors.
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Appendix A. Methodology

The Generalized Method of Moments (GMM) of Hansen [30] is used in this paper to
estimate the parameters of the continuous-time model for η = p

100 . GMM was chosen as the
estimation technique as it does not need the distribution of oil price changes to be normal
and the GMM estimators and their standard errors are consistent even if distributions are

https://www.eia.gov/
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heteroskedastic. (Heteroskedasticity means that the variance of the errors varies widely
across the observations. It can make coefficient estimates less precise using some tech-
niques.) Further, GMM is often used in empirical finance tests to compare continuous-time
models for different underlying assets (see, e.g., Rajet et al. [31] and Hamisultane [32]). By
Itô’s Lemma, η follows

dη = (c1 + c2η + c3η2 + c4η3)dt + MηγdZ (A1)

where

c1 = k1/100,

c2 = k2,

c3 = 100k3,

c4 = 1002k4,

M = σ100γ−1.

Note that if we write (3) as dp = α(p1 − p)(p2 − p)(p3 − p)dt + σpγdZ, then
k1 = αp1 p2 p3, k2 = −α(p2 p3 + p1 p2 + p1 p3), k3 = α(p1 + p2 + p3) and k4 = −α.

We use the discrete-time econometric specification corresponding to (A1), namely:

ηt+1 − ηt = c1 + c2ηt + c3η2
t + c4η3

t + εt+1 (A2a)

where E[εt+1] = 0 (A2b)

and E[ε2
t+1] = M2η

2γ
t ∆t. (A2c)

We define θ to be the parameter vector with components c1, c2, c3, c4, M and γ and let ft(θ)
be the vector:

ft(θ) =

[
εt+1 ⊗ [1, ηt, η2

t ,
√

ηt]T

(ε2
t+1 −M2η

2γ
t ∆t)⊗ [1, ηt]T

]
Subject to the null hypothesis that conditions (A2a)–(A2c) are correct, then the orthogo-

nality conditions, E[ ft] = 0, apply. The technique of GMM firstly replaces E[ ft(θ)] = 0 with

its sample counterpart, g(θ) = 1
n

n

∑
t=1

ft(θ), which uses n observations. It then considers the

quadratic form q(θ) = g(θ)TWg(θ), where W is a positive definite weighting matrix (the
matrix W has the sample estimate adjusted for serial correlation and heteroskedasticity
using the method of Newey and West [33] with Bartlett weights) and estimates the parame-
ters in the vector θ that minimise this quadratic form. The optimal choice for the matrix W
has been found to be (see Hansen [30]) the inverse of the covariance matrix of the sample
moment, [Var(g(θ))]−1 = [E[ ft(θ) ft(θ)

T ]]−1.
In the unrestricted model (A1), the number of parameters that are not known is equal

to the number of orthogonality conditions. This means the system is exactly identified and
there exists a unique solution θ for which q(θ) = 0 with any choice of W. For Models 1–10.
which are nested within the unrestricted model, the number of the parameters that are
unknown is less than that of the orthogonality conditions. Hence, in this case, the system is
overidentified and there is no solution for θ. GMM then uses the same weighting matrix
that was found to estimate the parameters in the unrestricted model (A1).

For each of the nested models, we can test the validity of the restrictions imposed on
the parameters using the hypothesis test Hypothesis A1 versus Hypothesis A2 where

Hypothesis A1. The nested model does not enforce/impose overidentified restrictions. In other
words, the nested model is not misspecified.

Hypothesis A2. The nested model does enforce/impose overidentified restrictions. That is, the
nested model is misspecified.
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The following test statistic, known as the Hansen test (see Newey and West [33]), can
be used:

S = n( ˆq(θ0)− ˆq(θ)),

where ˆq(θ) and ˆq(θ0) are the objective functions for the unrestricted model and for the
restricted model, respectively. If the null hypothesis, Hypothesis A1, is true, then the
test statistic S is asymptotically distributed with χ2

j−k, where j and k are the number of
parameters in the unrestricted model and restricted model, respectively. With a specified
level of significance α, if χ2

j−k;α is less than the calculated test statistic S, then we need to
reject the null hypothesis and conclude that the restricted model is invalid (in other words,
the restrictions are unfounded and unreasonable) at the 100(1− α)% level of significance.
Hence, if the p-value is less than the set level of significance α, then we conclude that at the
100α% level of significance, the restricted model is invalid.

