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1. Introduction

In 1979, P. Wintgen [1] proved a basic inequality for the surface M2 in the Euclidean
4-space E4, often referred to as the Wintgen inequality and involves both intrinsic and
extrinsic invariants. He proved that the intrinsic Gaussian curvature G and the extrinsic
normal curvature K⊥ of M2 in E4 satisfy

G + |K⊥| ≤ ‖H‖2

where ‖H‖2 is the squared norm of the mean curvature H. Additionally, the surface M2 is
called the Wintgen ideal surface if it satisfies the equality case, i.e., the equality holds iff the
ellipse of the surface’s curvature in E4 is a circle.

The aforementioned inequality was researched and extended independently in [2] and
in [3] for surfaces of arbitrary co-dimension n in the real space form M̃n+2(c), n ≥ 2 as

K + |K⊥| ≤ ||H||2 + c.

Furthermore, B.-Y. Chen extended the Wintgen inequality in [4,5] to the surfaces in
pseudo-Euclidean 4-spaces E4

2 with the neutral metric.
In 1999, researchers proposed in [6] a conjecture of the Wintgen inequality for general

Riemannian submanifolds in real space forms, later known as the DDVV conjecture. They
revealed that, for a submanifold Mn of real space form M̃n+m(c), the following hold

ρ + ρ⊥ ≤ ||H||2 + c,

ρ denotes the normalised scalar curvature and ρ⊥ stands for the normalised normal scalar
curvature of M. This inequality is also known as the generalized Wintgen inequality or the
normal scalar curvature conjecture and was proved independently by Ge and Tang [7], and
Lu [8]. Recently generalized Wintgen inequalities have been established for submanifolds
in Golden Riemannian manifolds [9], complex space forms [10], Sasakian space form [11],
(κ, µ)-space forms [12], etc. For further literature about the DDVV inequality, one can refer
to [13] and the references therein.
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Since the first presentation of the structure of golden type on a Riemannian manifold
in [14] in the year 2008, a great deal of work has been produced by numerous scholars
using various theories. According to C. E. Hretcanu and M. Crasmareanu [15], the metallic
structure on a Riemannian manifold generalises the structure of the golden type. Recent
publications include a thorough analysis of Norden and metallic pseudo-Riemannian mani-
folds in [16] and several findings on curvature for generalised metallic pseudo-Riemannian
structures in [17]. We should also mention that [18–21] have conducted a thorough exam-
ination into different submanifolds in metallic Riemannian manifolds. Metallic warped
product manifolds were explored in 2018 by A. M. Blaga and C. E. Hretcanu [22], who also
came up with some intriguing findings. The same authors [21,23] also looked at warped
product submanifolds in metallic Riemannian manifolds.

On the other hand, Friedmann and Schouten in [24] first proposed the notion of a
semi-symmetric linear connection (briefly SSLC) on a differentiable manifold. The concept
of a metric connection with torsion on a Riemannian manifold was later proposed by
Hayden [25]. According to [26], the author demonstrated that a Riemannian manifold is
conformally flat iff it admits a semi-symmetric metric connection (shortly SSMC) whose
curvature tensor disappears. In [27,28], Chen-like inequalities for submanifolds of real,
complex, and Sasakian space forms endowed with SSMC were found.

Furthermore, a different algebraic strategy was used in [29] to derive certain opti-
mal inequalities for submanifolds of a Riemannian manifold with an SSMC and quasi-
constant curvature.

In this short note, the generalized Wintgen inequalities for slant submanifolds in the
context of metallic Riemannian space forms with SSMC have been established, drawing
inspiration from the aforementioned findings. The equality case is discussed and some
special cases of the derived inequality are given.

2. Preliminaries

Let M̃m be a Riemannian manifold with the linear connection ∇̃ and a torsion tensor
T such that

T(X, Y) = ∇̃XY− ∇̃YX− [X, Y], ∀X, Y ∈ Γ(TM̃).

Let φ be any 1-form satisfying

T(X, Y) = φ(Y)X− φ(X)Y;

then, ∇̃ is a semi-symmetric connection on M̃. In addition, for the Riemannian metric
g, if ∇̃g = 0 on M̃, then ∇̃ will be referred as a semi-symmetric metric connection (in
short, SSMC).