Appendix B.

Appendix B.1. GMM Results

Table A1. Empirical Results for Nesting Models 1–10 within (3) using 10 years of monthly data.

Model c1 c2 c3 c4 M γ
χ2

DF
p-Value

Unrestricted 3.221 −14.544 20.796 −9.382 −0.2329 0.1277 N/A N/A[0.001] [0.002] [0.005] [0.008] [<0.001] [0.520]

1 3.448 −14.818 20.628 −9.170 −0.2426 0.5 0.09 1[<0.001] [0.002] [0.005] [0.009] [<0.001]

2 0.502 −0.6844 0 0 0.2415 0.5 0.005 3[0.009] [0.011] [<0.001]

3 0 0.6214 −0.7370 0 0.2404 0.5 0.001 3[0.040] [0.027] [<0.001]

4 0 0.3878 0 0 −0.500 1 0 4[0.329] [<0.001]

5 0 0.111 0 0 −0.5302 0.5 0 4[0.779] [<0.001]

6 3.086 −14.275 20.711 −9.427 0.2242 0 0.514 1[0.002] [0.004] [0.006] [0.009] [<0.001]

7 0.2878 −0.4651 0 0 0.2262 0 0.030 3[0.165] [0.102] [<0.001]

8 0 0.2641 −0.4071 0 0.2291 0 0.016 3[0.394] [0.230] [<0.001]

9 0 −0.096 0 0 0.2392 0 0.017 4[0.289] [<0.001]

10 0 0.9125 −1.006 0 0.2023 1.5 0 3[0.001] [0.001] [<0.001]
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Table A2. Empirical Results for Nesting Models 1–10 within (3) using 10 years of weekly data.

Model c1 c2 c3 c4 M γ
χ2

DF
p-Value

Unrestricted 2.696 −12.825 19.137 −8.895 0.2284 0.3140 N/A N/A[0.091] [0.074] [0.063] [0.056] [<0.001] [0.064]

1 2.9398 −13.897 20.774 −9.682 0.2390 0.5 0.282 1[0.061] [0.049] [0.040] [0.034] [<0.001]

2 0.1993 −0.255 0 0 −0.234 0.5 0.122 3[0.272] [0.316] [<0.001]

3 0 0.3238 −0.3769 0 −0.2346 0.5 0.125 3[0.255] [0.252] [<0.001]

4 0 0.0717 0 0 −0.2464 1 0 4[0.378] [<0.001]

5 0 0.014 0 0 −0.2389 0.5 0.134 4[0.864] [<0.001]

6 2.167 −10.343 15.316 −7.081 0.201 0 0.065 1[0.175] [0.150] [0.135] [0.125] [<0.001]

7 0.0987 −0.1804 0 0 −0.1990 0 0.116 3[0.593] [0.483] [<0.001]

8 0 0.1199 −0.2020 0 −0.1991 0 0.121 3[0.681] [0.547] [<0.001]

9 0 −0.052 0 0 −0.2014 0 0.185 4[0.526] [<0.001]

10 0 0.7269 −0.7831 0 −0.2290 1.5 0 3[0.009] [0.015] [<0.001]

Appendix B.2. Simulations

(a) (b)

Figure A1. Cont.
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(c) (d)

Figure A1. Monthly simulations: (a) monthly over 10 years with p1 = 44, p2 = 74, p3 = 104,
γ = 0, σ = 24; (b) monthly over 10 years with p1 = 47, p2 = 67, p3 = 107, γ = 0, σ = 22; (c) monthly
over 10 years with p1 = 44, p2 = 74, p3 = 104, γ = 0.5, σ = 2.59; (d) monthly over 10 years with
p1 = 47, p2 = 67, p3 = 107, γ = 0.5, σ = 2.59.

(a) (b)

(c) (d)

Figure A2. Weekly simulations: (a) weekly over 10 years with p1 = 42, p2 = 73, p3 = 104,
γ = 0, σ = 22; (b) weekly over 10 years with p1 = 47, p2 = 67, p3 = 107, γ = 0, σ = 22; (c) weekly
over 10 years with p1 = 42, p2 = 73, p3 = 104, γ = 0.5, σ = 2.4; (d) weekly over 10 years with
p1 = 47, p2 = 67, p3 = 107, γ = 0.5, σ = 2.59.
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