Let ∇̃′ denote the Levi–Civita connection and B symbolize a vector field satisfying
g(B, X) = φ(X); the SSMC ∇̃ on M̃ can be viewed as [26]

∇̃XY = ∇̃′XY + φ(Y)X− g(X, Y)B, ∀X, Y ∈ Γ(TM̃).

Let M be an isometric immersed submanifold of M̃ and ∇̃ and ∇̃′ are SSMC and
Levi–Civita connections of M̃, and let∇ and ∇′ denote the induced SSMC and Levi–Civita
connection of M. Then, the Gauss formulas for ∇̃ and ∇̃′ are given by

∇̃XY = ∇XY + h(X, Y), ∇̃′XY = ∇′XY + h′(X, Y),

h′ denotes the second fundamental form of M in M̃ and h stands for (0, 2)-tensor on M. Let
A be the shape operator and ξ be a normal vector field to M. Then, we have

∇̃Xξ = −Aξ X +∇⊥X ξ,
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where ∇⊥ is the normal connection on M. Furthermore, denote the curvature tensors of M̃
(respectively, M) by R̃ and R̃′ (respectively, R and R′) with respect to ∇̃ and ∇̃′ (respectively,
∇ and ∇′). Then, we have [30]

R̃′(X, Y, Z, W) = R′(X, Y, Z, W)− g(h′(X, W), h′(Y, Z))

+ g(h′(X, Z), h′(Y, W)). (1)

In view of SSMC ∇̃, one can express [31]

R̃(X, Y, Z, W) = R̃′(X, Y, Z, W)− α(Y, Z)g(X, W) + α(X, Z)g(Y, W) (2)

− α(X, W)g(Y, Z) + α(Y, W)g(X, Z), ∀X, Y, Z, W ∈ Γ(TM),

α being (0, 2)-tensor such that

α(X, Y) = (∇̃′Xφ)Y− φ(X)φ(Y) +
1
2

φ(B)g(X, Y). (3)

Take into account the local orthonormal tangent and normal frames {e1, . . . , en} and
{en+1, . . . , em} of TMn and T⊥Mm−n of M in M̃, respectively.

The mean curvature vector and squared norm of h of M are, respectively, given by

H =
n

∑
i=1

1
n

h(ei, ei), ||h||2 = ∑
1≤i,j≤n

g
(
h(ei, ej), h(ei, ej)

)
.

The scalar curvature τ and the normalised scalar curvature ρ are defined as

τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei), ρ =
2τ

n(n− 1)
=

2
n(n− 1) ∑

1≤i<j≤n
K(ei ∧ ej), (4)

with K being the sectional curvature function on M. Moreover, the scalar normal curvature
KN and the normalized scalar normal curvature ρN are given by [32]

KN = ∑
1≤r<s≤m−n

∑
1≤i<j≤n

[
n

∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)]
2, ρN =

2
n(n− 1)

√
KN . (5)

(Refs. [14,33]) Consider that (M̃m, g) is a Riemannian manifold and F is a (1, 1)-tensor
field on M̃m. F is said to be a polynomial structure if P(F) = 0, where

P(Y) := Yn + anYn−1 + · · ·+ a2Y + a1 I,

for identity transformation I on Γ(TM̃m) and real numbers a1, . . . , an.
A (1, 1) tensor field ϕ is called a metallic structure on M̃m if [15]

ϕ2 = pϕ + qI, (6)

for p, q ∈ N∗ (set of positive integers), with I being the identity transformation on TM̃.
The Riemannian metric g is called ϕ-compatible if

g(X, ϕY) = g(ϕX, Y), ∀X, Y ∈ Γ(TM̃m). (7)

A metallic Riemannian manifold is a smooth manifold M̃m with a metallic structure ϕ
and a ϕ-compatible Riemannian metric g.

From (6) and (7), we find

g(ϕX, ϕY) = pg(X, ϕY) + qg(X, Y).
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Particularly, if p = q = 1, then (M̃, ϕ, g) is simply referred as a golden Riemannian
manifold [14,34].

If a (1, 1)-tensor field F on a Riemannian manifold (M̃m, g) satisfies the conditions of
F2 = I and F 6= ±I, it is an almost product structure according to [35].

On a Riemannian manifold M̃, one obtains two F with metallic structure ϕ [15]:

F1 =
2

2σp,q − p
ϕ− p

2σp,q − p
I, F2 = − 2

2σp,q − p
ϕ +

p
2σp,q − p

I, (8)

in which the members of the family of metallic means are illustrated by σp,q =
p+
√

p2+4q
2 .

Besides this, two metallic structures are identified by F on M̃:

ϕ1 =
p
2

I +
2σp,q − p

2
F, ϕ2 =

p
2

I −
2σp,q − p

2
F. (9)

A metallic (or golden) Riemannian manifold M̃ is called the locally metallic (or locally
golden) Riemannian manifold if ϕ is parallel with respect to the Levi–Civita connection ∇̃,
i.e., ∇̃ϕ = 0 on M̃ [18]. In a similar way, if an almost product structure F on a Riemannian
manifold M̃ satisfies ∇̃F = 0, then F is said to be locally product structure on M̃ [36].

If P and Q denote the tangential and normal components of ϕ, one can write

ϕX = PX + QX, ∀X ∈ Γ(TM̃).

Let Mn be an isometrically immersed submanifold in a metallic Riemannian manifold
(M̃m, g, ϕ), X be a nonzero vector tangent to M at x ∈ M, and the angle between ϕX and
Tx M be denoted by θ(X).

Submanifold M of (M̃m, g, ϕ) is said to be slant if θ(X) is constant. Invariant and
anti-invariant submanifolds are the particular class of slant submanifolds with a θ = 0 and
θ = π

2 , respectively.
Next, we recall the following:

Lemma 1 (Refs. [18,20]). Let M be a submanifold of a metallic Riemannian manifold (M̃, ϕ, g).
If M is slant with slant angle θ, then

g(TX, TY) = cos2 θ[pg(X, TY) + qg(X, Y)]

g(NX, NY) = sin2 θ[pg(X, TY) + qg(X, Y)],

∀X, Y ∈ Γ(TM). When I stands for the identity transformation on TM, thus we also obtain

T2 = cos2 θ(pT + qI), ∇T2 = p cos2 θ(∇T).

Let M1 and M2 be two Riemannian manifolds with constant sectional curvatures c1
and c2, respectively. Then the product Riemannian manifold (M̃ = M1 × M2, F) with
locally product structure F is a locally Riemannian product manifold and its curvature
tensor of M̃ = M1(c1)×M2(c2) is given by [37]
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R̃′(X, Y)Z =
1
4
(c1 + c2)[g(Y, Z)X− g(X, Z)Y]

+
1
4
(c1 + c2)

{ 4
(2σp,q − p)2 [g(ϕY, Z)ϕX− g(ϕX, Z)ϕY]

+
p2

(2σp,q − p)2 [g(Y, Z)X− g(X, Z)Y]

+
2p

(2σp,q − p)2 [g(ϕX, Z)Y + g(X, Z)ϕY]

− 2p
(2σp,q − p)2 [g(ϕY, Z)X + g(Y, Z)ϕX]

}
± 1

2
(c1 − c2)

{ 1
2σp,q − p

[g(Y, Z)ϕX− g(X, Z)ϕY]

+
1

2σp,q − p
[g(ϕY, Z)X− g(ϕX, Z)Y]

+
p

2σp,q − p
[g(X, Z)Y− g(Y, Z)X]

}
. (10)

Additionally, if M̃ is equipped with SSMC, then the curvature tensor of M̃ with the
help of (2) and (10) is given by

R̃(X, Y, Z, W) =
1
4
(c1 + c2)[g(Y, Z)g(X, W)− g(X, Z)g(Y, W)]

+
1
4
(c1 + c2)

{ 4
(2σp,q − p)2 [g(ϕY, Z)g(ϕX, W)

− g(ϕX, Z)g(ϕY, W)]

+
p2

(2σp,q − p)2 [g(Y, Z)g(X, W)− g(X, Z)g(Y, W)]

+
2p

(2σp,q − p)2 [g(ϕX, Z)g(Y, W) + g(X, Z)g(ϕY, W)

− g(ϕY, Z)g(X, W)− g(Y, Z)g(ϕX, W)]
}

± 1
2
(c1 − c2)

{ 1
2σp,q − p

[g(Y, Z)g(ϕX, W)− g(X, Z)g(ϕY, W)]

+
1

2σp,q − p
[g(ϕY, Z)g(X, W)− g(ϕX, Z)g(Y, W)]

+
p

2σp,q − p
[g(X, Z)g(Y, W)− g(Y, Z)g(X, W)]

}
− α(Y, Z)g(X, W) + α(X, Z)g(Y, W)

− α(X, W)g(Y, Z) + α(Y, W)g(X, Z). (11)

3. Generalized Wintgen Inequality for θ-Slant Submanifolds

Here, we establish the generalized Wintgen inequality for the θ-slant submanifold Mn

of locally metallic space (M̃ = M1(c1)×M2(c2), g, ϕ) .
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Theorem 1. Let Mn be a θ-slant submanifold in a locally metallic space form (M̃m = M1(c1)×
M2(c2), g, ϕ) equipped with the SSMC. Then,

ρN ≤ ||H||2 − 2ρ + (c1 + c2)
p

p2 + 4q

{
p2 + 2q

+
2

n(n− 1)
[tr2 ϕ− (p · trT + nq) cos2 θ]− 2p

n
trϕ
}

+
1
n

1√
p2 + 4q

(c1 − c2)(2trϕ− np)− 2(n− 1)tr(α). (12)

Furthermore, the equality case in (12) holds identically iff, for the orthonormal frame {e1, . . . , en,
en+1, . . . , em}, the shape operators A satisfy

An+1 =



a d 0 . . . 0 0
d a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 a


, (13)

An+2 =



b + d 0 0 . . . 0 0
0 b− d 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0
0 0 0 . . . 0 b


, (14)

An+3 =



c 0 0 . . . 0 0
0 c 0 . . . 0 0
0 0 c . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . c 0
0 0 0 . . . 0 c


, An+4 = · · · = Am = 0, (15)

a, b, c, and d are smooth functions on M.

Proof. From (11) and (1), we obtain

∑
1≤i<j≤n

R(ei, ej, ej, ei) =
1
4

(n− 1)√
p2 + 4q

(c1 − c2)(4trϕ− 2np)

+
1
4
(c1 + c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q (16)

+
4

n(n− 1)
[tr2 ϕ− (p · trT + nq) cos2 θ]− 4p

n
trϕ
}

+
m

∑
α=n+1

∑
1≤i<j≤n

[
hα

iih
α
jj − (hα

ij)
2
]
− 2(n− 1)tr(α).

One can also observe that

2τ = ∑
1≤i<j≤n

R(ei, ej, ej, ei), (17)
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which gives

2τ =
1
4

(n− 1)√
p2 + 4q

(c1 − c2)(4trϕ− 2np)

+
1
4
(c1 + c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q

+
4

n(n− 1)
[tr2 ϕ− (p · trT + nq) cos2 θ]− 4p

n
trϕ
}

+
m

∑
α=n+1

∑
1≤i<j≤n

[
hα

iih
α
jj − (hα

ij)
2
]
− 2(n− 1)tr(α). (18)

We also find that

n2||H||2 =
m

∑
α=n+1

( n

∑
i=1

hα
ii

)
2 =

1
n− 1

m

∑
α=n+1

∑
1≤i<j≤n

(hα
ii − hα

jj)
2

+
2n

n− 1

m

∑
α=n+1

∑
1≤i<j≤n

hα
iih

α
jj. (19)

Then, from [8], clearly, we know that

m

∑
α=n+1

∑
1≤i<j≤n

(hα
ii − hα

jj)
2 + 2n

m

∑
α=n+1

∑
1≤i<j≤n

(hα
ij)

2

≥ 2n
{

∑
n+1≤α<β≤m−n

∑
1≤i<j≤n

[
n

∑
k=1

(hα
jkhβ

ik − hα
ikhβ

jk)]
2
}

1
2. (20)

From (19) and (20) with the help of (5), we reach

n2||H||2 − n2ρN ≥
2n

n− 1

m−n

∑
α=n+1

∑
1≤i<j≤n

[hα
iih

α
jj − (hα

ij)
2]. (21)

As a result, using (5), (18), and (21), we derive

ρN − ||H||2 ≤
1
2
(c1 + c2)

p
p2 + 4q

{
2p2 + 4q

+
4

n(n− 1)
[tr2 ϕ− (p · trT + nq) cos2 θ]− 4p

n
trϕ
}

+
1

2n
1√

p2 + 4q
(c1 − c2)(4trϕ− 2np)− 2ρ− 2(n− 1)tr(α), (22)

demonstrating the necessary inequality.
Lastly, by examining the equality scenario in (12), We come to the conclusion using a

ratiocination similar to that in [[7], Corollary 1.2] that the equality sign holds in (12) at a
point p ∈ M if and only if the shape operators have the forms (13)–(15) with respect to any
appropriate tangent and normal orthonormal bases.

4. Consequences of Theorem 1

We have two ways of its applications:

1. Firstly, we could consider the particular classes of θ-slant submanifolds i.e., either
invariant or anti-invariant. In this case, we have the following result as a particular
case of Theorem 1
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Corollary 1. Let Mn be an immersed submanifold of (M̃ = M1(c1)×M2(c2), g, ϕ) be a locally
metallic space form equipped with SSMC. Then, inequality (12) takes the following forms:

(i) If M is invariant, then

ρN ≤ ||H||2 − 2ρ + (c1 + c2)
p

p2 + 4q

{
p2 + 2q

+
2

n(n− 1)
[tr2 ϕ− (p · trT + nq)]− 2p

n
trϕ
}

+
1
n

1√
p2 + 4q

(c1 − c2)(2trϕ− np)− 2(n− 1)tr(α). (23)

(ii) If M is anti-invariant, then

ρN ≤ ||H||2 − 2ρ + (c1 + c2)
p

p2 + 4q

[
p2 + 2q +

2
n(n− 1)

trϕ2 − 2p
n

trϕ
]

(24)

− p√
p2 + 4q

(c1 − c2) +
1
n

1√
p2 + 4q

(c1 − c2)(2trϕ− np)− 2(n− 1)tr(α).

Moreover, the equality case in (23) and (24) holds identically iff, for the orthonormal frame
{e1, . . . , en, en+1, . . . , em}, the shape operators A satisfy

An+1 =



a d 0 . . . 0 0
d a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 a


, (25)

An+2 =



b + d 0 0 . . . 0 0
0 b− d 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0
0 0 0 . . . 0 b


, (26)

An+3 =



c 0 0 . . . 0 0
0 c 0 . . . 0 0
0 0 c . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . c 0
0 0 0 . . . 0 c


, An+4 = · · · = Am = 0, (27)

a, b, c, and d are smooth functions on M.

2. Secondly, we can consider the particular classes of metallic product spaces, such as a
golden structure or so-called silver, copper, nickel, and bronze structures by taking
the particular values of p and q. For example, the inequality (12) for the locally golden
space form (M̃ = M1(c1)×M2(c2), g, ϕ) will be

Corollary 2. For a submanifold Mn of locally golden space form (M̃ = M1(c1)×M2(c2), g, ϕ)
endowed with SSMC, we have
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(i) If M is θ-slant, then

ρN ≤ ||H||2 − 2ρ +
1
5
(c1 + c2)

{
3 +

2
n(n− 1)

[tr2 ϕ− (trT + n) cos2 θ]

− 2
n

trϕ
}
+

1√
5n

(c1 − c2)(2trϕ− n)− 2(n− 1)tr(α). (28)

(ii) If M is invariant, then

ρN ≤ ||H||2 − 2ρ +
1
5
(c1 + c2)

{
3 +

2
n(n− 1)

(tr2 ϕ− trT − n)− 2
n

trϕ
}

+
1√
5n

(c1 − c2)(2trϕ− n)− 2(n− 1)tr(α). (29)

(iii) If M is anti-invariant, then

ρN ≤ ||H||2 − 2ρ +
1
5
(c1 + c2)

[
3 +

2
n(n− 1)

tr2 ϕ− 2
n

trϕ

]
(30)

+
1√
5n

(c1 − c2)(2trϕ− n)− 2(n− 1)tr(α).

Moreover, the equality sign holds in (28)–(30) at a point p ∈ M if and only if the shape operators
have the forms (13)–(15) with respect to any appropriate tangent and normal orthonormal bases.
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